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Abstract. Sequence Diagrams (SDs) offer an intuitive and visual way of
describing expected behaviour of Object Oriented (OO) software. They
focus on modelling the method calls among participants of a software
system at runtime. This is an essential difference from its ancestor, basic
Message Sequence Charts (bMSCs), which are mainly used to model the
exchange of asynchronous messages. Since method calls are regarded as
synchronous messages in the Unified Modelling Language (UML) Ver-
sion 2.0, synchronous messages play a significantly more important role
in SDs than in bMSCs. However, the effect of this difference has not been
fully explored in previous work on the semantics of SDs. One important
aim of this paper is to identify the differences between SDs and bM-
SCs. We observe that using traditional semantics to interpret SDs may
not interpret SDs correct under certain circumstances. Consequently, we
propose a new method to interpret SDs which uses thread tags to deal
with identified problems.

Keywords: Sequence Diagram, Semantics, Partial Orders, Concurrency,
Object Oriented, Thread tags.

1 Introduction

In the Unified Modelling Language (UML) Version 2.0, a Sequence Diagram
(SD) is a type of Interaction Diagram (ID), as are Communication Diagrams,
Interaction Overview Diagrams and Timing Diagrams [OMGO05]. Although an
SD is a second-level modelling language in UML 2.0, it is the most commonly
used type of notation in ID and is regarded as the most popular UML behaviour
modelling language.

In Object Oriented (OO) software, SD-based specifications are usually used
to capture system requirements, model function logic or as automatic test mod-
els. An SD is a versatile tool that can be used in many parts of the OO software
development process; its ancestor, the basic Message Sequence Chart (bMSC),
developed in the early 1990s, was designed for modelling communication sys-
tems. As a consequence of the difference between application domains, minor
changes were introduced into the first version of UML.

Due to their similarity, the semantics developed for bMSC have been natu-
rally inherited by SD. In particular, those based on partial order theory have
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been widely adopted in both research and industry, because they are conceptu-
ally straightforward when compared with counterparts such as process algebra
based semantics [MR94]. Henceforth, we use the term ‘traditional semantics’ to
refer to partial order based semantics.

Although the syntax of SDs and bMSCs are almost identical, we argue that
small differences between them may cause significant semantic variations be-
tween the two. That is, traditional semantics may not interpret SDs correctly.
More specifically, SDs are often used to model OO software systems in which
communication is synchronous; bMSCs are normally used in asynchronous mes-
sage based communication systems. To model communication systems, bMSCs
assume that all participants are running concurrently and the messages between
them are always asynchronous. On the other hand, the messages between lifelines
of SDs are likely to be synchronous and there is no longer a one-to-one correspon-
dence between lifelines and threads of control. The differences described above
imply that when traditional semantics are applied on some SDs, it can result in
unintentional semantics. To solve this problem, we propose a new method for
interpreting sequence diagrams.

To find a proper method of interpreting SDs, we first attempt to solve the
problem using only the meta-classes from UML 2.0. We argue that existing
UML meta-classes cannot be used because, unlike bMSCs, lifelines are generally
orthogonal to threads. This implies that a thread may involve multiple lifelines
and a lifeline may involve multiple threads. We thus introduce thread tags into
SDs and provide an informal semantics for interpreting SDs.

In order to simplify the inference process, we only consider the most impor-
tant parts of SDs and bMSCs related to our proposed semantics. We assume
that a complete semantics based on our work can then be induced.

1.1 Related Work

When discussing the semantics of SDs, it is worth reviewing previous research
into bMSCs. Mauw and Reniers [MR94] used a process algebra to interpret
the semantics of bMSC and this approach has been adopted as the standard
semantics for bMSC [IT98]; Grabowski et al. [GGR93] proposed petri-net based
semantics for bMSC; Ladkin and Leue [LL93] used Biichi Automata to capture
the meaning of bMSC; Jonsson and Padilla [JP01] used Abstract Execution
Machines to describe bMSC semantics and at the same time, considered inline
expressions and data in bMSCs; Alur et al. [AHP96] were the first to use labelled
partially-ordered structures to formalize bMSCs.

