Formal Analysis of
Dynamic, Distributed File-System Access Controls

Avik Chaudhurt and Martin Abadi2

1 Computer Science Department, University of CaliforniantgaCruz
2 Microsoft Research, Silicon Valley

Abstract. We model networked storage systems with distributed, ogatphi-
cally enforced file-access control in an applied pi calculire calculus contains
cryptographic primitives and supports file-system comsgilincluding access re-
vocation. We establish that the networked storage systemkeiment simpler,
centralized storage specifications with local accessrobahecks. More specif-
ically, we prove that the former systems preserve safetpepties of the latter
systems. Focusing on security, we then derive strong searetintegrity guar-
antees for the networked storage systems.

1 Introduction

Storage systems are typically governed by access-contiiigs, and the security
of those systems depends on the sound enforcement of thesaegeaccess-control
checks. Unfortunately, both the policies and their enforeet can be surprisingly prob-
lematic, for several reasons. In particular, the policies/ibe allowed to change over
time, often via interactions with the file-system enviromtyé is then crucial to prevent
unauthorized access-control administration, and to gueeathat authorized access-
control administration has correct, prompt effects. Aeotsource of substantial diffi-
culties is distribution. In networked, distributed stoeagystems, file access is often not
directly guarded by access-control checks. Instead, fideszis guarded by the inspec-
tion of capabilities; these capabilities certify that trederant access-control checks
have been done elsewhere in the past. Yet other difficuldisslt from the scale and
complexity of systems, which present a challenge to carsistdministration.

In this paper, we aim to simplify security analyses for sh@raystems. Specifically,
we model network-attached storage (NAS) systems [7, 1544 prove that NAS sys-
tems are as safe (from the point of view of passing tests Hl¢orresponding central-
ized storage systems with local access-control enforcerreather words, reasoning
about the safety of the centralized storage systems caniedfor free to the sig-
nificantly more complicated NAS systems. As important saplecases, we derive the
preservation of secrecy and integrity guarantees.

The systems that we study include distributed file-systemagament across a
number of access-control servers and disks on the netwwel;dlso include dynamic
administration of access control. At the same time, we agoitimitments to certain
specific choices that particular implementations might eaakn file-operation and
policy-administration commands, algorithms for file aliion over multi-disk arrays,
various scheduling algorithms—so that our results remianple and apply broadly.

We describe those systems and analyze their security piegpr an applied pi calcu-

lus [3]. This calculus includes cryptographic primitivesdasupports file-system con-
structs. It also enables us to incorporate a basic but seritionodel of time, as needed
for dynamic administration.

Background and related workVarious cryptographic implementations of distributed
access control have been proposed as part of the securigndex NAS protocols
[6,8,7,15,11, 17]. However, the security analyses of tipdementations have been
at best semi-formal. Some exceptions are the work of Magiand Shasha on data
integrity for untrusted remote storage [10], and Gobiofiesurity analysis of a NAS
protocol using belief logics [7].

In a recent paper [5], we consider a restricted class of NASSesys, with fixed
access-control policies and a single network-attachedlisrface. We show that those
systems are fully abstract with respect to centralized fitgesns. Full abstraction [12]
is a powerful criterion for the security of implementatida it prohibits any leakage
of information. It is also fairly fragile, and can be brokey tmany reasonable imple-
mentations in practice. In particular, capability revamatand expiry (more broadly,
dynamic administration, as we study it here) give rise tontexrexamples to full ab-
straction that appear impossible to avoid in any reasonaigkementation of NAS. We
discuss these issues in detail in Section 5. In sum, theragdteat we study in this pa-
per are considerably more general and complex than thosengider in our previous
work, so much so that we cannot directly extend our previoilsabstraction result.
Fortunately, however, we can still obtain strong secreayiategrity guarantees while
retaining the simplicity of our specifications.

We employ a variation of may-tests to observe the behavibsystems. Proofs
based on may-testing for safety and security properties o been studied else-
where €.g, [14, 4]). Our treatment of secrecy is also fairly standa.d([4]). On the
other hand, our treatment of integrity properties is notfgvmalize integrity properties
via “warnings”. Warnings signal violations that can be dé&te by monitoring system
execution. In this way, our approach to integrity is relaieeénforceable mechanisms
for security policies [16]. Warnings can also indicate thidufre of correspondences be-
tween events, and hence may be used to verify correspondssesionsd.g, [9]). On
the other hand, it does not seem convenient to use standasspondence assertions
directly in implementation proofs such as ours.

Outline of the paperln the next section we give an overview of the applied pi dalsu
that serves as our modeling language. In Section 3, we pgrasemple storage specifi-
cation based on a centralized file system with local accest-a checks. In Section 4,
we show a NAS implementation that features distributedsfjistem management and
cryptographic access-control enforcement. Then, in 8e&jwe extract specifications
from NAS systems, state our main theorem (safety presenjatind derive some im-
portant security consequences. We conclude in Section 6.

2 The applied pi calculus

We use a polyadic, synchronous, applied pi calculus [1353ha underlying language
to describe and reason about processes. The syntax is istaause the notatiop

to mean a sequenga, . . ., ¢, Where the lengtl of the sequence is given by|.

