
Minimizing Coordination Channels in

Distributed Testing

Guy-Vincent Jourdan1, Hasan Ural1, and Hüsnü Yenigün2

1 School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada, K1N 6N5

{gvj,ural}@site.uottawa.ca
2 Faculty of Engineering and Natural Sciences

Sabancı University
Tuzla, Istanbul, Turkey 34956
yenigun@sabanciuniv.edu

Abstract. Testing may be used to show that a system under test con-
forms to its specification. In the case of a distributed system, one may
have to use a distributed test architecture, involving p testers in order
to test the system under test. These p testers may under some circum-
stances have to coordinate their actions with each other using external
coordination channels. This may require the use of up to p2 − p unidi-
rectional coordination channels in the test architecture, which can be an
extensive and expensive setup. In this paper, we propose a method to
generate checking sequences while minimizing the number of required co-
ordination channels, by adapting existing methods that generate check-
ing sequences to be applied in a centralized test architecture. We consider
the case of unidirectional and bidirectional coordination channels, and
the case of transitive coordination.

1 Introduction

One way to check the conformance of an implementation to a specification is
to employ a checking sequence [1, 2]. Several methods have been proposed over
the last two decades to reduce the length of these checking sequences, e.g. [3–6],
but all of these methods focus on centralized systems. When testing distributed
systems, a tester is placed at each port (interface) of the system to form a dis-
tributed test architecture. During the application of a checking sequence within
a distributed test architecture, the existence of multiple remote testers brings
out the possibility of two types of coordination problems among testers: con-
trollability and observability problems. These problems occur if a tester cannot
determine either when to apply a particular input to a system under test (SUT),
or whether a particular output from a SUT is generated in response to a specific
input, respectively.

Controllability refers to the ease of affecting the specified outputs. A con-
trollability (synchronization) problem exists when a tester is required to send an



input in the current transition, and because it is not involved in the previous
transition, i.e., it did not send the input or receive the output in the previous
transition, it does not know when to send the input to the SUT.

Observability refers to the ease of determining if specified inputs affect the
outputs. An observability problem exists when a tester is expecting to receive
an output from the SUT in response to either the previous input or the current
input and because it did not send the current input, it does not know when to
start or stop waiting for the output.

Several possible venues have been explored to deal with these problems. Some
authors have provided necessary and sufficient conditions to avoid controllability
and/or observability problems [7, 8]. When these problems cannot be avoided,
coordination among the remote testers is required through external coordination
message exchanges [9–19]. Other authors have proposed techniques to minimize
these coordination messages necessary to facilitate the application of a checking
sequence in a distributed test architecture [14,20,21].

In this paper, we look at the use of external coordination messages from a
different point of view: we adapt the algorithm of [4] to distributed testing and
attempt to minimize the number of coordination channels required to perform
the test. If p testers are involved in a distributed test architecture, potentially
every pair of testers will need to exchange a coordination message at one point
or another, thus leading to a need of p2 − p unidirectional coordination channels
to be added to the test environment. This can potentially require an extensive
and expensive setup just to run the test. Our goal is thus to require as few
coordination channels as possible, in contrast to exchanging as few external
coordination messages as possible. Once a channel has been set up, one would
use it for exchanging as many external coordination messages as necessary rather
than incurring the cost of setting up additional channels.

The rest of the paper is organized as follows: Section 2 gives the preliminar-
ies. Section 3 reviews the checking sequence generation algorithm that will be
modified to generate a checking sequence while minimizing the number coordi-
nation channels required. Section 4 presents the proposed approach. Section 5
gives the concluding remarks.

2 Preliminaries

A multiport deterministic FSM M is defined by a tuple

(S, s1, p,X1,X2, . . . ,Xp, δ, Y1, Y2, . . . , Yp, λ1, λ2, . . . , λp)

in which S is a finite set of states, s1 ∈ S is the initial state. The number of states
of M is denoted n and the states of M are enumerated, giving S = {s1, . . . , sn}.
p ≥ 1 is an integer which gives the number of ports of M , and the set of ports
of M is denoted [p] to denote the set {1, 2, . . . , p}.

Xi is the set of input symbols on port i such that for j ∈ [p] and j 6= i,
Xi ∩ Xj = ∅. In other words, the input sets of the ports are disjoint. We use
X = ∪i∈[p]Xi to denote the set of all input symbols.



δ : S × X → S is the next state function. If s′ = δ(s, x) for states s, s′ ∈ S
and x ∈ Xi for some i ∈ [p], this means that, when the machine M is in state s,
and input x is applied at port i, then the machine will transfer to state s′.

Yi is the set of output symbols on port i such that for i, j ∈ [p] if i 6= j then
Yi ∩ Yj = {−}, where − is null output.

λi : S×X → Yi is the output function on port i. Intuitively, if M is at a state s,
and an input x ∈ X is applied to M , then the output λi(s, x) is observed at port
i, unless λi(s, x) = −. Let Y denote the set Y1 × Y2 × · · · × Yp \ (−,−, . . . ,−).
We will also use the output function λ : S × X → Y , which is defined as
λ(s, x) = (λ1(s, x), λ2(s, x), . . . , λp(s, x)). We use y|i to denote the output at
port i ∈ [p] in y ∈ Y . The functions δ and λ can be extended to input sequences
in a straightforward manner.

