
Analysis of UML Activities using
Dynamic Meta Modeling

Gregor Engels, Christian Soltenborn, and Heike Wehrheim

Universität Paderborn, Institut für Informatik,
33098 Paderborn, Germany

{engels,christian,wehrheim}@upb.de

Abstract. Dynamic Meta Modeling (DMM) is a universal approach to
defining semantics for languages syntactically grounded on meta models.
DMM has been designed with the aim of getting highly understandable
yet precise semantic models which in particular allow for a formal anal-
ysis. In this paper, we exemplify this by showing how DMM can be used
to give a semantics to and define an associated analysis technique for
UML Activities.

Key words: UML, semantics, behavior, verification, DMM

1 Introduction

Dynamic Meta Modeling (DMM) [1, 2] has been introduced as a general con-
cept for defining the behavioral semantics of languages syntactically based on
meta models. Meta models are formalisms for specifying the correct syntax of
programs (or more generally, models). They allow for a high-level description of
syntax abstracting from the concrete way of writing models. This is of particular
importance for tool-independent model descriptions and for transformations be-
tween models. Meta models have thus become the core instrument in the MDA
initiative of the OMG [3]. DMM extends meta models for defining syntax of lan-
guages with concepts for describing their dynamic semantics. While the primary
target of DMM was the UML, the method was designed as to work for any meta
model based formalism, thus being universally applicable. The designers set out
to define a method which is highly understandable yet formal and precise. The
former property was ment for keeping the advantages of visual modeling in the
semantics (non-experts should be able to understand semantics); the latter was
particularly important for a formal analysis of models.

In this paper, we exemplify the DMM’s ability of allowing for a formal anal-
ysis by means of defining an automatic analysis technique for UML Activities.
For doing so, we first give a DMM semantics to UML Activities following [2].
DMM is conceptually based on graph transformations [4], which fits well to the
visual appeal of Activities themselves, and more generally of meta models. In
contrast to previous approaches to giving semantics for UML Activites [5–7],
DMM is able to precisely formalise the intricate traverse-to-completion seman-
tics of Activities [8]. The semantic domain for Activities are transitions systems



whose states are graphs representing the Activities and their current runtime
states. The use of the general domain of transition systems allows for a direct
application of concepts for comparing models (using notions of equivalence on
transition systems) as well as specifying properties of models (e.g. via temporal
logics interpreted on transition systems).

The definition of the semantics is the basis for the subsequent development of
an automatic analysis technique. Rather than analyzing for individual properties
of particular models, we are interested in defining a general quality criterion for
Activities. To this end, we identify properties of Activities which characterise
”good” models in the main application area of Activities, namely workflow mod-
eling. Workflows describe business processes in companies. Activities modeling
workflows have to adhere to particular requirements, some of which can be syn-
tactically checked (e.g. whether there is a unique initial and a unique final action)
but others referring to the execution of Activities (viz. their semantics). Follow-
ing an approach of van der Aalst [9] we develop a correctness criterion called
soundness covering several crucial properties of Activities modeling workflows.
Soundness is defined on the particular form of transition systems generated by
the DMM semantics for UML Activities.

Our objective is then to get a fully automatic check for soundness. Starting
from an Activity modeling a workflow, the soundness analysis should essentially
be carried out by tools. Instead of building a new tool from scratch, we choose an
existing tool (GROOVE [10]) as the basis for our analysis. GROOVE allows for
the construction, simulation and verification of transition systems specified via
graphs and graph transformations. Verification currently includes CTL model
checking [11]. The use of GROOVE thus necessitates a transformation of our
soundness criterion into CTL formulas which are then checked on the generated
transition systems. We prove correctness of this transformation as to ensure
analysis of the correct property.
The paper is structured as follows. The next section gives an introductory exam-
ple of an UML Activity modeling a workflow. On this we will informally discuss
our soundness criterion in general, and already formally define those parts refer-
ring to the syntax. Section 3 explains the approach of Dynamic Meta Modeling,
and defines the semantics for UML Activities. Section 4 is concerned with the
verification of soundness: we give the formal definition of sound Activities by
means of their DMM specification. The transformation of soundness into CTL
formulas is the main topic of section 5: we show how to perform the transfor-
mation and prove its correctness. Additionally, the section explains the usage of
tools, in particular GROOVE. The last section concludes and discusses related
work.