The increased popularity of the UML has led to the semantics of SDs re-
ceiving more attention. In UML 2.0, SDs were significantly revised to allow ade-
quate modelling of complex software system based on the new version of bMSC
[OMGO5]. Although UML 2.0 tried to provide semantics for every modelling lan-
guage using a meta-model [Sel04], SDs have only been assigned a behaviour infor-
mal semantics according to traditional bMSC semantics. In [Sto03, HHRS05,CK04],
formal trace based semantics for SDs were provided and [LS06] solved the seman-
tic problem using an automata-theoretic approach. In [GS05], safety and liveness
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properties were used for distinguishing valid behaviours from invalid. Finally,
Harel and Maoz [HMO06] proposed Modal UML Sequence Diagrams (MUSD), an
extension of SDs based on the approach used in Live Sequence Charts (LSCs) to
extend bMSCs [DHO1]. These newly developed SD semantics were based on dif-
ferent kinds of bMSC semantics. The bMSC semantics were revised to conform
to the intended semantics of UML 2.0 with added semantics for the new meta-
classes of UML 2.0 (eg., for CombinedFramgment and InteractionOperator).

Previous work has been largely based on bMSC semantics, the core ideas
of which are commonly derived from corresponding bMSC semantics directly.
Although the notation used to describe SDs and bMSCs are almost identical,
the differences between them do affect how the diagrams are interpreted. For
instance, a lifeline in UML 2.0 no longer represents a process. If we still interpret
it as bMSC’s instance, the correct concurrency information will not be deduced
from an SD in certain circumstances. This observation is the motivation for the
work described in this paper.

An interesting variation on mainstream bMSCs are LSCs which use a two-
layer approach to distinguish mandatory and provisional behaviour in scenarios.
Similar to our approach, the semantics of LSCs consider the problem caused by
synchronous method calls. It assumes that a synchronous message is received be-
fore the next event on the instance which sent the message. This simple solution
addressing the additional orders induced by synchronous messages is sufficient
for LSCs, but it may be problematic when applied to SDs, because lifelines of
SDs no longer contain a thread of control.

The remainder of this paper is structured as follows. A comparison between
the SD and bMSC standards is presented and the traditional semantics are in-
troduced informally in Section 2. In Section 3, some possible problems that can
arise when using the traditional semantics to interpret SD are described. In Sec-
tion 4, two unsuccessful solutions that use UML 2.0 meta-classes are analysed.
We argue that there are no meta-classes in UML 2.0 that can achieve correct se-
mantics for SDs. After the analysis, inference rules for interpreting SD based on
thread tags are proposed in Section 5. Finally, in Section 6, our work is concluded
and potential future directions described.

2 Preliminary

This paper is motivated by the observation that the existing semantics of SDs
have problems when interpreting SDs with synchronous messages. To illustrate
the problems, SD and bMSC standards are first compared to reveal their differ-
ences; second, the traditional semantics of SD are introduced based on bMSC
partial order semantics.

2.1 The Difference between SD and bMSC

Both SD and bMSC are complicated modelling languages and both standards
use meta-methods to define themselves as hierarchies of meta-classes. We com-
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pare the two languages according to the selected constructs of Lifeline (instance
in bMSC), Message, MessageOccurrenceSpecification (event in bMSC) and Ez-
ecutionSpecification (method and suspension in bMSC)?!.

In UML 2.0 meta-models, an SD is decomposed into Lifelines and Mes-
sages. A Lifeline commonly represents an instance of a class or component in an
OO program and it contains different kinds of OccurrenceSpecifications. Occur-
renceSpecification is an equivalent concept to event in bMSC. Two main kinds
of OccurrenceSpecification are MessageOccurrenceSpecification and Ezecution-
Specification. MessageOccurrenceSpecifications are used to represent sending or
receiving of messages. EzxecutionSpecifications are specifications of the execution
of units of behaviours or actions within the Lifeline and always triggered by
Messages.