M,N = terms
mn,... name
Ty, ... variable
f(M) function application

The language of terms contains an infinite set of names andfiaite set of variables;
further, terms can be built from smaller ones by applyingfion symbols. Names can
be channel names, key names, and so on. Function symbolsaava ttom a finite
ranked sefF, called the signature. This signature is equipped with amaggnal theory.
Informally, the theory provides a set of equations over &@nd we say thak - M =
N fortermsM andN if and only if M = N can be derived from those equations.
For our purposes, we assume symbols for shared-key enmny{p}i. and message
authenticatiomrmac(-, -), and list the only equations that involve these symbolsvaelo
The first equation allows decryption of an encrypted messgatethe correct key; the
second allows extraction of a message from a message auattimt code.

decrypt({z},,y) =« message(mac(z,y)) = x

We also assume some standard data structures, such as tupterals, and queues,
with corresponding functions, such as projection fundipmoj,. Several function
symbols are introduced in Sections 3 and 4. Next we show tigukge of processes.

P,Q = processes
M(N). P output
M(Z). P input
PlQ composition
(vn) P restriction
0 nil
P replication
if M = N then P else Q) conditional

Processes have the following informal semantics.

— The nil proces$ does nothing.

— The composition procesB | Q behaves as the procesgeand(in parallel.

— The input proces$/ (). P can receive any sequence of terfison M, where
|N| = ||, then execut&{N /}. The variableg are bound inP in M (Z). P. The
notation{ M/ M/ 7} represents the capture-free substitution of telior variabless.
The input blocks ifM is not a name at runtime.

— The synchronous output proce€s& V). P can send the sequence of terMisn M,
then executé’. The output blocks ifi/ is not a name at runtime; otherwise, it waits
for a synchronizing input o/ .

— The replication proced$ behaves as an infinite number of copiegofunning in
parallel.

— The restriction procesgn) P creates a new namebound inP, then execute®.
This construct is used to create fresh, unguessable s@tthtslanguage.

— The conditional process§ M = N then P else Q behaves a® if F - M = N,
and ag) otherwise.

We elideF F in the sequel. The notions of free variables and namesa(dfn) are
as usual; so are various abbreviatioag(/7 and X for indexed parallel composition
and internal choice, respectively). We call terms or preessclosed if they do not
contain any free variables. We use a commitment semantiaddsed processes [13,
4]. Informally, a commitment reflects the ability to do soncéi@n, which may be output
(m), input (), or silent ¢). More concretely,

- P (vm) (J\7>. Q means thaP’ can output on name the terms\/ that contain
fresh namesn, and continue ag).

- P % (2).Q means thaP can input terms on, bind them taz in @, and continue
as(@ instantiated.

— P - @ means thaP can silently transition t@).

3 Specifying a simple centralized file system

In this section, we model a simple centralized file systene Mlodel serves as a spec-
ification for the significantly more complex distributed f8gstem implementation of
Section 4. We begin with a summary of the main features of theeh

— The file system serves a humber of clients who can remotely gezir requests
over distinguished channels. The requests may be for fileatipas, or for admin-
istrative operations that modify file-operation permissiof other clients.

— Each request is subject to local access-control checksidtade whether the re-
guested operation is permitted. A request that passesthesks is then processed
in parallel with other pending requests.

— Any requested modification to existing file-operation pessions takes effect only
after a deterministic, finite delay. The delay is used to gp@ccurate correctness
conditions for the expiry-based, distributed accessrobntechanism of Section 4.

We present a high-level view of this “ideal” file system, edlllFs, by means of a
grammar ofcontrol stategsee below). #s can be coded as a process (in the syntax of
the previous section), preserving its exact observableaggos. An Fs control state
consists of the following components:

— a pool of threads, where each thread reflects a particulge sticthe processing of

some pending request to the file system;

— an access-control policy, tagged with a schedule for pgnpliticy updates;

— a storage state (or “disk”); and

— aclock, as required for scheduling modifications to the s&@®ntrol policy.

IFsTh::= file-system thread
Req,, (op,n) file-operation request
App(op,n) approved file operation
Ret(n,r) return after file operation

PReq, (adm,n) administration request

A= thread pool

1%} empty
IFsTh, A thread in pool
IFs-Control::= file-system control state
A:RM™: p: Clk threads tagged access policglisk state clock

The threads are of four sorts, explained bel®&q,, (op,n), App(op,n), Ret(n,r),
andPReq,, (adm, n). The clockClk is a monotonically increasing integer. The storage
statep reflects the state maintained at the disk (typically file eotd; details are left
abstract in the model). The access-control palcgtecides which subjects may execute
operations on the storage state, and which administrataysmake modifications to the
policy itself. The schedul@{ contains a queue of pending modifications to the policy,
with each modification associated with a clock that says whanmodification is due.

Let K be a set of indices that cover both the subjects and the astnaitars of access
control. We assume distinguished sets of channel ngmgs: € £} and{ay |k € K}
on which the file system receives requests for file operatimaspolicy modifications,
respectively. A file-operation request consists of a tegnthat describes the operation
(typically, a command with arguments, some of which may leeffdmes) and a channel
n for the result. When such a request arrivegignthe file system spawns a new thread
of the formReq,. (op, n). The access-control policy then decides whethleas permis-
sion to executep on the storage state. If not, the thread dies; otherwisethttead
changes state thpp(op,n). The request is then forwarded to the disk, which executes
the operation and updates the storage state, obtaininguth re§ he thread changes
state toRet(n,). Later,r is returned om, and the thread terminates successfully.