An FSM, that will be denoted M0 throughout this paper, is shown in Figure 1.
Here, S = {s1, s2, s3, s4, s5}, X1 = {a}, X2 = {b}, X3 = {c} and Y1 = {1},
Y2 = {2}, Y3 = {3}.

s1s2

s3 s4 s5

b/(1, 2,−)

b/(−, 2,−)

b/(−, 2,−)

b/(1,−,−)

a/(1,−,−)

a/(1, 2,−)

c/(−,−, 3)

a/(1, 2,−)

a/(−, 2,−) a/(−, 2,−)

Fig. 1. The FSM M0

Throughout the paper, we use barred symbols (e.g. x̄, P̄ , . . .) to denote se-
quences, and juxtaposition to denote concatenation. In an FSM M , si ∈ S and
sj ∈ S, si 6= sj , are equivalent if, ∀x̄ ∈ X∗, λ(si, x̄) = λ(sj , x̄). If ∃x̄ ∈ X∗ such
that λ(si, x̄) 6= λ(sj , x̄) then x̄ is said to distinguish si from sj . An FSM M is
said to be minimal if none of its states are equivalent. A distinguishing sequence
for an FSM M is an input sequence D̄ for which each state of M produces a dis-
tinct output. More formally, for all si, sj ∈ S if si 6= sj then λ(si, D̄) 6= λ(sj , D̄).
Thus, for example, M0 has distinguishing sequence ab.

An FSM M can be represented by a directed graph (digraph) G = (V,E)
where a set of vertices V represents the set S of states of M , and a set of
directed edges E represents all transitions of M . Each edge e = (vj , vk, x/y) ∈ E
represents a transition t = (sj , sk, x/y) of M from state sj to state sk with input
x and output y where sj , sk ∈ S, x ∈ X, and y ∈ Y such that δ(sj , x) = sk,
λ(sj , x) = y. For a vertex v ∈ V and E′ ⊆ E, indegreeE′(v) denotes the number



of edges from E′ that enter v and outdegreeE′(v) denotes the number of edges
from E′ that leave v.

A sequence P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1) of
pairwise adjacent edges from G forms a path in which each node ni represents a
vertex from V and thus, ultimately, a state from S. Here initial(P̄ ) denotes n1,
which is the initial node of P̄ , and final(P̄ ) denotes nk, which is the final node
of P̄ . The sequence Q̄ = (x1/y1)(x2/y2) . . . (xk−1/yk−1) is the label of P̄ and is
denoted label(P̄ ). Q̄ is said to be a transfer sequence from n1 to nk. The path P̄
can be represented by the tuple (n1, nk, Q̄) or by the tuple (n1, nk, x̄/ȳ) in which
x̄ = x1x2 . . . xk−1 is the input portion of Q̄ and ȳ = y1y2 . . . yk−1 is the output
portion of Q̄. The cost of a path is given as the number of pairs of input/output
symbols in its label. Two paths P̄1 and P̄2 can be concatenated as P̄1P̄2 only if
final(P̄1) = initial(P̄2).

A tour is a path whose initial and final nodes are the same. Given a tour
Γ̄ = e1e2 . . . ek, P̄ = ejej+1 . . . eke1e2 . . . ej−1 is a path formed by starting Γ̄
with edge ej , and hence by ending Γ̄ with edge ej−1. An Euler Tour of G is
a tour that contains each edge of G exactly once. A set E′ of edges from G is
acyclic if no tour can be formed using the edges in E′. A digraph G = (V,E) is
symmetric if for each vertex v ∈ V , indegreeE(v)=outdegreeE(v). A minimum–
cost symmetric augmentation G′ = (V,E′) of a graph G = (V,E) is a symmetric
digraph where E′ = E∪∆, where ∆ contains a minimum number of replications
of some edges in E.

A digraph is strongly connected if for any ordered pair of vertices (vi, vj)
there is a path from vi to vj . An FSM is strongly connected if the digraph that
represents it is strongly connected. It will be assumed that any FSM considered
in this paper is deterministic, minimal, and strongly connected.

3 Overview of the Original Algorithm

In this section, we will present an existing approach for generating reduced length
checking sequences [4]. The method, in its original form, does not take into ac-
count the fact that the resulting checking sequence will be applied in a dis-
tributed test architecture. To apply it on a distributed test architecture, exter-
nal coordination messages must be inserted into the checking sequence. Hence,
it may be used to generate a checking sequence applicable within a distributed
test architecture which uses more coordination channels than it may actually be
needed. We will show in the next section how to modify the method to generate
checking sequences minimizing the number of coordination channels required.

Let M be an FSM and let N be an implementation of M . A checking sequence
is a sequence of inputs to be applied to N that will help determine whether N is a
correct implementation of M or not, i.e. whether N is isomorphic to M or not [1].
If M has a distinguishing sequence D̄, then D̄ can be used in the checking se-
quence to help to identify the states. Let us call T̄i = D̄/λ(si, D̄)B̄i a T–sequence,
where B̄i = Īi/λ(δ(si, D̄), Īi) for a possibly empty input sequence Īi (i.e. the in-
put portion of a transfer sequence). We call initial(T ) (resp. final(T ) the first



(resp. last) state of the sequence T . An α′–sequence is a sequence T̄k1
T̄k2

. . . T̄krk
,

for some 1 ≤ k1, k2, . . . , krk
≤ n, such that ∀i ∈ {1, 2, . . . , rk−1}, initial(T̄ki+1

) =
final(T̄ki

). A T–set is a set of T–sequences, and an α′–set is a set of α′–sequences
{ᾱ′

1, ᾱ
′
2, . . . , ᾱ

′
q} satisfying the following condition [4]: for all i ∈ {1, 2, . . . , n},

there exists j ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , q}, such that T̄iT̄j is a subse-
quence of ᾱ′

k.
In [4], the following method is explained to produce a checking sequence.