The sturctures of msc are similar to the structures in an SD meta-model,
although msc is defined using a meta-language. An msc body includes multiple
instances. Each instance has its own thread of control, and each instance has a
list of events which appear along it. message event and method call event are the
two main types of event. A pair of message events or a pair of method call events
are used to represent a message between two instances. A method is a named
unit of behaviour inside an instance. A suspension occurs when a synchronous
method call is sent and lasts until the reply of the call returns.

Although both modelling languages have similar core constructs and each
construct has similar graphical presentations, three underlying differences need
to be addressed.

The first difference is that Lifeline and instance generally represent different
things. instance of bMSC usually represents a process, a network device or a
system. Lifelines in SDs always represent objects or instances of a component.
instance always has its own thread of control (thread)?, but a Lifeline does not.

The second difference is that SD and bMSC’s messages are categorised differ-
ently. In SD, there are three message types: synchCall, asynchCall and asynchSig-
nal. Generally speaking, synchCall is the more commonly used type of message
modelling synchronous method call between objects. For bMSCs, message only
refers to asynchronous communication between two instances and is the most
often used type of message in bMSC. In general, the difference is due to the fact
that SDs are used to model communication between objects, while bMSCs are
designed to model message exchange between processes.

The third difference is that SDs and bMSCs use different ways to model the
activity of a Lifeline or an instance. This difference is also due to the fact that
an instance has a thread but Lifeline does not. Since an instance has its thread
of control, if there is a synchronous method call from an instance, the caller
will enter a suspension region where no events occur until the reply of the call

! The emphasized words are definitions from the standard. A detailed explanation of
them can be found in UML 2.0 and MSC standards [OMGO05,IT98].

2 Here, thread of control represents an abstract notion of control unlike thread or
process in operation system (OS). More specifically, an independent task which is
executed sequentially should be regarded as owning its own thread of control.



Thread-based Analysis of Sequence Diagrams 5

returns. However, SDs do not restrict a Lifeline to map to only one thread of
control. It is possible for EzecutionSpecifications of multiple threads to overlap
in one Lifeline. An example of this is given in Ezample 9 (Figure 6).

2.2 Traditional Partial Order Semantics

In the UML 2.0, the sequences of MessageOccurrenceSpecification are regarded
as the meanings of SDs. Thus, traditional semantics can be described by two
ordering rules when only considering the meta-classes: Lifeline, Message and
MessageOccurrenceSpecification.

1. MessageOccurrenceSpecifications that appear on the same Lifeline are or-
dered from top to bottom.

2. Sending MessageOccurrenceSpecification always occurs before the correspond-
ing receiving MessageOccurrenceSpecification.

Based on the rules, an informal partial order semantics of SDs can be defined.
It is the transitive closure of the union of the following two orders:

— the union of total orders of MessageOccurrenceSpecifications in each Lifeline;
— the ordering relations between the MessageOccurrenceSpecification pairs of
sending and receiving of the same message;

3 The Effect of Changing from bMSC to SD

In Section 2, we introduced the differences between SD and bMSC and the tradi-
tional semantics for SD. In order to illustrate the effects of the changes, five sim-
ple SD examples are presented. Fxample 1 in Figure 1 shows that synchronous
messages convey the events® of one thread to multiple lifelines. Ezamples 2 and
8 in Figure 2 demonstrate that it is not enough to simply apply traditional se-
mantics for interpreting two kinds of SDs. FExamples 4 and § in Figure 3 show
what can happen when multiple threads enter the same lifeline in one SD.