2 The Idea of Soundness

The purpose of this section is to introduce our notion of workflow modeling
using UML Activities, and to discuss the soundness property in the context of
that definition. Recall from the introduction that we have chosen soundness as



ad ProcessClaim

ProcessClaim

check 
claim

check 
policy

send 
money

send letter

archive

[ok]

[ok]

[not ok]

[not ok]

 
Fig. 1. Workflow “Process claim” as a UML Activity.

a generic indication of quality: according to van der Aalst [9, 12], every workflow
should be sound, regardless of its concrete semantic domain.

We use a workflow which will serve as a running example for the rest of our
paper; it describes the processing of an insurance claim in a strongly simplified
way and is depicted as a UML Activity in figure 1. The meaning of figure 1 is
supposed to be as follows:

If a claim arrives at an insurance company, two things need to be
checked: does the customer have an appropriate policy, and is the claim
itself valid? To speed up processing of the claim, the checks are performed
in parallel (check policy and check claim). Only if both checks succeed,
money will be sent to the customer (send money). If at least one of the
checks fails, a letter will be sent to the customer explaining why the claim
has been rejected (send letter). At the very end, the claim is archived
(archive).

Before we present our criteria for sound UML Activities, we need to give a
basic idea of their semantics (we will look into this in more detail in section 3).
The UML specification [13] states that “Activities have a Petri-like semantics”,
i.e., the semantics is based on token flow. When an Activity is executed, the
InitialNode (solid circle) creates a token, which corresponds to a case to be
handled by the workflow. That token is then routed through the Activity. Tasks
are depicted by rounded rectangles (they are called Actions in the UML termi-
nology). ForkNode and JoinNode (vertical bars) represent parallelity, i.e., they
copy respectively join the arriving tokens. DecisionNode and MergeNode (dia-
monds) are used to route tokens. ActivityFinalNodes (dotted circle) consume
arriving tokens.

The reader not familiar with UML Activities should note the ease of under-
standing figure 1. The expert might notice that we only use a subset of UML
Activities, i.e., the FundamentalActivities, BasicActivities and Interme-
diateActivities packages, since the elements of these packages suffice to model
many kinds of workflows.

At first glance the presented workflow seems reasonable. But what about
its objective quality? Or, more generally: what properties should an arbitrary



workflow at least have to be considered high-quality? In the following, we discuss
the soundness property suggested by van der Aalst [9, 12]. In his opinion, every
workflow should fulfill some basic requirements:

1. The workflow should have well-defined pre- and postconditions.
2. The workflow should not contain any useless elements.
3. If the end condition is reached, no more tasks should be processed.
4. The end condition should finally be reached.

Requirements 1, 2, and 4 are self-explanatory. For requirement 3, assume that
tasks are still processed after the end condition has been reached: these tasks
obviously do not contribute to the result of the workflow. The work involved in
performing these tasks is therefore wasted.

Taking the semantics described above into account, it is straightforward to
translate van der Aalst’s soundness definition into the world of UML Activities.
A UML Activity is considered to be sound if the following conditions hold:

1. The Activity must have exactly one InitialNode and ActivityFinalNode.
2. Any Action must be executed under at least one possible execution of the

Activity.
3. If a token arrives at the ActivityFinalNode, no more tokens are left in the

Activity.
4. A token finally arrives at the ActivityFinalNode.

Note that in practice, requirement 1 does not restrict the modeler: more than one
InitialNode can be modeled equivalently by one InitialNode and a ForkNode
producing the desired number of tokens (ActivityFinalNode and JoinNode
accordingly).

The requirements formulated above put restrictions on both the syntax and
the semantics of a sound Activity: requirement 1 restricts the structure, and
the other requirements restrict how the Activities must behave to be considered
sound.

Since structural restrictions are usually easy to verify, their verification will
not be discussed further. The behavioral restrictions are more interesting: to
verify them, we need a formal semantics of the behavior of UML Activities. In
the next section, we will dicuss the definition of such a semantics by means of
Dynamic Meta Modeling (DMM). Section 4 will then show how this semantics
can be used to formalize the behavioral restrictions, and section 5 will show how
to verify the restrictions in an automatic way.