Given a digraph G = (V,E) corresponding to an FSM M , a T–set T = {T̄1, T̄2,
. . . , T̄n}, and an α′–set A = {ᾱ′

1, ᾱ
′
2, . . . , ᾱ

′
q}, first another digraph G′ = (V ′, E′)

is produced by augmenting the digraph G as follows (Figure 2 is the digraph G′

corresponding to the digraph G of FSM M0 given in Figure 1, where the input
portion of T̄1, T̄2, T̄3, T̄4 and T̄5 is ab):

a) V ′ = V ∪ U ′ where U ′ = {v′ : v ∈ V }, i.e. for each vertex v in G, there are
two copies of v in G′. In Figure 2, the nodes at the bottom are the nodes in
V , and the nodes at the top are the nodes in U ′.

b) E′ = EC ∪ ET ∪ Eα′ ∪ E′′ where
i) EC = {(v′

i, vj , x/y) : (vi, vj , x/y) ∈ E}. The solid edges leaving the nodes
at the top in Figure 2 are the edges in EC .

ii) ET = {(vi, v
′
j , T̄i) : T̄i ∈ T , si = initial(T̄i), sj = final(T̄i)}. In Figure 2,

these edges are shown with dashed lines.
iii) Eα′ = {(vi, v

′
j , ᾱ

′
k) : ᾱ′

k ∈ A, ᾱ′
k = T̄i . . . T̄j , initial(T̄i) = si, final(T̄j) =

sj}. For example, in Figure 2 we consider an α′–set A = {ᾱ′
1 = T̄4T̄1T̄2T̄1,

ᾱ′
2 = T̄5T̄3T̄3}. The bold solid edges in Figure 2 are the edges of Eα′ .

iv) E′′ ⊆ {(v′
i, v

′
j , x/y) : (vi, vj , x/y) ∈ E}. E′′ is a subset of the copies of

the edges in E placed between the corresponding nodes in U ′. E′′ is
selected in such a way that, G′′ = (U ′, E′′) does not have a tour and G′

is strongly connected. These edges are shown in Figure 2 with dotted
lines.

v′
1 v′

2 v′
3 v′

4 v′
5

v1 v2 v3 v4 v5

ᾱ′
1

ᾱ′
2

T̄1

T̄2

T̄3

T̄4
T̄5

a

c

a

b

b a
b

a
a b

b
a

c

a

a

Fig. 2. G′ for M0, with outputs omitted. The edges in Eα′ , EC , ET , and E′′ are shown
as bold solid lines, solid lines, dashed lines, and dotted lines, respectively.



In [4], it is shown that the input portion of the label of a path P̄ in G′ that
starts from v1 and ends at v1, that includes all the edges in Eα′ , and all the
edges in EC (that is, the solid lines in Figure 2) and that is followed by D̄ is a
checking sequence of M .

In order to reduce the length of the resulting checking sequence, an opti-
mization algorithm may be used. The method given in [4] forms a minimum-cost
symmetric augmentation G∗ of the digraph induced by Eα′∪EC by adding repli-
cations of edges from E′ . If G∗, with its isolated vertices removed, is connected,
then G∗ has an Euler tour. Otherwise, a heuristic such as the one given in [3] is
applied to make G∗ connected and an Euler tour of this new digraph is formed
to find a path from v1 to v1. A checking sequence is then constructed based on
the Euler tour as the input portion of the label of the path from v1 to v1 followed
by D̄.

(s1, s3, a/(1, 2,−)) (s3, s2, b/(−, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−))
(s3, s2, b/(−, 2,−)) ⋆ (s2, s2, a/(1, 2,−)) (s2, s2, a/(1, 2,−)) (s2, s1, b/(1, 2,−)) ⋆
(s1, s4, c/(−,−, 3)) ⋆ (s4, s5, a/(−, 2,−)) (s5, s1, b/(1,−,−)) (s1, s3, a/(1, 2,−))
(s3, s2, b/(−, 2,−)) ⋆ (s2, s2, a/(1, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−))
(s3, s2, b/(−, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−)) (s3, s2, b/(−, 2,−)) ⋆
(s2, s2, a/(1, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−)) (s3, s4, a/(−, 2,−))
(s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s5, a/(−, 2,−)) (s5, s1, b/(−, 2,−)) ⋆
(s1, s4, c/(−,−, 3)) ⋆ (s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s3, b/(−, 2,−)) ⋆
(s3, s4, a/(−, 2,−)) (s4, s5, a/(−, 2,−)) (s5, s4, a/(1,−,−)) ⋆ (s4, s3, b/(−, 2,−)) ⋆
(s3, s4, a/(−, 2,−)) (s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s3, b/(−, 2,−)) ⋆
(s3, s4, a/(−, 2,−)) (s4, s5, a/(−, 2,−)) (s5, s4, a/(1,−,−)) (s4, s5, a/(−, 2,−))
(s5, s1, b/(1,−,−)) ⋆ (s1, s4, c/(−,−, 3)) ⋆ (s4, s5, a/(−, 2,−)) (s5, s1, b/(1,−,−))
(s1, s3, a/(1, 2,−)) (s3, s2, b/(−, 2,−))

Fig. 3. The transition sequence on FSM M0 (given in Figure 1) corresponding to the
checking sequence produced from G′ (given in Figure 2). Two consecutive transitions
with a ⋆ between them have a synchronization problem.