FEzample 1 is an example of an SD where a synchronous message is repre-
sented by a solid line with a filled arrowhead (¢l and ¢2); an open arrowhead
is used to represent asynchronous messages (ml). The reply to a synchronous
message is represented as a dashed line with an open arrowhead pointing back
to the caller (rcl and rc¢2). Each thin rectangle on a lifeline represents an Execu-
tionSpecification defined as “a specification of the execution of a unit of behavior
or action within the Lifeline” and denotes that the lifeline is active. In an OO
program, when the synchronous message is a call to a method of the object
represented by the lifeline, the thin rectangle signifies that the method is on the
stack.

According to the UML 2.0 standard, we can interpret Example I as a run-
ning method of a:A4 calling the method ¢l in object b:B and b:B sending an

3 For the sake of simplicity, we use event to replace the lengthy MessageOccurrence-
Specification.
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sd examplel)
| a: A | | bh:B | | c: | | d: D |
I e o | I I

Fig. 1. An SD with synchronous messages

asynchronous message ml to object d:D. Method cl returns after m1 has been
sent. Finally, the method in object a:A calls the ¢2 method in object ¢:C and
c2 returns.

This scenario means that methods ¢l and ¢2 are successively executed in one
thread, so the events !cl, ?cl, !ml, lrcl, 7rc2, lc2, 7¢2, 'rc2 and ?7rc2 all belong
to one thread but are expanded to three lifelines. Here, the shriek symbol, !,
represents sending and the ? symbol represents receiving (of a call or message).

Ezample 1 illustrates how synchronous messages expand events of one thread
into different lifelines. As a consequence, a normal lifeline no longer represents
a thread of control.

Applying traditional semantics to this example, the orders of the events are:
lel <?cl <Iml <Irel <?rel <le2 <72 <Ire2 <?rc2 and 'm1 <?ml which is
equivalent to our intuitive understanding.

Now we assume that the orders in Fxample 1 define the traces that we want

to model and give two other examples (Examples 2 and ) which try to model
the same traces.

sd exampleE.-'l sd exampleS,"l
a:A| b:EI| |c:C| |d:D| |a:A| b:EI| |c:C| |d:D|
| et | i ' RGN ' '

I ) I
2 m1I ‘-.‘I I I 2 m1I
3 c2() | fli'l ! 3 ::2()!
I I

R >

g

Fig. 2. SDs with synchCalls
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FEzample 2 is also a common SD, but the returns of the synchronous calls
are not included. Applying traditional semantics, we get following orders: lcl <
7cl <Iml, lel <le2 <?¢2 and !'m1 <?ml. The relations 7cl <!¢2 and !ml <
12 are missing. However, according to the meaning of execution specification
and synchronous call, the two calls from the same execution specification (lcl
and !¢2) are still in the same thread, so the missing orders should exist. The
partial order should be lcl <?¢l <!ml <!e2 <7¢2 and !'m1 <?ml which is the
partial order of Ezample 1 except with reply events removed. This example shows
that traditional semantics of SD are not enough to interpret SDs if synchronous
messages are included and replies of synchronous calls omitted.

In Fzample 3, a simplified SD is given. Since execution specification is op-
tional in SD, software engineers may draw SDs as shown in Fxample 3 to reflect
the traces in Fxzample 1. Here, it is not easy to induce the desired partial or-
der from Fzample 3. Calls ¢l and ¢2 may belong to two different threads, so
the events of ¢l and ¢2 may interleave. As a result, the intended orders may
be lel <?¢l <!ml <?ml and !cl <!¢2 <7¢2, the order produced by applying
traditional semantics. Compared with the partial order of Ezample 1, it does
not include relations like ?¢1 <!¢2 and !m1 <!c2.

This example shows that users may draw a diagram based on their own
assumption that all the calls are in one thread and are synchronized; the assumed
orders can not subsequently be retrieved from the diagram when it is formally
analyzed.