A policy-modification request consists of a teum that describes the modifica-
tion to the policy and a channelfor the acknowledgment. When such a request arrives
on «y, the file system spawns a thread of the fd*Req,, (adm, n). Then, if the policy
does not allow: to doadm, the thread dies; otherwise, the modification is queuedgo th
schedule and an acknowledgment is returned pand the thread terminates success-
fully. At each clock tick, policy modifications that are duethe schedule take effect,
and the policy and the schedule are updated accordingly.

Operationally, we assume functiomsay, execute schedule andupdate that sat-
isfy the following equations. (We leave abstract the detailthe equational theory.)

— may(k,op,R) = yes (resp.may(k, adm,R) = yes) if the policy R allows
k to execute file operationp (resp.make policy modificatiorudm), and= no
otherwise.

— execute(op, p) = (p’,r), wherep’ andr are the storage state and the result,
respectively, obtained after executing file operatipron storage state.

— schedule(adm, H, Clk) = H', whereH’ is the schedule after queuing an entry of
the formadm@CIk’ (with CIk" > CIk) to schedule{. The clockClk’, determined
by adm, H, andClk, indicates the instant at whichim is due in the new schedule.

— update(R™, Clk) = R’™', whereR’ is the policy after making modifications to
policy R that are due at clocklk in scheduleg+, andH’ is the schedule left.

Further, we assume a functidifespan such thatlifespan(k, op, H, Clk) > 0 for
all k, op, H, andClk. Informally, if lifespan(k, op, H, Clk) = A and the file oper-

(Op Req) (Op Deny)
A:RM™: p: Clk LN may (k, op, R) = no
(z,y). Req,,(z,y), A: R™: p: Clk Req,(op,n), A: R™: p: Clk = A: R™: p: Clk
(Op OK) (Op Exec)
may(k, 0p, R) = yes execute(op, p) = (7,7)
Req (op,n), A: R™: p: Clk App(op,n), A: R™: p: Ck =
App(op,n),A:'RH:p: Clk Ret(n,r),A:RH:p/: Clk
(Op Res Ret) (Adm Req)
Ret(n,r), A: R™: p: Clk A:R™: p: Clk 25
(ry. A: R™: p: Clk (z,y). PReq,.(z,y), A: R™: p: Clk
(Adm Ok Ack)
(Adm Deny) may (k, adm,R) = yes
may(k, adm,R) = no schedule(adm, H, Clk) = H'
PReqk(adm,n),HA: R™: p: Clk — PReq, (adm,n), A: R™: p: Clk =
A:R7:p: Clk ().A:RH/:p:CIk
(Tick)
update(R™, Clk) = R
A:R™: piClk =5 A:R™ : p: Clk + 1

Fig. 1. Semantics of a file system with local access control

ation op is allowed tok at Clk, thenop cannot be denied té beforeClk + A. For-
mally, we extendschedule to sequences by lettingchedule(, H, Clk) = H and
Schedule(ozdm/a’d\;m7 H, Clk) = Schedule(a’d\;z7 schedule(adm’, H, Clk), Clk); we
require that iflifespan(k, op, H, Clk) = A then there do not exist (possibly empty) se-
quences of policy-modification commanﬁnqk, ankﬂ, ...,(;_Ci'f/n(:|k+)\ and pol-
icy Rcik such that the following hold at once:

— may(k, op, Rcik) = yes

- Hk=H -

— Haw = schedule(admAri,Hgkr, CIk') for eachCIk’ € Clk...Clk 4+ X
— RESKH = update(R{S , CIK') for eachClk’ € Clk... Clk + A — 1

- may(k, op, RCIk—Q—A) = no

For instancelifespan(k, op, H, Clk) can return a constant delay. for all &, op, H,
andClk, andschedule(adm, H, Clk) can returriH; adm@Clk+X] for all adm. When
Ae = 0, any requested modification to the policy takes effect ahthe clock tick.

The formal semantics of the file system is shown as a commitredation in Fig-
ure 1. The relation describes how the file system spawnsdbyé@mw threads evolve,
how access control is enforced and administered, how fileatipas are serviced, and
how time goes by, in terms of standard pi-calculus actions.

We assume a set of clienf€”, | £ € K} that interact with the file system. We
provide macros to request file operations and policy modifing; clients may use
these macros, or explicitly send appropriate messages fidtsystem on the channels
{Oék,ﬂk | ke]C}

Definition 1 (Macros for | Fs clients).

File operation on port k: A file operation may be requested with the macro
fileop,, op/x; P, which expands tévn) Gy, (op, n). n(z). P, wheren ¢ fn(P).

Administration on port k: A policy modification may be requested with the macro
adminy adm; P, which expands tovn) ag(adm,n). n(). P, wheren ¢ fn(P).

We select a subset of clients whom we dalhest these clients may be arbitrary pro-
cesses, as long as they use macros on their own ports fotedaations with the file
system. Further, as a consequence of Definitions 2 and 3 &e&)bno other client
may send a request to the file system on the port of an honest.cli

Definition 2. A set of honeditFs clients indexed b¥ C K is a set of closed processes
{C; | i € T}, so that eacl; in the set has the following properties:

— all macros inC; are on portz,
— nonameinfa;, By | i € I} appears free irC; before expanding macros.

Let 7 = K \ Z. We impose no restrictions on the “dishonest” clie@ts(j € J),
except that they may not know the channfgls, 3; | € Z} initially. In fact, we assume
that dishonest clients are part of an arbitrary environpeerd as such, leave their code
unspecified. The restriction on their initial knowledge ipressed by leaving them
outside the initial scope of the channéts;, 5; | i € Z}.