4 The Proposed Approach

A checking sequence constructed by the method reviewed in the previous section
requires insertion of the external coordination message exchanges to be appli-
cable by remote testers in a distributed test architecture without encountering
controllability and observability problems.

Formally, a (controllability) synchronization problem occurs when, in the la-
bels xi/yi and xj/yj of any two adjacent transitions, there exists a tester l that
sends xj that is neither the one sending xi nor one of those receiving an output
belonging to yi. Let tester k be the tester that sends xi . In general, the solution



to the synchronization problem is to insert an external coordination message
exchange relating to controllability between xi/yi and xj/yj from tester k to
tester l to notify tester l to send its input to the SUT [15].

Any two consecutive transitions tij and tjk whose labels are xi/yi and xj/yj

in a sequence of transitions form a synchronizable pair of transitions if tjk can
follow tij without generating a synchronization problem. Any sequence of tran-
sitions in which every pair of consecutive transitions is synchronizable is called
a synchronizable transition sequence. An input/output sequence is said to be
synchronizable if it is the label of a synchronizable transition sequence.

The observability problem manifests itself as an undetectable output shift
fault. Formally, given a synchronizable transition sequence t1 . . . tk of M with
label x1/y1 x2/y2 . . . xk/yk, an output shift fault in an implementation N of M
exists if one of the following holds for some 1 ≤ i < j ≤ k:

1. There exists m ∈ [p] and yi|m = o ∈ Ym \ {−} in M , for all i < l ≤ j we
have that yl|m = − in M , for all i ≤ l < j we have that N produces output
− at m in response to xl after x1 . . . xl−1, and N produces output o at m in
response to xj after x1 . . . xj−1. Here the output o shifts from being produced
in response to xi to being produced in response to xj and the (forward) shift
is from ti to tj .

2. There exists m ∈ [p] and o ∈ Ym \ {−} such that yj |m = o in M , for all
i ≤ l < j we have that yl|m = − in M , for all i < l ≤ j we have that N
produces output − at m in response to xl after x1 . . . xl−1, and N produces
output o at m in response to xi after x1 . . . xi−1. Here the output o shifts
from being produced in response to xj to being produced in response to xi

and the (backward) shift is from tj to ti.

An instance of the observability problem manifests itself as a potentially
undetectable output shift fault if there is an output shift fault related to o ∈ Ym

in two transitions with labels xi/yi and xj/yj , such that xi+1 . . . xj 6∈ Xm. The
tester at m will not be able to detect the faults since it will observe the expected
sequence of interactions in response to xi . . . xj . Let tester h be the tester that
sends xj . In general, the solution to the observability problem is to insert an
external coordination message exchange relating to observability between xi/yi

and xj/yj from tester h to tester m:

– Case 1: (yi|m = o in M) By this exchange, tester h informs tester m that it
must have received an output from the SUT by now.

– Case 2: (yj |m = o in M) By this exchange, tester h informs tester m to
expect receiving an output from the SUT [15].

In most cases, insertion of an external coordination message exchange relat-
ing to observability can be avoided by appending additional input/output sub-
sequences to the label of the path whose input portion will be used as a checking
sequence [8]. Therefore, we will focus only on the controllability problem in the
rest of the paper.



The algorithm in [4] is intended for a centralized test architecture, and hence
in a distributed test architecture, some portions of the sequence generated by
the algorithm may lead to synchronization problems. We thus need to adapt the
algorithm to the distributed test architecture by modifying it in two ways: on
one hand, we try to select checking sequences that do not cause synchronization
problems (recognizing the fact that they might then be longer than the ones
requiring synchronization); on the other end we need to add some coordination
channels, when a synchronization problem cannot be avoided directly.

Note that there can be different types of coordination channels (unidirectional
or bidirectional) and the relaying of coordination messages through other testers
using available coordination channels (transitive coordinations between testers)
may or may not be allowed. We will first examine the case of unidirectional
coordination channels without transitive communications. The other cases will
be explored in Section 4.3.

4.1 Modifying the Digraph G
′

Briefly, our approach consists of modifying the digraph G′ being built so that
only possible (synchronizable) transition sequences are available, and use that
modified digraph to build a checking sequence in which no controllability problem
exists. If it is not possible to generate a checking sequence with the current
form of the digraph, then additional coordination channels are added (which in
turn modifies the digraph and allows more consecutive pairs of transitions to
be executed without synchronization problems), until a digraph is formed that
allows building a checking sequence without any synchronization problem.

We first modify the digraph G′ by replacing each edge
(vi, v

′
j , x1x2 . . . xk/y1y2 . . . yk) ∈ ET∪Eα′ with a sequence of edges (vi, u

i
1, x1/y1),

(ui
1, u

i
2, x2/y2), (u

i
2, u

i
3, x3/y3), . . . , (u

i
k−2, u

i
k−1, xk−1/yk−1), (u

i
k−1, v

′
j , xk/yk)

where ui
1, u

i
2, . . . , u

i
k−1 are new nodes introduced into the digraph. Let us call

this new digraph as G′′. Note that any path in G′ will have a corresponding
path in G′′ and vice versa. In fact the only difference between G′ and G′′ is
that, we have inserted explicit nodes along the edges in G′ whose labels are not
single input/output symbols. Therefore, in G′′ all the edges will have a single
input/output symbol pair as their labels.