3 Dynamic Meta Modeling

The most important prerequisite for automatically analyzing the behavior of
models is that the behavior is specified formally. Moreover, to allow advanced
language users to understand the precise semantics of their models, the specifi-
cation should be as easily understandable as possible. Dynamic Meta Modeling
aims at fulfilling these seemingly contradictory requirements by combining two



different approaches into one semantics description technique: denotational mod-
eling and operational rules.

DMM is targeted at languages having an abstract syntax which is defined
by means of a meta model as suggested by the OMG, i.e., a model describing
the elements the language itself consists of. Sentences of the language must then
be consistent with the meta model. Often MOF [14] is used for the specification
of meta models, which is basically a subset of UML class diagrams. To follow
the OMG layered model, the language’s meta model is level M2, the level of the
concrete syntax (i.e., an object diagram consistent to the class diagram of level
M2) is M1, and the visualization of the concrete syntax (in our case, the picture
of the UML Activity) is level M0.

In DMM, the static semantics of a language is specified using Denotational
Meta Modeling. This means that the semantic domain has its own meta model,
to which the meta model describing the Visual Modeling language is mapped.
The meta model of the semantic domain often is an enhanced version of the
meta model of the language itself. For example, we will see below that the
Activity’s semantic domain meta model has additional elements like Token and
Offer, which allow to express certain states of execution of the Activity under
consideration.

The dynamic semantics is then specified by developing a set of operational
rules which describe how instances of the semantic domain meta model change in
time. For this, the instances are mapped to typed graphs [15], i.e., graphs whose
nodes are typed over the semantic domain meta model. The operational rules
are then defined as graph transformation rules, working on the derived typed
graphs.

Since the typed graphs represent states of execution of the Activity, the de-
scribed specification technique allows for the computation of transition systems
representing the precise behavior of the investigated models. The operational
rules result in transitions between these states. The resulting transition systems
can then be verified for certain properties, as we will see in section 4. The overall
concept of DMM is depicted in figure 2.

In the following, we give insight into our DMM semantics specification of
UML Activities. Note that we did not specify a semantics for all Activity ele-
ments as defined in the UML 2.0 specification [13] yet. We basically implemented
the the FundamentalActivities, BasicActivities and IntermediateActivi-
ties packages.

Figure 3 shows an excerpt of the semantic domain meta model we have
developed to express the behavior of Activities (elements depicted in bold are
enhancements to the original meta model). While developing that meta model,
we have followed the textual description of the Activity’s semantics provided
as part of the UML specification [13]. Most importantly, the following concepts
have been implemented:

– The execution of an Activity is controlled by the class ActivityExecution,
which is a composition of the elements needed to describe the states of
execution (see below).



Semantics Definition
Syntax 

Definition

Transition System

States

Expression

Model elements

Dynamic Semantics

conforms to

Static Semantics

conforms to

Meta Model
Graph Transformation 

Rules

semantic
 mapping

Enhanced Meta Model

Language

Model (Instance)

Fig. 2. Overview of the DMM approach

– As expected, the token flow is realized by introducing a Token class. Since
according to the UML specification, a token can only rest at a subset of
the Activity elements, an abstract class BufferNode is added to the type
hierarchy of those elements.

– The token flow within Activities follows the concept of traverse-to-completion.
In a nutshell, this means that tokens are only offered to edges. An offer tra-
verses the Activity up to the next BufferNode, moving its token only if such
a node is found. In this way, tokens can not get “stuck” within the Activity
in some sense. This behavior is implemented by the Offer class and a couple
of other constructs.

Figure 4 shows an example DMM rule implementing the semantics of the Deci-
sionNode. A DMM rule consists of a signature, a number of pre- and postcondi-
tions and an optional number of invocations of other DMM rules (note that the
presented rule does not have invocations). Slightly simplified, the rule matches
an instance graph if a morphism from the preconditions into the instance graph
can be found. If this is the case, the graph will be modified: elements marked
{new} are created, and elements marked {destroyed} are deleted. In our case,
the offer on the incoming edge will be deleted, and a new offer will be created
on the outgoing edge, corresponding to the fact that the offer has passed the
DecisionNode. Figure 5 illustrates this process: the left part shows a visualiza-
tion of the Activity’s behavior, the right part shows the matching part of our
example model before and after applying the rule of figure 4.

