
Verifying Distributed, Event-Based Middleware
Applications Using Domain-Specific

Software Model Checking?

L. Ruhai Cai, Jeremy S. Bradbury, and Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada

{cai,bradbury,dingel}@cs.queensu.ca

Abstract. The success of distributed event-based infrastructures such
as SIENA and Elvin is partially due to their ease of use. Even novice
users of these infrastructures not versed in distributed programming can
quickly comprehend the small and intuitive interfaces that these systems
typically feature. However, if these users make incorrect assumptions
about how the infrastructure services work, a mismatch between the in-
frastructure and its client applications occurs, which may manifest itself
in erroneous client behaviour. We propose a framework for automatically
model checking distributed event-based systems in order to discover mis-
match between the infrastructure and its clients. Using the SIENA event
service as an example, we implemented and evaluated our framework by
customizing the Bandera/Bogor tool pipeline. Two realistic Java appli-
cations are implemented to test and evaluate the framework.

1 Introduction

The notion of an event has established itself as a successful communication and
integration mechanism. In modern, object-oriented systems, events are often
present on the language-, component-, and middleware-level. For instance, events
are indispensable for GUI programming, allow the easy customization of frame-
works such as Eclipse though “plug-ins” that implement some “EventListener”
interface, provide the basis for the implementation of many design patterns (e.g.,
the model-view-controller and observer patterns), and are an important means
of communication in many object-oriented middleware infrastructures such as
CORBA, Elvin, and Siena. Events even form a central ingredient to the model
of computation underlying UML 2 [17].

In this paper, we address the challenge of verifying applications that have
been built on top of a distributed, event-based infrastructure. The analysis of
these kinds of system is necessary, because clients are often concurrent which
increases the complexity and the likelihood of unwanted behaviour. Moreover,
an application running on top of an event-based infrastructure will only function
? This work was supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC)

2 L.R. Cai, J.S. Bradbury, J. Dingel

correctly if it uses the services of the infrastructure appropriately and does not
make any incorrect assumptions on how the service works. Despite the complex-
ity of their underlying implementation, distributed event-based infrastructures
typically have a small and intuitive interface. Unfortunately, the intuitive nature
of the interface can be misleading. This observation is supported by one of the
authors of the distributed event-based infrastructure SIENA [4]:

“...people make a lot of assumptions on the order in which they will
receive events. In other words, they program their applications with a
synchronous communication model in mind, and end up getting weird
results when events queue up and get delivered in an unexpected order.”

For instance, SIENA clients may assume that events are delivered in the same
order in which they have been sent, or that they will never receive an event
to which they have unsubscribed. In reality, SIENA is considered a best-effort
service and does not maintain the order of events. Therefore, clients using SIENA
must be designed and implemented accordingly [5]:

“...the implementation of SIENA must not introduce unnecessary delays
in its processing, but it is not required to prevent race conditions induced
by either the external delay or the processing delay. Clients of SIENA
must be resilient to such race condition; for instance, they must allow
for the possibility of receiving a notification for a canceled subscription.”

The goal of our research is to develop a framework to discover if clients
make incorrect assumptions about the event service and if a mismatch between
the service and its clients has occurred that prevents the overall application
from behaving as desired. Unfortunately, it can be very difficult to discover this
kind of architectural mismatch and to determine that, for instance, the clients
are not robust enough to handle possible race conditions. The main reasons
include: First, clients are often concurrent which can render conventional testing
methods insufficient. Second, the distributed nature of these systems prevents the
straight-forward application of more sophisticated quality assurance techniques
such as randomized testing, model checking, or static analysis. For instance, to
be able to analyze a single client its environment has to be modeled. However,
the construction of a correct and adequate environment model typically is quite
difficult. Third, implementations of middleware infrastructures are large and
complicated enough that the automatic extraction of a model is not feasible.

Our approach to analyzing distributed event-based systems leverages the
system architecture to split the analysis into two smaller tasks. In one task, we
summarize the behaviour of the infrastructure services with a manually created
finite-state machine model and verify that the clients function correctly when
composed with this model. In the resulting system, communication between
distributed clients via the event service is replaced by message-passing between
parallel threads. Automatic model extraction and optimization are used as much
as possible to ensure that the resulting model is accurate and tractable. In the
second task, we verify that the implementation of the event infrastructure con-
forms to the model. In this paper, we focus on the first task and leave the second

Verifying Event-Based Applications Using Model Checking 3

for future work. In particular, we suggest to accomplish the first task by means
of a semi-automatic framework that leverages the increasing power, maturity,
availability, and customizability of software model checkers.

To prove the viability of the framework, we implemented it for use with the
SIENA event service. A customized version of the Bandera/Bogor tool pipeline is
used for model extraction, optimization, and analysis. While the default version
of the pipeline provided most of the required functionality, the model extraction
phase had to be customized to allow for the automatic integration of different
event service/infrastructure models. Moreover, the Indus slicer and the Bogor
model checker were customized.