Note the algorithm in Section 3 finds a tour over the edges Eα′ ∪EC . Let us
call these edges the essential edges in G′. We also call an edge in G′′ an essential
edge in G′′, if it is an edge in EC , or it is an edge that we insert into G′′ as we
create the edges corresponding to the individual steps along an edge in Eα′ .

Let e1 = (u1, u, x1/y1) and e2 = (u, u2, x2/y2) be two edges in G′′. Note that
the algorithm given in Section 3 may produce a checking sequence in which e1 is
immediately followed by e2 since e1 ends at and e2 starts at vertex u. However,
we would like to allow the possibility of having e1 being followed by e2 only if it
is possible to do so without creating a synchronization problem.

In order to set up the digraph in such a way that, e1 can be followed by e2 only
without creating a synchronization problem, we derive another digraph G′′′ =



(V ′′′, E′′′) which is the interchange graph (or line graph) of G′′. In other words,
each edge (u1, u2, x/y) in G′′, becomes a vertex (u1, u2, x/y) ∈ V ′′′. For two
nodes (u1, u2, x/y) and (u′

1, u
′
2, x

′/y′) in V ′′′, ((u1, u2, x/y), (u′
1, u

′
2, x

′/y′), ǫ) ∈
E′′′ if and only if u′

1 = u2. We also have the mapping R : E′′′ → 2[p]×[p] that
maps an edge in E′′′ to a set of coordination channels. Intuitively, for an edge
((u1, u, x/y), (u, u′

2, x
′/y′), ǫ) ∈ E′′′, R((u1, u, x/y), (u, u′

2, x
′/y′), ǫ) is the set of

coordination channels such that if any one of these coordination channels exist,
then (u, u′

2, x
′/y′) can follow (u1, u, x/y) without a synchronization problem.

A vertex (u1, u2, x/y) ∈ V ′′′ is called an essential vertex in G′′′ if the edge
(u1, u2, x/y) in G′′ is an essential edge in G′′.

A subset C ⊆ [p] × [p] of coordination channels induces a digraph G′′′
C =

(V ′′′, E′′′
C ) where E′′′

C ⊆ E′′′, such that for an edge ((u1, u, x/y), (u, u′
2, x

′/y′), ǫ) ∈
E′′′, ((u1, u, x/y), (u, u′

2, x
′/y′), ǫ) ∈ E′′′

C iff R((u1, u, x/y), (u, u′
2, x

′/y′), ǫ) = ∅
(no coordination channel is required) or R((u1, u, x/y), (u, u′

2, x
′/y′)∩C 6= ∅ (at

least one of the required coordination channels is available).
Then, our problem can be formulated as to find a set C ⊆ [p]×[p] of coordina-

tion channels with minimal cardinality such that G′′′
C has a strongly connected

component which includes all the essential vertices in G′′′. When G′′′
C has a

strongly connected component which includes all the essential vertices in G′′′,
we can find a tour in this strongly connected component that visits all these
essentials vertices. Thanks to the way we constructed G′′′, this tour indeed cor-
responds to a tour in G′′ that includes all the essential edges of G′′, and therefore
corresponds to a tour in G′ which includes all the edges in EC and Eα′ that can
thus be used to generate a checking sequence.

Thus we need to build a set C ⊆ [p]×[p] of coordination channels. If (i, j) ∈ C,
for i, j ∈ [p], this means that a coordination channel exists from the tester at
port i to the tester at port j. Two successive transitions with labels x1/y1 and
x2/y2, where x1 ∈ Xi and x2 ∈ Xj for some i, j ∈ [p], are synchronizable if and
only if:

1. i = j; or
2. y1|j 6= −; or
3. (i, j) ∈ C; or
4. ∃k ∈ [p] such that y1|k 6= − and (k, j) ∈ C

In the first two cases, the synchronization is achieved without using any ex-
ternal coordination message exchanges. In the last two cases, the synchronization
is done externally, either by having the tester at port i (the sender of the input
of the first transition) send an external coordination message to the tester at
port j, or by having the tester at some port k, which receives a non–null output
due to the first transition, send an external coordination message to the tester
at port j.

4.2 A heuristic to find the coordination channels

As explained in Section 4.1, the original problem has been reformulated as finding
a set C ⊆ [p] × [p] of coordination channels with minimal cardinality such that



G′′′
C has a strongly connected component which includes all the essential vertices

in G′′′.
Initially, C = ∅. If G′′′

∅ has a strongly connected component which includes all
the essential vertices in G′′′, then we are done and by using G′′′

∅ we can construct
a checking sequence that does not require any coordination channels at all. If
that is not the case, then coordination channels must be added in order to add
more edges in G′′′

C , until such a strongly connected component can be found
(note that if C1 ⊆ C2 then the edges of G′′′

C1
are included in the edges of G′′′

C2
,

that is, by adding new coordination channels we add edges to G′′′). In the worst
case scenario, we will add coordination channels between every pair of testers,
which will in effect put us back in the case studied in [4].