Definition 3. An ideal storage system denotedIBYCz, R, p, Clk) is the closed pro-
CeSS(I/iez alﬂi) (Hiezcl‘ | : R p: C”(), where

— Cz ={C; | i€ Z}isasetof honedfFsclients indexed by,
— @:R7: p: Clkis aninitial IFs control state, and a;, 3; |« € Z} Nfn(R, p) = 2.

4 An implementation of network-attached storage

In this section, we model a distributed file system based twark-attached storage
(NAS). A typical network-attached file system is distritditever a set of disks that are
“attached” to the network, and a set of servers (called marsdgThe disks directly
receive file-operation requests from clients, while the aggns maintain file-system
metadata and file-access permissions, and serve adntimestequests. In simple tra-
ditional storage designs, access-control checks and atatbmbkups are done for every
request to the file system. In NAS, that per-request overtseanhortized, resulting in
significant performance gains. Specifically, a client wheheis to request a file op-
eration first contacts one of the managers; the manager Heeglevant checks and
lookups, and returns a cryptographically sigmagabilityto the client. The capability
is a certification of access rights for that particular ofiera and needs to be obtained
only once. The client can then request that operation anybeumf times at a disk,
attaching to its requests the capability issued by the memage disk simply verifies
the capability before servicing each of those requests. h#y8ementations are fur-
ther optimized by allocating different parts of the file gmstto different managers and
disks. This kind of partitioning distributes load and ireeses concurrency.

Perhaps the most challenging aspect of NAS’s access-¢onéchanism, and in-
deed of distributed access controls in general, is the seafafcement of access revo-
cation. In particular, whenever some permissions are okl previous capabilities
that certify those permissions must be invalidated. On therdhand, when issuing a ca-
pability, it is impossible to predict when a permission el by that capability might
be revoked in the future. It is possible, in theory, to sineiianmediate revocation by
communicating with the disks: the disks then maintain amobrevoked permissions
and reject all capabilities that certify those permissidtewever, this “solution” re-
duces the performance and distribution benefits of NAS.

A sound, practical solution exists if we allow a determiici§inite delay in revoca-
tion. Informally, a capability is marked with an unforgeakimestamp that declares its
expiry, beyond which it is always rejected—and any revaxcetf the permissions cer-
tified by that capability takes effect only after the deatbespiry. By letting the expiry
depend on various parameters, this solution turns out tailte fiexible and effective.

Following the design above, we model a fairly standard netvedtached file sys-
tem, called MFs. Much as in Section 3, we present the file system using a gramma
of control states and a semantics of commitments.A&§control state consists of the
following components:

— a pool of threads distributed between the managers andsks; di

— the local access-control policy and modification schedtiégaaeh manager;
— the local storage state at each disk; and

— a global clock shared between the managers and the disks.

NAFs-Th-Servey ::= thread at'™ manager
AReq,, 1. (0p,) capability request
PReq, ,(adm,n) administration request
NAFs-Th-Disk, ::= thread ab™ disk
Req,(k,n) authorized file-operation request
App,(op,n) approved file operation
Ret(n,r) return after file operation
A= distributed thread pool
%) empty
NAFs-Th-Serveg, A a™-manager thread in pool
NAFs-Th-Disk;, A bih-disk thread in pool
NAFs-Control::= distributed file-system control state
A:RM: p: Clk threads tagged policiesdisk statesclock

Let A (resp.B) index the set of managereép.disks) used by the file system. For
eacha € A, we assume a distinguished set of narfies . | £ € K} on which the
a™ manager receives requests for policy modifications. A regoRa,, , is internally
forwarded to the managef allocated to serve that request, thereby spawning a thread
of the formPReq,, ;,(adm,n). This thread is then processed in much the same way
asPReqy, (adm,n) in Section 3. At each tick of the shared clock, due modificetito
each of the local policies at the managers take effect.

Next, we elaborate on the authorization and execution obfilerations. For each
a € Aandb € B, we assume distinguished sets of nanfe§, | ¥ € K} and

{Bv.x | k € K} on which thea™ manager and th&" disk receive requests for autho-
rization and execution of file operations, respectivelyathorization request consists
of a termop that describes the file operation and a charrelreceive a capability for
that operation. Such a request @f,. is internally forwarded to the manage’ allo-
cated to serve that request, thereby spawning a thread ébtimeAReq,, .. (op, ¢). If
the access-control policy at does not allowk to do op, the thread dies; otherwise,
a capabilityx is returned orr, and the thread terminates successfully. The capability,
a term of the formmac({op, T, b), K;), is a message authentication code whose mes-
sage containsp, an encrypted timestanip, and the disk responsible for executing
op. The timestamfT’, of the form{(m, Clk) }k,, indicates the expirZ|k of s, and ad-
ditionally contains a unique nonee. (The only purpose of the nonce is to make the
timestamp unique.) A secret k&, shared between the diskand the manager is used
to encrypt the timestamp and sign the capability. (In caleciraplementations, differ-
ent parts of the key may be used for encryption and signinge)rationale behind the
design of the capability is discussed in Section 5. Intaltivthe capability is unforge-
able, and verifiable by the digk and the timestamp carried by the capability is unique,
and unintelligible to any other than the dikk

An execution request consists of a capabiitgnd a return channel On receiving
such arequest o, 1, the diskb spawns a thread of the forReq,, (x, n). It then extracts
the claimed operationp from x (if possible), checks that is signed with the ke¥,
(thereby verifying the integrity of), and checks that the timestamp decrypts urdder
to a clock no earlier than the current clock (thereby venidythatx has not expired).
If these checks fail, the thread dies; otherwise, the thcbathges state #pp, (op, n).
This thread is then processed in much the same waypéop, n) in Section 3.