The derived graph represents the next state of execution. Since a Decision-
Node has only one incoming, but several outgoing edges, an arriving offer will
be routed to all of them: the rule matches every combination of the only incom-
ing and one of the outgoing edges, and produces several new states. From the



Activity

ActivityExecution

ActivityNode

ActivityEdge

TokenOffer

BufferNode

ControlNode DecisionNode

ObjectNode

Action

1
source

1

0..*
0..*

belongs to

1

1
carries

0..1

1
carries

0..*

0..*

executes

1

0..*

0..*
1

target

1
0..*

Fig. 3. Enhanced UML Activity meta model

decisionNode.flow()

decisionNode:DecisionNode:ActivityEdge :ActivityEdge

:Offer

carries

{destroyed}
sourcetarget

carries {new}

Fig. 4. DMM rule decisionNode.flow()

transition system’s point of view, the result is a branch, representing all possible
executions of the Activity at that point. Figure 5 shows one possible application
of rule decisionnode.flow(). In this case, the offer is routed along the top edge of
the DecisionNode. The right part of that figure shows two consecutive states of
the Activity.

The resulting transition system represents the complete behavior of the Ac-
tivity under consideration. It will be the basis for analysis of the Activity, using
standard techniques such as model checking. In the next section, we show how
to verify a transition system representing a concrete Activity for soundness.

4 Sound UML Activities

Up to now, we have informally defined soundness for UML Activities in section 2,
and we have introduced our formal semantics of Activity’s behavior in the last
section. In the following, we will use this semantics to formally define soundness,
and we will then translate the soundness conditions into CTL formulas in order
to be able to verify the formula’s validity with a model checker.



check claim

check claim

:MergeNode

checkClaim:Action

:ForkNode

:ActivityEdge

:ActivityEdge

:ActivityEdge :DecisionNode

source

target

source

:Token :Offer

carries

:MergeNode

checkClaim:Action

:ForkNode

:ActivityEdge

:ActivityEdge

:ActivityEdge :DecisionNode

source

target

source

:Token :Offer
carries

decisionnode.flow()

Fig. 5. Application of rule decisionNode.flow()

Our goal is to be able to make statements about states of execution of the
Activity under investigation. We do this in an indirect way: we do not speak
about the states themselves, but about rules which match states. As we have
seen in the last section, a rule only matches a state (i.e., a graph) if a morphism
between the preconditions of the rule and the state can be found. In other words:
if a rule matches a state, we know that the preconditions of that rule hold within
the state, which means that we have knowledge about the state itself. As we will
see in section 5, the model checker provided by GROOVE [16] works exactly this
way: it verifies CTL formulas where the atomic propositions are applications of
the graph transformation rules used to calculate the transition system under
investigation.

Note that the described approach does not restrict the verification process:
every property p which can be formulated as a precondition of a rule can be
verified by adding a special rule r which has p not only as its pre-, but also as its
postcondition (i.e., its application does not change the state). A state s fulfilling
p will result in a self-transition (s, s) labeled r. Therefore, if we assume some
reasonable kind of fairness (see e.g. [17]), checking for the application of r is
equivalent to finding a state for which p holds.

Before we present our definition of soundness, we need to introduce the idea
of some DMM rules from our semantics definition, and we need to define some
predicates. Note that from now on, we slightly simplify our original results (see
[18] for a more comprehensive coverage of the content of this section).

First, recall from section 2 that for an Activity to be considered sound, a to-
ken must finally arrive at the ActivityFinalNode, and at that moment, no other
tokens must be left in the Activity. Recall also that ActivityFinalNodes con-
sume all arriving tokens. To implement this behavior, we have defined two rules
whose task is to destroy arriving tokens as desired: finalnode.destroyToken1() and
finalnode.destroyToken2(). Both rules match if a token arrives at an Activity-
FinalNode; the difference between them is that the former only matches if ex-



actly one token is flowing within the (whole) Activity, and the latter matches
if two or more tokens are flowing. We can use this difference to define the de-
sired behavior: an Activity is sound if, under all its possible executions, rule
finalnode.destroyToken1() matches at some point in time, and rule finalnode.de-
stroyToken2() never matches. Note that the rules’ implementation guarantees
that whenever these rules are applied, no other rules can be applied afterwards.
This is in compliance with the UML specification which says that a token arriv-
ing at an ActivityFinalNode immediately ends the Activity.