The first three examples explain how synchronous messages bring the events
of one thread to multiple lifelines, and the problems that may result from this.
In fact, in many cases it can also happen that multiple threads enter one lifeline
in an SD.

sd exampled / sd exampleS /

R | | |
["]—PE] | —x |
2020 | ' }

Fig. 3. SDs of multiple thread enter one lifeline

An intuitive interpretation of Ezample 4 shown in Figure 3 is that methods b1
and b2 in object b:B are called by a:A and b:B sequentially from different threads.
This example illustrates that sometimes it is impossible to determine whether
the events on the same lifeline belong to the same thread. Another version of
Ezample 4 is shown in Erample 5 (same figure). It is a similar scenario to
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Ezample 4 except that synchronous calls b1 and b2 are replaced by asynchronous
messages ml and m2. If Ezample 5 is a bMSC, it induces a canonical race
condition [AHP96,Mit05]. According to traditional semantics, m1, and m2 can
be sent in either order. There is no way to enforce m1 arriving before m2 without
additional information. If 7m1 and ?m2 belong to one thread and the system is
implemented following Ezample 5, then a race condition may be introduced into
the system. However, when checking this diagram in the context of OO software
development, we can not decide whether a race condition applies since ?7m1 and
?7m?2 might not belong to the same thread.

According to these examples, we find that the most problematic issue of in-
terpreting an SD with synchronous messages is how to retain thread information
in SDs when a lifeline does not correspond to a thread of control.

4 Mapping Events to Threads

To correctly interpret an SD, it is necessary to find a way of mapping different
events to existing threads in the SD; we call this Thread Mapping.

To achieve this, two related meta-classes in UML 2.0 are selected. First is
execution specification which can be used for grouping events. The second is
active object which contains information regarding concurrency. The feasibility
of using these meta-classes to do the thread mapping is now analysed.

4.1 Using Execution Specification

Ezample 2 in Figure 2 shows that using the information contained in execu-
tion specifications may help to handle the thread mapping problem. The events
triggered by synchronous messages can be grouped together by analysing the
connective relations of the execution specifications.

Thread mapping is relatively straightforward for simple diagrams like Ez-
ample 1 and Ezxample 2. With execution specifications, we can group events
inductively as follows:

1. Events that appear on the same lifeline are ordered from top to bottom.*

2. A message is always sent before it is received.

3. If there are synchronous messages between two execution specifications a
and b, then a and b are connected.

4. If execution specifications a and b are connected, and b and ¢ are connected,
then a and c are connected.

5. All events on connected execution specifications are grouped into the same
thread.

6. Let us suppose that in an event group, a synchronous message m is sent
from execution specification a to execution specification b, then the events
on b should always be before the next event on a.

4 This rule introduces forced orders between events of different threads on the same
Lifeline.
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Now consider applying the above inference rules to interpret Ezample 2. From
the diagram, the observed orders are lcl <7cl <Iml <!¢2 <?¢2 and !m1 <?ml
which is what we want.

Example 6 shown in Figure 4 illustrates a scenario in which a:A4 is a window
object that can accept inputs from an actor. When an asynchronous message
arrives, one of the a:A methods is activated. The activated method handles
the message by calling methods of the connected participants. In this case,
the GUI libraries of most programming languages will put the two events on
lifeline a:A in the same thread® and the desired orders of this diagram are
lel <7cl <Iml <!ed <?e3 <!m2 <?m2 and ?7m1 <?m2. However, correct thread
information cannot be produced by the rules above and the desired orders can-
not be generated. This is due to the fact that, when applying inference rules 3,
4 and 5 to this diagram, the events will be separated into two event groups. The
orders obtained by applying the inference rules will be lel <?¢cl <!ml <?ml,
13 <?¢3 <Im2 <?m2, lcl <!e3 and ?ml <?m2. In this case, desired relations
such as 7¢l <?¢3 and ?c¢l <!c3 are lost.

sd exampleEn,’l

% a. A b:B c.C d: D
o 1 | | |
* | | |

2 ¢l() I I I

- Fm1 | |

[ L |

N ! 53 I jll'|
'CU! ’ﬁ] G m2 |

| e

i T ! ! ‘”U

Fig. 4. SDs thread mapping problem

Although execution specifications do not always provide enough information
for thread mapping in complicated SDs, these inference rules are still useful
because grouped events belong to the same thread.