Operationally, we assume a functiamanager (resp.disk) that allocates file op-
erations and policy modifications to manageesf.file operations to disks). We also
assume functionmay ,, executey, schedule,, andupdate, for eacha € A and
b € B, with the same specifications as their analogues in Sectibargher, we assume
a functionexpiry, for eacha € .4 with the following property ¢f. the functionlifes-
pan, Section 3): ifexpiry, (k, op, H, Clk) = Clk., thenClk. > Clk and there do not
exist sequences of policy-modification commands:ck, admciy1, - - -, admcik, and
policy Rcik such that the following hold at once:

- manager(a’d\r/ngkr) = aforeachClk’ € Clk...Clk,

- may, (k, op, Rci) = yes

- Ha =H -

- Hew = schedulea(admpkr,Hgkr, CIk') for eachClk’ € Clk. .. Clk,

— RGSHE = update, (ReS, CIK') for eachCIK' € Clk.... Clk, — 1

— may,(k, op, Rcik,) = no

In Section 5, we show how the functioaspiry, andlifespan are related: informally,
the lifespan of a permission can be defined as the duratiaveleetthe current clock
and the expiry of any capability for that permission.

The formal semantics of NFs is shown in Figure 2. Next we provide macros for
requesting file-operation capabilities and policy modtfaas at a manager, and autho-
rized file operations at appropriate disks.

At thea™ manager:

(Auth Req) (Auth Deny)
A RH: 5 Clk “a.k manager(op) = a may ,(k, op, Ra) = no
(0p,c). AReq, ,.(op,c), A: RH: p: Clk AReq, ,(op,c), A: RH: p: Clk
A RN p: Clk
(Auth Ok Cap)

manager(op) = a may ,(k, op,Ra) = yes disk(op) = b
{(m, expiry,, (k, op, Ha, Clk)) }x, = T for freshm mac({op,T,b),Kp) =k

AReq,, ,(op,c), A: RH: 5: Clk = (vm) (k). A: RH: p: Clk

(Adm Req) (Adm Deny)
A:RH - p: Clk 2= manager(adm) = a may , (k, adm,R,) = no
(adm,n). PReq, (adm,n), A: R*: p: Clk PReq, ,(adm,n), A: R7: 5: Clk ——
A RN p: Clk
(Adm Ok Ack)
manager(adm) = a may, (k, adm, Rs) = yes

schedule, (adm, H,, Clk) = H, Va' #a:Hy =Hy

PReq, ,(adm,n), A: R*: p: Clk - (). A: R™': p: Clk

Across managers:

(Auth Fwd) (Adm Fwd)
manager(op) =a’ #a manager(adm) =d' # a
AReq, . (op,c), A: R":5: Clk = PReq, ,(adm,n), A: R": j: Clk ——
AReq,, ,.(op,c), A: R™: p: Clk PReq, ,(adm,n), A: R*: p: Clk
(Tick)

Va : update, (R, Clk) = R;H/"'

A:ﬁ:ﬁ:ClkLﬁ:W:ﬁ:Clk—kl

At theb™ disk:
(Op OK)
(Exec Req) x = mac({op, T,b), Ky)
A: R7: j: Clk 2ok decrypt(T,K;) = (m,Clk) Clk < CIK'

(k,n). Req, (k,n), A: R*: p: Clk Req, (k,n), A: RH: p: Clk = App,(op,n), A: RH: p: Clk

(Exec Deny)
Aop, T, m, Clk" s.t.mac({op, T, b),Ky) = x,decrypt(T, K;) = (m, Clk’),andClk < CIk’

Reqb(/@,n),A: RH: p: Clk — A: RH . p: Clk

(Op Exec) (Op Res Ret)
execute,(op, pp) = (pb,7) VO #b:py = py Ret(n,7), A: R*: p: Clk —
App,(op,n), A: R p: Clk = Ret(n,r), A: RM: p': Clk (r). A: R™: p: Clk

Fig. 2. Semantics of a network-attached file system with distrithaiecess control

Definition 4 (Macros for NAFs clients).
Authorization on port k: Authorization may be requested witlathy, « for op; P,

which expands tdvc) a2, (op,c). c(z). P, for somea € A, andc ¢ £n(P).
The variabler gets bound to @apabilityat runtime.

File operation usingx on port k: An authorized file operation may be requested with
fileopauth,, x/z; P, which expands t¢vn) By 1 (k, n). n(x). P, wheren ¢ fn(P),
projs(message(x)) = b, andb € B. (Recall that for a capability: that autho-
rizesop, the third component ahessage(x) is the disk responsible farp.)

Administration on port k: Administration may be requested witdming adm; P,

which expands t¢vn) @, r(adm, n). n(). P, for someu € A, andn ¢ fn(P).

As in Section 3, we select a subset of clients whom we call sipiieese can be any
processes with certain static restrictions on their irtgoas with the file system. In
particular, an honest client uses macros only on its own foorsending requests to
the file system; each file-operation request is preceded lapabdlity request for that
operation; a capability that is obtained for a file operaisamsed only in succeeding ex-
ecution requests for that operation; and finally, as a caresgee of Definitions 5 and 6,
no other client may send a request to the file system on theopart honest client.