The other requirement for soundness is that a sound Activity does not contain
any useless elements. Since Actions are the elements of Activities where actual
work is performed, we slightly relax that requirement by only requiring no useless
Actions. In our semantics, the execution of an Action is mainly implemented by
the rule N.start(), where N is the name of that Action (note that every Action
has its own rule). We therefore define an Activity to be sound if, under all its
possible executions, the rule N.start() matches at some point in time for every
Action of the Activity.

Having said that, we need to define some predicates which will prove helpful
when formalizing our soundness definition:

Definition 1 Let r be a DMM rule, s a state of a UML Activity as described
in section 3, i.e., a graph which is typed over the enhanced meta model. Let v
be a vertex of that graph.

1. If r matches the state s, then matches(r, s) is true.
2. If v’s type is Action or a subtype of Action, then isAction(v) is true.
3. Let isAction(v) be true. Then name(v) represents the name of the Action

represented by v.
4. If s is the state derived from an application of rule finalnode.destroyToken1(),

then isF inal(s) is true.

Now we are ready to present our formal definition of soundness for UML
Activities.

Definition 2 (Sound Activity) Let A be a UML Activity with exactly one
InitialNode and ActivityFinalNode, s0 the state of A with only a token on
the InitialNode, and Vs0 the vertices of the graph s0. Let TS = (S,→, s0) be
the transition system induced by the DMM rule set as described in section 3 (S
contains exactly those states reachable from s0). A is sound if and only if the
following conditions hold:

1. ∀s ∈ S : (∃s′ ∈ S : s →∗ s′ ∧ matches(finalnode.destroyToken1(), s′)) ∨
isF inal(s)

2. ∀s ∈ S : ¬matches(finalnode.destroyToken2(), s)
3. ∀v ∈ Vs0 : isAction(v) ∧ name(v) = N ⇒ ∃s ∈ S : matches(N.start(), s)

Let us briefly discuss the relation between the informal soundness definition from
section 2 and definition 2. Condition 1 ensures that from all states s, a state s′

is reachable such that rule finalnode.destroyToken1() can be applied to it. If this



is the case, we know that a token will finally reach the ActivityFinalNode. As
rule finalnode.destroyToken2() is never applied, we also know that at this point
in time, no other token is left in the Activity. The predicate isF inal(s) of condi-
tion 1 takes care of the state derived from applying rule finalnode.destroyToken1():
it is needed because since no other rule can be applied to s (see above), the first
part of the condition does not hold. Condition 3 makes sure that for every
Action, a state s ∈ S exists where that Action is executed. Since S contains all
states reachable from s0 (and no more), we know that all Actions are executed
under at least one of the possible executions of A.

5 Utilizing the GROOVE Toolset

Our final goal is to have an automatic check for soundness. Hence we need a tool
which, given a set of graph transformation rules, can generate the transition
system according to our semantics and inspect it with respect to our conditions.
For this, we have chosen to use the tool GROOVE. GROOVE is a shortcut for
“GRaphs for Object-Oriented VErification” and has been developed by Arend
Rensink at the University of Twente [19]. It offers a collection of tools for han-
dling graph transformations: the Generator computes a transition system out of
a start graph and a set of graph transformation rules, the Editor allows to edit
the graphs and rules, and the Imager visualizes them. The Simulator integrates
these tools, and the Model Checker allows for the verification of CTL formulas
over the generated transition systems. As expected, we mainly utilize GROOVE’s
Generator and Model Checker (see figure 6 for the complete workflow).

To use the model checker for checking soundness, we first need to trans-
late the conditions of definition 2 into CTL, i.e., the notion of temporal logic
GROOVE understands. Note that the Model Checker works as described in the
last section: it verifies CTL formulas over the application of graph transforma-
tion rules. Before we can translate our soundness definition into the language
GROOVE understands, we need some prerequisites. We start by defining the
computations of a transition system:

Definition 3 (Computations) Let TS = (S,→, s0) be a DMM transition sys-
tem as defined in definition 2. The set of computations Comp(s0) is defined as
follows:

Comp(s0) := {s0s1s2 . . . : (si, si+1) ∈→}
Comp(s0) contains all possible computations starting with state s0.