In order to decide which coordination channels to add, we propose the fol-
lowing heuristic, that converges to a solution while trying to add as few channels
as possible. We start from the digraph G′′′

C , with C = ∅. We first create the con-

densation of G′′′
C : the condensation of G′′′

C is a graph Ĝ′′′
C containing one vertex

for each strongly connected component of G′′′
C . Two vertices representing com-

ponents are joined by an edge in Ĝ′′′
C if there is an edge in G′′′

C from a vertex
in one component to a vertex in the other. Such an acyclic condensation can be
built in O(V ′′′ +E′′′) [22]. In [23], it is shown that finding a graph augmentation

(that is, adding new edges) that strongly connects Ĝ′′′
C is equivalent to finding an

augmentation that strongly connects G′′′
C , by using a mapping between a vertex

of Ĝ′′′
C and any vertex of the corresponding strongly connected component in

G′′′
C . It is also pointed out in [23] that in order to strongly connect a condensed

graph we necessarily need to add outgoing edges to each of its sink and isolated
vertices, and incoming edges to each of its source and isolated vertices.

We proceed as follows, starting with C = ∅:

– Condense the current graph G′′′
C into Ĝ′′′

C .

– Identify the set Φ of sources, sinks and isolated vertices in Ĝ′′′
C that are issued

from the condensation of strongly connected components of G′′′
C containing

essential vertices. If Φ is not empty, then let Φ1 be the set of such sources, Φ2

be the set of such sinks and Φ3 be the set of such isolated vertices. Otherwise
(Φ is empty), let Φ1 be the set of sources, Φ2 be the set of sinks and Φ3 be

the set of isolated vertices in Ĝ′′′
C .

– For each possible new coordination channel: count the number of elements
from Φ1 and Φ3 that will have at least one outgoing edge added to them by
the inclusion of the channel to C, and the number of elements of Φ2 and Φ3

that will have at least one incoming edge added to them by the inclusion
of the channel to C; identify the coordination channel c that will maximize
this number (that is, identify the coordination channel c that would remove

the most sources, sinks and isolated vertices from Ĝ′′′
C∪{c}).

– Add this coordination channel c to C.
– Re-calculate the digraph G′′′

C based on the new set C. If G′′′
C still has not

a strongly connected component which includes all the essential vertices in
G′′′, then re-iterate the process. Else, stop.



It is clear that the above process converges toward a solution, since in the
worst case we end up adding every pair to C. The solution found will be correct
according to [4], will not contain any synchronization issues by construction and
may require the addition of fewer coordination channels than simply synchroniz-
ing the original solution found in [4] (the solution may however be longer than
the one found originally).

We illustrate our approach with the example given in Figure 4. This figure
shows a digraph which stands for an example of G′′ (although we do not show the
labels of the transitions for simplicity). Assume that in this example, the transi-
tion d has a synchronization problem with the transition e, and that transition
f has a synchronization problem with the transition g; every other transition
pair is synchronizable. Without adding any coordination channel, the graph G′′′

∅
shown in Figure 6 is obtained; note that d is not connected to e, and f is not
connected to g. The digraph is then condensed into Ĝ′′′

∅ shown in Figure 7. It
has four vertices, showing that G′′′

∅ is not strongly connected.

a

b

c

d e

f

g

Fig. 4. A sample graph G′′, with i/o la-
bels not shown. Assume that transition
pairs (d, e) and (f, g) have synchronization
problems.

a

b

c

d e

f

g

Fig. 5. The graph G′′′ corresponding to
G′′ of Figure 4

a

b

c

d e

f

g

Fig. 6. The graph G′′′
∅ corresponding to

G′′ of Figure 4

{g}{a, b, c, e}

{d} {f}

Fig. 7. The graph bG′′′
∅ corresponding to

G′′′
∅ of Figure 6



Assume now that the addition of the coordination channel c1 allows the
synchronization of (d, e) (Figure 8). Adding such a coordination channel would

not add any outgoing edges from sinks nor incoming edges to sources of Ĝ′′′
∅ .

The digraph Ĝ′′′
{c1}

is shown in Figure 9.

a

b

c

d e

f

g

Fig. 8. The graph G′′′
{c1}

: the coordina-
tion channel c1 resolves the synchroniza-
tion problem in transition pair (d, e)

{g}{a, b, c, d, e}

{f}

Fig. 9. The graph bG′′′
{c1}

corresponding to
G′′′

{c1}
of Figure 8. Sources and sinks are

not impacted by the addition

Assume that the addition of the coordination channel (c2) allows the syn-
chronization of (f, g) (Figure 10). This time, adding such a coordination channel
would add an outgoing edge from sink {f} and an incoming edge to source {g}

in Ĝ′′′
∅ . Thus c2 will be chosen over c1, and the resulting digraph Ĝ′′′

{c2}
is shown

in Figure 11: everything collapses in a single vertex, showing that G′′′
{c2}

is now
strongly connected, and an Euler path can be found.

a

b

c

d e

f

g

Fig. 10. The graph G′′′
{c2}

: the coordina-
tion channel c2 resolves the synchroniza-
tion problem in transition pair (f, g)

{a, b, c, d, e, f, g}

Fig. 11. The graph bG′′′
{c2}

corresponding
to G′′′

{c2}
of Figure 10: the graph is now

strongly connected.