Definition 5. A set of honedliArs clients indexed by C K is a set of closed processes
{C; | i € T}, so that eacl?; in the set has the following properties:

all macros inC; are on porti,

no name in{a? ./, aq.ir, Boir | i € T,a € A b € B} appears free inC; before
expanding macros,

for each subprocess ifi; that is of the formauth; « for op; P, the only uses of
in P are in subprocesses of the fofiteopauth; x/z; Q,

every subproces3 in C; that is of the fornfileopauth; x/z; Q is contained in some
subprocesauth; « for op; P, such that no subprocess Bfthat strictly containg)
bindsk.

Dishonest clientsﬁj (j € J) are, as in Section 3, left unspecified. They form part of
an arbitrary environment that does not have the naflgsa. ;, va.i, Gb.i | € Z,a €
A, b € B} initially.

Definition 6. A NAS system denoted INAS(Cz, R, 5, Clk) is the closed process
(VieT,aeApeB 05 ;0a.if.i) (ILiczCi | (voeB Kp) (@: R?: p: Clk)), where

— Cz = {C;|i € T} is a set of honesWAFs clients indexed by,
— @: R?: p: Clkis an initial NAFs control state, and Ky, ol ;, &, Ob.i | © €
Z,a € A,be B}Nfn(R,p) = 2.

5 Safety and other guarantees for network-attached storage

We now establish thatk is a sound and adequate abstraction farBl Specifically,
we show that network-attached storage systems safely ingpietheir specifications as
ideal storage systems; we then derive consequences impfmtaecurity.

In our analyses, we assume that systems interact with ampigpotentially hostile)
environments. We refer to such environmentatackers and model them as arbitrary
closed processes. We study the behaviour of systentpnzaesQuizzes are similar to
tests, more specifically to may-tests [14], which captufetggroperties.

Definition 7. A quizis of the forniE, ¢, n, M), whereFE is an attackerg is a namer: is
a vector of names, antlf is a vector of closed terms, such that fn(M) \ fn(F, ¢).

Informally, a quiz provides an attacker that interacts viite system under analysis,
and a goal observation, described by a channel, a set of fi@sies, and a message
that contains the fresh names. The system passes the qugpbissible to observe the
message on the channel, by letting the system evolve withttaeker. As the following
definition suggests, quizzes make finer distinctions thawveational tests, since they
can specify the observation of messages that contain naenesajed during execution.

Definition 8. A closed process passes the quitE,c,ni, M) iff E | P - -
(vn) (M). Q for someQ.

Intuitively, we intend to show that a NAS system passes a guliy if its specification
passes a similar quiz. Given a NAS system, we “extract” iec8ation by translating
it to an ideal storage system. (The choice of specificatigumsigfied by Theorem 2.)

Definition 9. Let NAS(Cz, R, 5, Clk) be a network-attached storage system. Then its
specification is the ideal storage systgNAS([Cz], R, 7, Clk), with [.] as defined

in Figure 3, and with thelFs functionsmay, execute, schedule, update, and
lifespan derived from theilNAFS counterparts as shown in Figure 3.

Next, we map quizzes designed for NAS systems to quizzeathdat least as potent”
on their specifications. Informally, the existence of thegnmplies that MFs does not
“introduce” any new attacks.e., any attack that is possible omNs is also possible on
IFs. We present the map by showing appropriate translatiorestfackers and terms.

Definition 10. Let E be an attacker (designed for NAS systems). Eh€rns the code

E | (VI)GBKb) (Haa_Jefn(E)!aa.j(adma ’fl) Oé_j<adrna n>
| Hﬂbljefn(E)!ﬁb,j (k,m). Eﬂb_j,efn(E)ﬂ_j/<pr0j1 (message(k)), n)
| o eta(rylag ;(0p, ¢). Lpes(vm) e(mac({op, {m}k,, b), Ks)))

Informally, FE is composed with a “wrapper” that translates between thefetes of
NAFs and IFs. Administrative requests of, ; are forwarded omy;. A file-operation
request orpg, ;, with « as authorization, is first translated by extracting the afen
from x, and then broadcast on &l.. Intuitively, ~ may be a live, valid capability
that was issued in response to an earlier authorizationestquade on some; .,
and a request must now be made®nto pass the same access-control checks. (This
pleasant correspondence is partly due to the propertiifespan.) Finally, authoriza-
tion requests oy, ; are “served” by returning fake capability-like terms. Iitizely,
these terms are indistinguishable fromm¢ capabilities under all possible computa-
tions by E. To that end, fake secret keys replace the secaetkeys{K, |b € B}; the

IFsfunctions derived fronNAFS functions

manager(op) = a manager(adm) = a

may (k, op,ﬁ) = may ,(k, op, Ra) may (k, adm,ﬁ) = may,(k, adm, R.)
disk(op) = Y £ b:py = py manager(adm) = a Va' #a:Hy = Har

{py,T) = execute,(op, py) ‘H., = schedule, (adm, H,, Clk)
execute(op, p) = (;’,) schedule(adm,ﬁ, Clk) = H
Va : R;H; = update, (R, Clk) manager(op) = a

update(ﬁﬁ, Clk) = @77’ lifespan(k, op,ﬁ, Clk) = expiry ,(k, op, Ha, Clk) — Clk

HonestlFs-client code derived from honelstars-client code
01=0 [@n)Pl=@n) [P [u@.Pl=u@. [Pl [a(d).P]=u(d).[P]
[P|Q]=[P]|[Q] [\P] =![P] [if M = NthenPelse Q] = if M = Nthen[P]else [Q]
[admin; adm; P| = admin; adm; [P] [auth; & for op; P| = [P]
[fileopauth, k/r; P = fileop, proj, (message(k))/r; [P]

Fig. 3. Abstraction of NAS systems

disk b is non-deterministically “guessed” from the finite &tand an encrypted unique
nonce replaces theA¥s timestamp. Notice that the value of the.ks clock need not
be guessed to fake the timestamp, since by design, eaeh tNnestamp is unique and
unintelligible toE.