To apply these inference rules, one issue has to be clarified. According to UML
2.0, overlapping execution specifications on the same lifeline should always be
represented by overlapping rectangles. However, a number of UML modelling
tools do not follow this definition and this introduces problems in our inference
rules.

5 For example, two Java GUI libraries, Swing and SWT and Visual C++’s MFC.
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There are two circumstances in which overlapping execution specifications
will occur. Firstly, in the case of callback methods and secondly, for concurrent
re-entering methods in the same lifeline.

sd example"l’.-'l sd exampleﬂ,‘l

1: b3()

Fig. 5. Callback method

According to UML 2.0 standard, callback methods should be shown as Ez-
ample 7 in Figure 5. Some UML tools depict the callback method as Ezample 8
in the same figure and although these tools violate the standard definition, our
inference rules still apply because all events of a callback method belong to the
same thread.

sd examplegf‘l sd examplellj.-'l

Fig. 6. Re-entering methods of the same lifeline

Concurrent re-entering methods of the same lifeline should be shown as Fz-
ample 9 in Figure 6. Some UML tools depict it as in FExample 10 in the same
figure. When inference rules 3, 4 and 5 in the previous section are applied to
Ezxample 10, all execution specifications and events in the diagram are grouped
to the same thread. This deduction conflicts with what actually happens, since
b1 and b2 should belong to different threads in such scenarios. If inference rule
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6 is applied subsequently to Fxample 10, the next event of b2 on lifeline ¢ : C
should follow all events on b : B belonging to the same thread. This means that
there exists an order !4 <!3, thus the events in the diagram may form a circle
following this order, conflicting with the definition of partial order.

The semantics of execution specification will therefore be damaged if over-
lapping execution specifications are not depicted strictly according to the UML
2.0 standard; our inference rules do not work in this instance.

4.2 Using Active Object

In the UML standard related to SD, the only concept related to concurrency is
that of active object.

A class may be designated as active (i.e., each of its instances having
its own thread of control) or passive (i.e., each of its instances executing
within the context of some other object). [OMGO05, p423]

An active object is an object that, as a direct consequence of its creation,
commences to execute its classifier behavior, and does not cease until
either the complete behavior is executed or the object is terminated by
some external object. (This is sometimes referred to as “the object having
its own thread of control.”) [OMGO5, p424]

When an instance of a class with isActive property is set to be true, it is an
active object, otherwise it is a passive object.

sd examplell)

T
1. mQ |

I
|
execs
X |'I'I

execl

Fig.7. An SD with active objects

Let us assume that active objects are represented by some lifelines, and ex-
ecution specifications are fully specified; we could then claim that events can
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be mapped to threads using the inference rules in Section 4.1. To explain, Ez-
ample 11 is provided in Figure 7. Active objects are represented by rectangles,
each with an additional vertical bar on either side (eg. a:A and d:D in Example
11). Since active objects are active from creation to termination, the execution
specifications of active objects persist from top to bottom of the lifelines in this
diagram. We assume that each active object in the diagram contains a thread. In
addition, to simplify the discussion, some terms representing the execution spec-
ifications are added to the diagram, for example execl refers to the execution
specification on lifeline a:A. The detailed inference steps are:

— By applying rule 1, orders 7m0 <!bl <lel, 761 <!ml <702, 7¢l <!m2 <7¢2
and ?7ml <!b2 <?m?2 <!c2 are obtained.