Going back to the example related to FSM M0 (given in Figure 1), the
following set of coordination channels is required to make the checking sequence
given in Figure 3 synchronized:

C = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 1)}



(s1, s3, a/(1, 2,−)) (s3, s2, b/(−, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−))
(s3, s2, b/(−, 2,−)) ⋆ (s2, s2, a/(1, 2,−)) (s2, s2, a/(1, 2,−)) (s2, s1, b/(1, 2,−)) ⋆
(s1, s4, c/(−,−, 3)) ⋆ (s4, s5, a/(−, 2,−)) (s5, s1, b/(1,−,−)) (s1, s3, a/(1, 2,−))
(s3, s2, b/(−, 2,−)) ⋆ (s2, s2, a/(1, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−))
(s3, s2, b/(−, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−)) (s3, s2, b/(−, 2,−)) ⋆
(s2, s2, a/(1, 2,−)) (s2, s1, b/(1, 2,−)) (s1, s3, a/(1, 2,−)) (s3, s4, a/(−, 2,−))
(s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s5, a/(−, 2,−)) (s5, s1, b/(−, 2,−)) ⋆
(s1, s3, a/(1, 2,−)) (s3, s4, a/(−, 2,−)) (s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−))
(s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s5, a/(−, 2,−)) (s5, s4, a/(1,−,−)) ⋆
(s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−))
(s4, s3, b/(−, 2,−)) ⋆ (s3, s4, a/(−, 2,−)) (s4, s5, a/(−, 2,−)) (s5, s4, a/(1,−,−))
(s4, s5, a/(−, 2,−)) (s5, s1, b/(1,−,−)) ⋆ (s1, s4, c/(−,−, 3)) ⋆ (s4, s5, a/(−, 2,−))
(s5, s1, b/(1,−,−)) (s1, s3, a/(1, 2,−)) (s3, s2, b/(−, 2,−))

Fig. 12. The transition sequence on FSM M0 (given in Figure 1) of the checking
sequence produced from G′′′. Two consecutive transitions with a ⋆ between them have
a synchronization problem.

However, for the same FSM, applying the proposed approach to the digraph
G′ given in Figure 2 will yield the following set of coordination channels to make
the checking sequence given in Figure 12 synchronized:

C = {(1, 2), (2, 1), (3, 1), (3, 1)}

Note that, the length of the checking sequence given in Figure 3 is 50. The
checking sequence given in Figure 12 requires one less coordination channel,
but one more input symbol, making its length 51. Also note that, the number
of coordination messages exchanged is reduced by 1. However this reduction is
only coincidental, as the method proposed does not aim at reducing the number
of coordination messages.

4.3 Different Types of Synchronization Strategies

In the discussion presented so far, it is assumed that coordination channels are
unidirectional, and thus coordination occurs only in one direction over a single
channel. In other words, C contains ordered pairs of testers (i, j), allowing an
external coordination message to be sent from i to j but not from j to i. Also
having (i, j) and (j, k) in C does not insure that a pair of transitions involving
testers i and k can necessarily be synchronized.

It is however possible to modify our approach to accommodate for both cases.

Bidirectional Synchronization Channels If coordination channels are bidi-
rectional, then once a pair of testers (i, j) is added to C, any pair of transitions
involving testers i and j can be synchronized, be it from i to j or from j to i (in



both directions). Thus, in that scenario, two successive transitions with labels
x1/y1 and x2/y2, where x1 ∈ Xi and x2 ∈ Xj , i, j ∈ [p], are synchronizable if
and only if (let Cs denote the symmetric closure of C below):

1. i = j; or
2. y1|j 6= −; or
3. (i, j) ∈ Cs; or
4. ∃k ∈ [p] such that y1|k 6= − and (k, j) ∈ Cs

Adapting the algorithm to this new definition is straightforward. We only
need to consider G′′′

Cs instead of G′′′
C while checking if all the essential nodes are

in a single strongly connected component.

Transitive Synchronizations It is possible for the testers to organize a syn-
chronization strategy allowing the coordination of two testers in the absence
of direct coordination channels between them, by using a chain of external co-
ordination messages involving other testers. Such a transitive synchronization
strategy can be considered both with unidirectional and bidirectional coordina-
tion channels.

When we consider unidirectional channels with transitive strategy, two suc-
cessive transitions with labels x1/y1 and x2/y2, where x1 ∈ Xi and x2 ∈ Xj ,
i, j ∈ [p], are synchronizable if and only if (let Ct denote the transitive closure
of C below) :

1. i = j; or
2. y1|j 6= −; or
3. (i, j) ∈ Ct; or
4. ∃k ∈ [p] such that y1|k 6= − and (k, j) ∈ Ct

When we consider bidirectional channels with transitive strategy, two suc-
cessive transitions with labels x1/y1 and x2/y2, where x1 ∈ Xi and x2 ∈ Xj ,
i, j ∈ [p], are synchronizable if and only if (let Cst denote the symmetric and
transitive closure of C below) :

1. i = j; or
2. y1|j 6= −; or
3. (i, j) ∈ Cst; or
4. ∃k ∈ [p] such that y1|k 6= − and (k, j) ∈ Cst

Adapting the algorithm to this new definition is also straightforward. We only
need to consider G′′′

Ct or G′′′
Cst instead of G′′′

C while checking if all the essential
nodes are in a single strongly connected component.

Note that if establishing new coordination channel is considered costly, then
following such a transitive synchronization strategy is certainly worthwhile, since
it can significantly lower the number of coordination channels required.