We now formalize the translation of terms (generated by &land its clients). As
indicated above, the translation preserves indistingtigity by attackers, which we
show by Proposition 1.

Definition 11. Let m range over names not K, | b € B}, and M range over se-
quences of terms. We define the judgrient ¢ by the following rules:

ko MFEo MEo fisafunctiﬁnsymbol MC M
M,mbEo M, f(M)Fo
MEo {{m,)}k, ¢ M op € M
M, mac((op, {{m, Clk) }x,, b), Ks), {(m, Clk) }k, F ¢
We say thatM is valid if M + o, and define on terms in a valid sequence:
Pm=m Sf(M)=f(@M) B{(m,Chk)}, = {m}x,

Pmac({op, {(m, Clk) }k,,b), Ky) = mac((Pop, {m}k,,b), Ks)

Proposition 1. Let M, M’ belong to a valid sequence. Théh = M’ iff @M = &M’
(where= is equational, and not merely structural, equality).

Our main result, which we state next, says that whenever a f§&m passes a quiz,
its specification passes a quiz that is meaningfully reltigte former:

Theorem 1 (Implementation soundness)ﬁet NAS,@ a network-attached storage
system. IfNAS passes some qui#, ¢,n, M), then M belong to a valid sequence,
and®NAS passes the qUI@FE, ¢, i, PM).

The converse of this theorem does not hold, sidéecan always return a capability-
like term, while NAFs does not if an access check fails. Consequently, full attibra
breaks. In [5], where the outcome of any access check is fixkedachieve full ab-
straction by letting the file system return a fake capabilityenever an access check
fails. (The wrapper can then naively translate executemuests, much as in here.)
However, it becomes impossible to translate attackers wliggamic administration is
allowed (even if we let WFs return fake capabilities for failed access checks). Intu-
itively, @ F' cannot consistently guess the outcome of an access checktranslating
file-operation requests at runtime—and for any choicé Bfgiven E, this problem can
be exploited to show a counterexample to full abstraction.

Full abstraction can also be broken by honest clients, viithuse of expired ca-
pabilities. One can imagine more complex client macros thatk for expiry before
sending requests. (Such macros require thed\clock to be shared with the clients.)
Still, the “late” check by MFs (after receiving the request) cannot be replaced by any
appropriate “early” check (before sending the requesthavit making additional as-
sumptions on the scheduling of communication events oeengétwork.

One might of course wonder if the specifications for NAS systare “too weak”
(thereby passing quizzes by design), so as to make Theorammubuws. The following
standard completeness result ensures that this is notske ca

Theorem 2 (Specification completeness)et two systems be distinguishable if there
exists a quiz passed by one but not the other. Then two ideabg systemks; andIS,

are distinguishable only if there are distinguishable natkvattached storage systems
NAS; andNAS; such thatdNAS; = IS; and®NAS, = IS..

It follows that every quiz passed by an ideal storage systambe concretized to a quiz
passed by some NAS system with that specification.

Several safety properties can be expressed as quiz failNed we show two
“safety-preservation” theorems that follow as corollarie Theorem 1. The first one
concerns secrecy; the second, integrity. We model thealirkitiowledge of an attacker
with a set of names, as in [2]; Iétrange over such sets.

Definition 12. Let.S be a set of names. An attacklris a S-adversary iffn(E) C S.

We may then express the hypothesis that a system keeps ageret Isy claiming that
it fails any quiz whose goal is to observe that term on a chlathagis initially known
to the attacker.

Definition 13. A closed proces® keeps the closed terif secret from a set of names
S if P does not pass any qUu{Z, s, 1, M) whereFE is anS-adversary and € S.

We now derive preservation of secrecy by NAS implementati&ior anyS modeling
the initial knowledge of a NAS attacker, I1@t5 be an upper bound o8, as follows:

®S =SU {aj,a;-’/,ﬁju | Oéa,j,()ég.j/,ﬁb,jw e S,ae Abe B}

Note that for any5-adversary, F is a®S-adversary. Further, note that the inclusion
of the name, ; (resp.ag, ., Bp.;) in S suggests that’ knows how to impersonate the

NAFs client Cj for requesting policy modificationsgsp.capabilities, file operations);
the corresponding inclusion of the name (resp.a3,, ;) in ¢S allows the abstract
attacker®@E to impersonate therk client C;. Thus, the following result says that a
secret that may be learnt from a NAS system may be also bé feamnits specification
with comparable initial knowledge; in other words, a NASteys protects a secret
whenever its specification protects the secret.

Corollary 1 (Secrecy preservation).Let NAS be a network-attached storage system,
S a finite set of names, antl a closed term that belongs to a valid sequence. Then
NAS keepsM secret fromS if ®NAS keepsbM secret frombS.