Now we briefly define the CTL formulas we will use to express our conditions.
Note that this is only a subset of CTL.

Definition 4 (CTL formulas) Let TS = (S,→, s0) be a DMM transition sys-
tem as defined in definition 2. Let Comp(s0) be the set of computations as in
definition 3, and let p be some atomic proposition. Then

TS |= AF(p) :⇔ ∀s0s1 · · · ∈ Comp(s0)∃k ∈ N : p holds in sk

TS |= AG(p) :⇔ ∀s0s1 · · · ∈ Comp(s0)∀k ∈ N : p holds in sk

TS |= EF(p) :⇔ ∃s0s1 · · · ∈ Comp(s0)∃k ∈ N : p holds in sk



In case of finite computations, k accordingly has to be restricted to the length
of the computation. AF stands for “On All paths Finally. . . ”, AG stands for
“On All paths Globally. . . ” and EF stands for “There Exists a path such that
Finally. . . ”.

We are now ready to formulate our theorem.

Theorem 5 Let A be a UML Activity with exactly one InitialNode and
ActivityFinalNode, s0 the state of A with only a token on the InitialNode.
Let N1, . . . , Nk be the names of the Actions contained in A. Let TS = (S,→, s0)
be the transition system induced by the DMM rule set as described in section 3
(S contains exactly those states which are reachable from s0). A is sound if and
only if the following CTL formulas hold for TS:

1. TS |= AF(finalnode.destroyToken1())
2. TS |= AG(¬finalnode.destroyToken2())
3. TS |= EF(N1.start()) ∧ · · · ∧ EF(Nk.start())

Proof. We start by showing the equivalence of the first condition of definition 2
and theorem 5. First, we can also write

∀s ∈ S : (∃s′ ∈ S : s →∗ s′ ∧matches(finalnode.destroyToken1(), s′))∨ isF inal(s)

as

∀s ∈ S : (∃k ∈ N : s → s1 → · · · → sk ∧ matches(finalnode.destroyToken1(), sk))
∨ isF inal(s)

Since the above holds for all states s ∈ S, S contains all states reachable from
the initial state, and rule flowfinal.destroyToken1() is always the last rule in a
computation, we can write this as

∀s0s1 · · · ∈ Comp(s0)∃k ∈ N : matches(finalnode.destroyToken1(), sk)

Following definition 4, we can now formulate our property as a CTL formula
over the application of rule flowfinal.destroyToken1():

TS |= AF(finalnode.destroyToken1())

Now it is easy to see how conditions 2 and 3 of definition 2 can be translated
into temporal logic: since condition 2 holds for all states, it must also hold for
all computations. We can therefore write the condition as

∀s0s1 · · · ∈ Comp(s0)∀k ∈ N : ¬matches(finalnode.destroyToken2(), sk)

As above, this can be translated into temporal logic:

TS |= AG(¬finalnode.destroyToken2())



The last condition of definition 2 states that for all Actions, there is some state
s ∈ S such that the start rule of that very Action matches. Let N1, . . . , Nk be
the names of the Actions. Since we do not know anything about state s except
that it exists, we can only conclude:

∃s0s1 · · · ∈ Comp(s0)∃k ∈ N : matches(Ni.start(), sk)

(i = 1, . . . , k). We can again translate this into CTL:

TS |= EF(Ni.start())

2

Now we have everything needed to verify our running example introduced in
section 2 for soundness. As it turns out, the example is not sound: the GROOVE
model checker reports that conditions 1 and 2 of theorem 5 do not hold. In other
words: there are paths within the transition system where rule finalnode.destroy-
Token1() is never applied, and also states where rule finalnode.destroyToken2()
matches. Intuitively, this means that there is at least one situation where a token
arrives at the ActivityFinalNode, but there are more tokens left in the Activity.

A further investigation of the example shows the reasons for this: first, if one
of the checks succeeds and the other fails, we end up in a state where a token
is stuck at the JoinNode. For this situation, both conditions do not hold: the
arriving token is consumed by applying rule finalnode.destroyToken2(), and since
the other token is stuck, it will not be consumed (in particular not by applying
rule finalnode.destroyToken1()).