— By applying rule 2, orders b1 <?b1, !'m1 <?ml, 162 <7b2, lcl <?cl, Im2 <
?m2 and !¢2 <?¢2 are obtained.

— By applying inference rule 3, the pairs execl and exec3, execl and exech,
exec2 and execd, exec2 and execb are connected respectively.

— By applying rules 4 and 5, execl, exec3 and exech are connected; events
7m0, b1, 71, Im1, lcl, 7¢l and !m2 belong to the thread containing active
object a : A. Similarly, exec2, execd and exec are connected; events 7ml,
162, 702, Tm2, ¢2 and ?¢2 belong to the thread containing active object d : D.

— By applying rule 6, orders 761 <!cl, !Im1 <!cl and 762 <?m2 are obtained.

After applying these inference steps, the union of all obtained orders are:
7m0 <!bl <?b1 <Iml <lel <?cl <Im2, Tml <62 <?7b2 <?m2 <!c2 <?c2,
Im1 <702 and !m2 <?¢2, as expected.

But in OO software, it is hard to judge whether a lifeline represents an active
object or not, since active object is defined more specifically than lifeline and,
in most situations, they are not equivalent.

The concept of active object originates from research into Concurrent Ob-
ject Oriented Programming Language (COOPL) [KL89,Nie93]. Active objects
of COOPL keep both concurrency and OO features, such as encapsulation and
inheritance, together. Consequently, the structure of active objects is generally
more complex than common objects in Object Oriented Programing Language
(OOPL). Mainstream OOPLs such as Java and C++ use a different approach
to realize concurrent computing. They utilize special entities in the language
itself or OS to implement concurrent computing, such as Thread class in Java
and process or thread in Windows OS. Other research has shown how to im-
plement active objects using normal OOPLs to benefit concurrent programming
[CKV98,LS96]. In [LS96], active object is a behavioral pattern with multiple
participants, such as Proxy, Scheduler, Servant etc. As a result, using a single
lifeline to represent an active object for common OO software is unreasonable.

To summarise, these thread mapping approaches are impossible because the
concurrent information kept by UML 2.0 meta-classes is not sufficient for doing
S0.
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5 Inference for SDs with Thread Tags

Since there appears to be no canonical way to map events to threads with UML
2.0 meta-classes, we propose a new approach that extends the notation of UML
2.0. The extension should have two functions: firstly, to group all events in one
SD to different threads; secondly, to maintain the temporal order of the events
belonging to one thread. A straightforward solution is provided by using thread
tags to retain the concurrent information of the systems being modelled. Ezample
12 in Figure 8 shows an SD with extended thread tags. In this approach, an id is
given to every thread in an SD. Each message is tagged with two thread ids, one
for the source thread and one for the target thread. However, when sending and
receiving of a message belong to the same thread, only one thread id is tagged
in the middle of the message instead of two. The ids are then used to classify
events into different threads while the temporal order of the grouped events is
kept by the positions where the events occur.

sd ex:amplelz)

% a:h l: B c:C d: D

. I I I I
Ader 1. | | | |
H 2el1() | |
Al Tl |—’| I mil |
Tl L

! m I 2 :3,'
* l 5 e3) | I |
— 1 C I . I
Al Tl | f Pt G:m2 |

| T1 |
L | | | Tl T2

Fig. 8. An SD with thread tags

With a tagged SD, if we only consider the events of synchronous messages,
then the orders of events of a single thread can be easily obtained using the
following inference rules:

1. A message is always sent before it is received.
2. The events should be ordered linearly along the SD.

In the following text, we use <7 to represent the orders obtained from thread
tags® and < to represent the orders obtained from lifelines”. We observe that
there are differences between <r and <. Intuitively, <7 \ <j, represents those
sound orders that are missing when applying traditional partial order semantics.
But it is also worth considering what <, \ <7 means.