5 Conclusions

We have presented an approach to minimize the number of coordination channels
in a distributed test architecture for the application of a checking sequence. The
proposed approach is presented as a modification of an existing method for
constructing a checking sequence, but can be adapted to work with any other
method that constructs a checking sequence by finding a tour on an auxiliary
graph derived from a finite state machine specification of the application.

The heuristic algorithm explained above finds a set of coordination channels
C such that G′′′

C has the required property (i.e. having all the essential vertices in
a single strongly connected component). However, since it is a greedy heuristic
algorithm, it may accumulate a set of coordination channels which may have a
subset C ′ that will yield G′′′

C′ with the required property. To find such a subset
of C, will require a post–processing phase. The nature of this processing phase
is explained as follows:

Note that inclusion of a coordination channel (i, j) ∈ [p] × [p] in C inserts
a set of edges in G′′′

C . Namely, an edge e ∈ E′′′ is inserted in G′′′
C due to the

inclusion of (i, j) in C, if (i, j) ∈ R(e). The same edge e can be inserted by the
inclusion of some other coordination channels in R(e) into C as well.

Let R−1(i, j) = {e ∈ E′′′ | (i, j) ∈ R(e)}, i.e. R−1(i, j) is the set of edges
inserted by the coordination channel (i, j). Given a set of coordination channels
C, let R−1(C) = ∪(i,j)∈CR−1(i, j). For two sets of coordination channels C ′ and
C such that C ′ ⊆ C but R−1(C ′) = R−1(C), it is obvious that G′′′

C′ has all the
essential vertices in a single strongly connected component iff G′′′

C does, because
both C ′ and C insert the same set of edges. This is an instance of the set cover
problem, which is known to be NP–complete. An existing heuristic algorithm for
the set cover problem can be used to find a minimal subset C ′ of C such that
R−1(C ′) = R−1(C).

Acknowledgments

This work is supported in part by the Natural Science and Engineering Research
Council of Canada under grants RGPIN 976 and RGPIN 312018, CITO/OCE
of the Government of Ontario, and a grant by Sabancı University.

References

1. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. In: Proceedings of the IEEE. Volume 84. (1996) 1090–1126

2. Gill, A.: Introduction to The Theory of Finite State Machines. McGraw Hill, New
York (1962)

3. Ural, H., Wu, X., Zhang, F.: On minimizing the length of checking sequences.
IEEE Transactions on Computers 46 (1997) 93–99

4. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51 (2002) 1111–1117



5. Tekle, K.T., Ural, H., Yalcin, M.C., Yenigun, H.: Generalizing redundancy elimi-
nation in checking sequences. In: ISCIS 2005, LNCS 3733. (2005) 915–926

6. Yao, M., Petrenko, A., v. Bochmann, G.: Conformance testing of protocol machines
without reset. In: Protocol Specification, Testing and Verification. Volume XIII.
(1993) 241–256

7. Chen, J., Hierons, R., Ural, H.: Conditions for resolving observability problems in
distributed testing. In: FORTE 2004, LNCS 3235. (2004) 229–242

8. Chen, X.J., Hierons, R.M., Ural, H.: Resolving observability problems in dis-
tributed test architecture. In: IFIP FORTE 2005, LNCS 3731. (2005) 219–232

9. Sarikaya, B., v. Bochmann, G.: Synchronization and specification issues in protocol
testing. IEEE Transactions on Communications 32 (1984) 389–395

10. Luo, G., Dssouli, R., Bochmann, G.V., Venkataram, P., Ghedamsi, A.: Test gener-
ation with respect to distributed interfaces. Comput. Stand. Interfaces 16 (1994)
119–132

11. Tai, K., Young, Y.: Synchronizable test sequences of finite state machines. Com-
puter Networks and ISDN Systems 30 (1998) 1111–1134

12. Hierons, R.M.: Testing a distributed system: Generating minimal synchronised test
sequences that detect output-shifting faults. Information and Software Technology
43 (2001) 551–560

13. Khoumsi, A.: A temporal approach for testing distributed systems. Software
Engineering, IEEE Transactions on 28 (2002) 1085–1103

14. Wu, W.J., Chen, W.H., Tang, C.Y.: Synchronizable for multi-party protocol con-
formance testing. Computer Communications 21 (1998) 1177–1183

15. Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing.
Inform. Software Technol. 41 (1999) 767–780

16. Boyd, S., Ural, H.: The synchronization problem in protocol testing and its com-
plexity. Information Processing Letters 40 (1991) 131–136

17. Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: Pro-
tocol Specification, Testing and Verification. Volume V., Elsevier Science (North
Holland) (1985) 483–494

18. Dssouli, R., von Bochmann, G.: Conformance testing with multiple observers.
In: Protocol Specification, Testing and Verification. Volume VI., Elsevier Science
(North Holland) (1986) 217–229

19. Rafiq, O., Cacciari, L.: Coordination algorithm for distributed testing. The Journal
of Supercomputing 24 (2003) 203–211

20. Hierons, R.M., Ural, H.: Uio sequence based checking sequence for distributed test
architectures. Information and Software Technology 45 (2003) 798–803

21. Chen, J., abd H. Ural, R.M.H.: Overcoming observability problems in distributed
test architectures. (Information Processing Letters) to appear.

22. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1

(1972) 146–160
23. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5 (1976)

653–665