Second, if both checks fail, two tokens will arrive at the ActivityFinalNode,
again violating condition 2 of theorem 5. Note that in this case, two letters will be
sent to the customer, which is obviously not the desired behavior. Note also that
the second token will be consumed by applying rule finalnode.destroyToken1()
(i.e., condition 1 is not violated).

It remains to discuss the chain of tools we developed for the automatic verifi-
cation of Activities. As mentioned in the introduction, DMM has been developed
mainly having the UML in mind. This is reflected in figure 6 by using the UML
meta model both as input for the semantics editor and the modeling tool: the
purpose of the former is to develop operational rules by means of graph trans-
formation rules which are typed over an extension of that meta model (as we
have done for UML Activities). The latter utilizes the meta model to verify the
syntactical correctness of the models. Note that this might be a typical use of
DMM, but basically every meta model can be incorporated into a DMM-based
semantics definition.

The semantics editor delivers a complete semantics to the property checker,
including a mapping from the original into the enhanced meta model. This map-
ping is then used to transform a model instance (in our case: a UML Activity)
into a start graph typed over the enhanced meta model.

The start graph as well as the graph transformation rules serve as input for
the GROOVE generator. As the name suggests, a transition system is generated,



UML
editor

UML2 meta model
DMM

semantics
editor

DMM
property

editor

DMM
property
checker

GROOVE
model

checker

GROOVE
generatorRuleset

Start graph

STS

UML2 model

CTL expressions

Result of verification

PropertiesSemantics

Fig. 6. Tool chain

having graphs as states and transitions between these states. The transitions are
labeled with the name of the applied rule.

The generated transition system represents the complete semantics of the
input model. It can either be investigated manually by visualizing it with the
GROOVE simulator (e.g. to understand the precise semantics of a certain part
of a model), or automatic verification techniques can be used.

For the latter, the first step is to identify the properties to be modified,
and to formulate them with the help of the DMM property editor. The property
checker then generates a set of rules and a start graph, from which the GROOVE
generator will compute the transition system. Next, the GROOVE model checker
is utilized to verify whether the properties hold on the computed transition
system (for the example of figure 1, the whole procedure took 13.7 seconds). The
result of the verification process can then be used by the modeler to improve her
model.

6 Conclusion

In this paper we have shown how to use dynamic meta modeling for 1) defining
a semantics for a modeling formalism based on a given meta model, and 2)
carrying out an analysis on the resulting semantics. As application, we used
UML Activities which pose a particular challenge for semantics definitions due
to their traverse-to-completion behavior introduced in UML 2.0. For the analysis,
we have chosen a general quality criterion (soundness) for workflows which are
a typical modeling domain for UML Activities. As a result, we now have a tool
chain which allows for the automatic analysis of soundness for workflows (using
the GROOVE toolset for the generation of the transition system as well as for
model checking).

Related work. There have been several apporaches to define a formal semantics
for UML Activities. Störrle et al. [20, 21, 5] try to use Petri nets as the semantic



domain for Activities: they conclude that due to the traverse-to-completion se-
mantics introduced in UML 2.0, a mapping from Activities into Petri nets is not
possible. Eshuis [22] translates Activity Diagrams from UML 1.5 into the input
language of the model checker NuSVM [23], giving Activities a statechart-like
semantics as stated by the UML 1.5 specification, and uses that semantics for
verification of certain properties. Similarly, [6] and [7] do not treat UML 2.0
Activities, but their 1.5 predecessors.

Our approach is different to the ones described above in two ways: first, we
use DMM to define the dynamic semantics of UML Activities. The resulting
specification is formal and easily understandable and can therefore not only be
used for automatic analysis of models at design-time, but also as reference for
advanced language users. Note that our specification implements the traverse-
to-completion concept for token flow as suggested by the UML 2.0 specification.

Second, our analysis technique for DMM-based semantics allows to easily
formulate requirements on the models under consideration: all needed is an un-
derstanding of UML object diagrams as well as a basic knowledge in CTL. For
instance, to make sure that a certain object structure does never occur when
executing a model, that object structure is formulated as an object diagram
which serves as the pre- and the postcondition of a DMM rule R (as described
in section 4). Using a basic CTL construct, the whole requirement can then be
formulated like this: AG(NOT R).