5 Orders are obtained by applying the above inference rules to every thread in the SD.
" Orders are obtained by applying the first inference rule in Subsection 2.2 to the SD.
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sd examplelS)

sd exampleld .rj

L e | | 1add() | i
Ti r L] ' T1 r E] !
2 b2 ' : !

| h2() 2gatl)

I EEray

Fig. 9. What does <7, \ <r mean?

Recall Example 4 in Figure 3; if we tag Fxample 4 with thread id, we get
Ezxample 13 as shown in Figure 9. Applying the rules for ordering events in one
thread, only b1 <7b1 and 162 <7b2 are observed. Applying the first inference rule
for inferencing traditional partial order set, we can get one more order relation
7b1 <7b2. Since threads T'1 and T2 run concurrently, events of T'1 can interleave
with the events of T2, so 7b1 <7b2 is redundant. It is reasonable to remove the
orders obtained using lifeline information from the partial order set while there
are thread tags in SDs.

Sometimes, forced orders need to be added to the events of different threads.
Ezxample 14 shows a similar scenario to Example 13. The only difference is that
the messages have two different signatures. Intuitively, the traditional seman-
tics of this diagram are meaningful. It describes a scenario that ¢ : C' can get
something from b : B only after a : A has added something to b : B.

The dilemma is whether the orders from lifelines should be preserved. If they
are, some redundant orders will be added to the final partial order set when we
represent parallel executions in one SD. If they are removed, extra meta-classes
are needed to maintain the forced orders in the SDs. In fact, there is a meta-
class, GeneralOrdering, used to express the forced order relation between two
events [OMGO5, p466]. The notation of GeneralOrdering is shown by a dotted
line connecting the two events and the direction of the relation is given by an
arrowhead placed in the middle of the dotted line. When compared with the first
case which may introduce errors into SDs, we believe that using GeneralOrdering
to maintain the forced orders in the second case is a credible solution.

Moreover, since forced orders are ignored in traditional semantics, we adopted
in the Section 2.2, we will also ignore forced orders in SDs here when interpreting
thread tagged SDs. The inference rules for interpreting tagged SDs can be revised
as follows:

1. A synchronous message is always sent before it is received.
2. The events tagged with the same thread id should be ordered linearly along
the SD even if the events are on different lifelines.

The traditional inference rules only need positional information about events
on each lifeline, but the proposed rules need all event positional information in
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one thread. Using the proposed rules, it is easy to infer the exact orders from the
tagged SD even without the execution specifications. For instance, for Ezample
12 shown in Figure 8, because lcl, 7cl, !m1, 13, 7¢3, /m2 all belong to thread
T1, the orders are lcl <?cl <Iml <!e3 <?¢3 <!m2, ?ml <?m2, !ml <?ml and
Im2 <?m2 as desired.

Finally, without considering the forced orders, an informal semantics for SDs
based on partial order theory can be defined as the transitive closure of the union
of the following two orders:

— the union of orders of events belonging to the same thread;
— the ordering relation between the event pairs of sending and receiving of a
message.

6 Conclusion and Future Work

In this paper, some primary differences between SDs and bMSCs were analysed.
Based on these differences, we argued that traditional semantics for SDs had
drawbacks when interpreting SDs. Two meta-classes of UML 2.0 were used to
resolve the problems within traditional semantics. However, these meta-classes
cannot maintain concurrency information needed in order to interpret SDs. As
a consequence, an informal semantics for SD with thread tags was proposed.
We believe that intended event sequences can be generated by applying this
semantics to SDs.

An important area of future work is the development of a formal semantics
for SDs with thread tags and then extend it to the Interaction Diagrams (IDs)
of UML 2.0. In addition to developing the semantics of IDs, it would also be
interesting to conduct a formal analysis of IDs based on the developed semantics,
for example, identifying the pathologies of IDs and ID model checking. One of the
problems considered in this paper is caused by the absence of return messages.
An alternative solution may be to infer these missing return messages but the
use of such an approach is a topic for future work.
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