Next we derive preservation of integrity by NAS implemeiaas. In fact, we treat

integrity as one of a larger class of safety properties wiviidlations may be detected
by letting a system adequately monitor itself, and we depreservation of all such

properties in NAS. For this purpose, we hypothesize a setarfitoring channels that
may be used to communicate warnings between various patteafystem, and to
signal violations on detection; we protect such channelsfattackers by construction.
In particular, clients can use monitoring channels to comicate about begin- and
end-events, and to warn whenever an end-event has no condisg begin-event (thus
indicating the failure of a correspondence assertion [9]).

Definition 14. A namen is purely communicative in a closed proce3sf any occur-
rence ofn in P is in the formn(Z). Q or m(M). Q. LetS be a finite set of names. Then
the set of name®’ monitors a closed procesB under S if W NS = @ and each
w € W is purely communicative i#.

Any message on a monitoring channel may be viewed as a warning

Definition 15. Let W monitor P underS. ThenS causesP to warn onW if for some
S-adversaryE andw € W, P passes a quiz of the for(d, w, n, M).

The following result says that whenever an attack causegimngain a NAS system,
an attack with comparable initial knowledge causes thaningrin its specification.
In other words, since a specification may contain monitofangntegrity violations, a
NAS system protects integrity whenever its specificatianquts integrity.

Corollary 2 (Integrity preservation). LetWW monitor an abstracted network-attached
storage syste®@NAS under®S. ThenS does not causBAS to warn onW if @S does
not causePNAS to warn onW'.

6 Conclusion

In this paper we study networked storage systems with biged access control. In par-
ticular, we relate those systems to simpler centralizeggsystems with local access
control. Viewing the latter systems as specifications offtrener ones, we establish
the preservation of safety properties of the specificatiortee implementations. We
derive the preservation of standard secrecy and integritpgrties as corollaries. We

expect that such results will be helpful in reasoning abloeicibrrectness and the secu-
rity of larger systems (which may, for example, include riowial clients that rely on
file storage). In that context, our results imply that we carptbofs using the simpler
centralized storage systems instead of the networkedg&tagstems. In our current
work, we are developing proof techniques that leveragesihiplification.

Acknowledgment&Ve thank Cédric Fournet and Ricardo Corin for helpful comtae
This work was partly supported by the National Science Fatiod under Grants
CCR-0204162, CCR-0208800, and CCF-0524078, and by Liveridational Labora-
tory, Los Alamos National Laboratory, and Sandia Natiorehdratory under Contract
B554869.

References

1. M. Abadi. Protection in programming-language tranelai InICALP’98: International
Colloquium on Automata, Languages and Programmipeges 868—883. Springer-Verlag,
1998.

2. M. Abadi and B. Blanchet. Analyzing security protocolghwsecrecy types and logic pro-
grams.Journal of the ACM52(1):102-146, 2005.

3. M. Abadi and C. Fournet. Mobile values, new names, andreecommunication. In
POPL'01: Principles of Programming Languaggsmges 104-115. ACM, 2001.

4. M. Abadi and A. D. Gordon. A calculus for cryptographic foeols: The spi calculus.
Information and Computatiqri48(1):1-70, 1999.

5. A. Chaudhuri and M. Abadi. Formal security analysis ofibastwork-attached storage. In
FMSE’05: Formal Methods in Security Engineerjmaages 43-52. ACM, 2005.

6. G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E. Feinhdrg G. C. Lee, B. Ozceri,
E. Riedel, and D. Rochberg. A case for network-attachedrsetdisks. Technical Report
CMU-CS-96-142, Carnegie Mellon University, 1996.

7. H. Gobioff. Security for a High Performance Commodity Storage SubsyskhD thesis,
Carnegie Mellon University, 1999.

8. H. Gobioff, G. Gibson, and J. Tygar. Security for netwatkached storage devices. Techni-
cal Report CMU-CS-97-185, Carnegie Mellon University, 799

9. A. D. Gordon and A. Jeffrey. Typing correspondence agserfor communication proto-
cols. Theoritical Computer Scienc800(1-3):379-409, 2003.

10. D. Mazieres and D. Shasha. Building secure file systambbyzantine storage. In
PODC’02: Principles of Distributed Computingages 108-117. ACM, 2002.

11. E. L. Miller, D. D. E. Long, W. E. Freeman, and B. Reed. B¢reecurity for network-
attached storage. FAST’02: File and Storage Technologigmges 1-13. USENIX, 2002.

12. R. Milner. Fully abstract models of typed lambda-calcdlheoretical Computer Science
4(1):1-22, 1977.

13. R. Milner. The polyadic pi-calculus: a tutorial. llmgic and Algebra of Specificatippages
203-246. Springer-Verlag, 1993.

14. R. D. Nicola and M. C. B. Hennessy. Testing equivalenoegifocessesTheoretical Com-
puter Science34(1-2):83-133, 1984.

15. B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E. Long. Autibating network-attached
storage lEEE Micro, 20(1):49-57, 2000.

16. F. B. Schneider. Enforceable security polickEM Transactions on Information and System
Security 3(1):30-50, 2000.

17. Y. Zhu and Y. Hu. SNARE: A strong security scheme for nekaattached storage. In
SRDS’'03: Symposium on Reliable Distributed Systeages 250-259. IEEE, 2003.