Outlook. Since DMM can be used as a semantics specification technique for every
visual modeling language based on meta-models, we plan to explore different
applications of the described analysis technique. First, the integration of different
languages will be explored, e.g. for consistency checks. Second, we are interested
in the definition of domain specific languages as extensions of already existing
languages. In this area, we plan to use our analysis technique to ensure that
extensions of languages describing behavior do not break the behavior of the
base languages.



References

1. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta-Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML.
In Evans, A., Kent, S., Selic, B., eds.: UML 2000 - The Unified Modeling Language,
Berlin, Springer-Verlag (October 2000)

2. Hausmann, J.H.: Dynamic Meta Modeling. PhD thesis, University of Paderborn
(2005)

3. OMG: Model Driven Architecture. http://www.omg.org/mda/
4. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph

Grammars and Computing by Graph Transformation, Volume 2: Applications,
Languages and Tools. World Scientific Publisher (1999)

5. Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities. In: VL/HCC, IEEE
Computer Society (2004) 235–242

6. Bolton, C., Davies, J.: On Giving a Behavioural Semantics to Activity Graphs. In:
UML 2000 - Online proceedings. (2000)

7. Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML Activity
Diagrams. In Rus, T., ed.: AMAST. Number 1816 in LNCS (2000) 293–308

8. Hausmann, J.H., Störrle, H.: Towards a Formal Semantics of UML 2.0 Activities.
Software Engineering 2005 P-64 (2005) 117–128

9. van der Aalst, W.: Verification of Workflow Nets. In: ICATPN ’97: Proceedings
of the 18th International Conference on Application and Theory of Petri Nets,
London, UK, Springer-Verlag (1997) 407–426

10. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In
Pfaltz, J.L., Nagl, M., Böhlen, B., eds.: AGTIVE. Volume 3062 of Lecture Notes
in Computer Science., Springer (2003) 479–485

11. Clarke, E., Emerson, E., Sistla, A.: Automatic Verification of Finite State Con-
current Systems Using Temporal Logic Specifications: A Practical Approach. In:
Conference Record of the Tenth Annual ACM Symposium on Principles of Pro-
gramming Languages, ACM (1983) 117–126

12. van der Aalst, W., van Hee, K.: Workflow Management - Models, Methods, and
Systems. The MIT Press (2002)

13. Object Management Group: UML Specification V2.0. http://www.omg.org/

technology/documents/modeling_spec_catalog.htm (2005)
14. Object Management Group: The MOF Specification. http://www.omg.org/

cgi-bin/doc?formal/00-04-03 (2004)
15. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The Category

of Typed Graph Grammars and its Adjunctions with Categories. In Cuny, J.E.,
Ehrig, H., Engels, G., Rozenberg, G., eds.: TAGT. Volume 1073 of Lecture Notes
in Computer Science., Springer (1994) 56–74

16. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In
Valmari, A., ed.: Model Checking Software (SPIN). Volume 3925 of Lecture Notes
in Computer Science., Springer-Verlag (2006) 299–305

17. Kindler, E., van der Aalst, W.: Liveness, Fairness, and Recurrence in Petri Nets.
Inf. Process. Lett. 70(6) (1999) 269–27

18. Soltenborn, C.: Analysis of UML Workflow Diagrams with Dynamic Meta Model-
ing techniques. Master’s thesis, University of Paderborn (2006)

19. Rensink, A.: GROOVE: A Graph Transformation Tool Set for the Simulation and
Analysis of Graph Grammars. Available at http://www.cs.utwente.nl/~groove

(2003)



20. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities.
In Liggesmeyer, P., Pohl, K., Goedicke, M., eds.: Software Engineering. Volume 64
of LNI., GI (2005) 117–128

21. Störrle, H.: Semantics and Verification of Data Flow in UML 2.0 Activities. Electr.
Notes Theor. Comput. Sci. 127(4) (2005) 35–52

22. Eshuis, R.: Symbolic model checking of UML Activity diagrams. ACM Trans.
Softw. Eng. Methodol. 15(1) (2006) 1–38

23. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An Opensource Tool for Symbolic Model
Checking. In Brinksma, E., Larsen, K.G., eds.: CAV. Volume 2404 of Lecture Notes
in Computer Science., Springer (2002) 359–364