Model checking has already been suggested as an analysis technique for event-
based systems using the implicit-invocation architecture [10, 1]. However, the
scope of this previous work was limited to systems with centralized event services
and did not attempt to analyze realistic distributed event services. Moreover, the
systems analyzed by previous work were idealized examples while our work is
applied directly on actual implementations. A third contribution of our work
is the application of domain-specific software model checking techniques and a
detailed description of the customizations necessary for using a state-of-the-art
software model checker.

We will first provide a description of distributed event-based systems and
the Bandera/Bogor pipeline in Section 2. In Section 3, we outline our conceptual
framework before describing an implementation of the framework for the SIENA
event service using the Bandera/Bogor model checking pipeline. In Section 4,
we evaluate our implementation using a chat program and a peer-to-peer file
sharing system. In Section 5, we discuss related work and in Section 6 we provide
conclusions and future work.

2 Background

2.1 Distributed event-based systems

There are two basic kinds of clients in an event-based system: publishers and
subscribers. Publishers publish events or notifications, to the event service, and
subscribers subscribe with the event service to the type of events they are inter-
ested in. When the event service receives a notification from a publisher, it goes
through all subscriptions and dispatches the event to those who have subscribed
to it. Publishers announce events without knowing the identity of the subscriber
components and do not wait for any response from subscribers. Therefore, event-
based systems allow for anonymous, asynchronous communication which in turn
provides loose coupling between client components and thus ensures maintain-
ability.

There are three main types of distribute event-based systems [15]: co-located
middleware – the event service is in the same address space as the clients (e.g.,
mSECO [11]); single separated middleware – the event service is located on a sin-
gle machine while the clients are distributed on other machines (e.g., CORBA);

4 L.R. Cai, J.S. Bradbury, J. Dingel

multiple separated middleware – clients and event service are distributed and ex-
ecute on different machines or address spaces (e.g., SIENA). While our approach
could be applied to all three types of system, we chose SIENA because both the
clients and middleware are distributed making it a challenging architecture in
which to discover mismatch.

SIENA In SIENA, the event service is implemented with one or more servers
connected in a hierarchical, acyclic peer-to-peer, generic peer-to-peer or hybrid
topology. Events in a SIENA system are attribute-value pairs. A client can sub-
scribe to an event by sending a subscription, which contains the filter patterns
that specify the types of events it wants to receive. A filter pattern is a set of (at-
tribute, operator, value) triples. The operator is normally a binary comparison
operator, such as “=”, “>”. Each triple specifies the value range for an attribute
and all triples in a filter are combined conjunctively. The event message noti-
fications and filters are used in SIENA to publish events, subscribe to a given
filter, unsubscribe from a filter, advertise intent to generate events that match a
filter and to unadvertise the publishing of events that will match a filter. In our
work we are only interested in the publication and subscription of events and
do not handle advertisements. As discussed earlier, client application developers
often make incorrect assumptions regarding the behaviour of the SIENA event
service. The most prominent incorrect assumptions appear to be:

1. “A client will not receive notifications to which it is not subscribed.”
2. “Notifications will be delivered in the order in which they have been sent.”
3. “Notifications are never lost.”

Later in this paper, we will focus on discovering mismatch due to the first two
assumptions in our chat program and peer-to-peer file sharing system.

2.2 Domain-specific model checking with Bandera/Bogor

The Bandera/Bogor tool pipeline is a set of tools for automatically extracting
finite-state models from Java source code for model checking [7, 16]. The pipeline
has an open structure and the order of the tools in the pipeline is determined
in a configuration file by specifying that the output of one tool forms the in-
put of the next tool in the pipeline. Tools can easily be added to or removed
from the pipeline by modifying the configuration file. The main tools in the
Bandera/Bogor tool pipeline are:

– Soot: translates Java class into Jimple, an intermediate representation suit-
able for optimization.

– Indus: slices the Jimple code.
– J2B: transforms the Jimple code into BIR, the input language for the model

checker Bogor.
– Bogor: model checks the BIR models.

Verifying Event-Based Applications Using Model Checking 5

Conceptual
Framework for
Architectural

Mismatch

Event Service violates property
(Architectural Mismatch)

Event Service satisfies property
(No Architectural Mismatch)

Client Implementations (1..N)

Event Service Model (ESM)

Expected Client Behavior Property
(e.g., global invariant, assertion)

Fig. 1. Conceptual Framework

This pipeline is ideal for our research because both the transformation from
Java to BIR and the model checking using Bogor is highly flexible can easily be
customized to better support SIENA programs written in Java. The J2B tool,
for instance, allows the user to add arbitrary BIR code to the model and to
replace portions of the automatically generated BIR code. Bogor, on the other
hand, can be extended with new primitive types, expressions and commands to
provide better support for the modeling of different domains. Moreover, Bogor
has a highly modular, open architecture which allows, for instance, new search
algorithms or optimizations to be swapped in. We will discuss our specific cus-
tomization of the Bandera/Bogor tool pipeline in Section 3.1.

3 Conceptual framework

The input and output required and produced by our conceptual framework is
given in Figure 1. Specifically, our framework requires three input artifacts:

1. Client implementations: we use actual implementations of client components
written in a program language like Java.

2. Event service model (ESM): The ESM is assumed to be formulated in the
input language of the model checker employed in the framework. Moreover,
the ESM is assumed to correctly capture the behaviour of the event infras-
tructure from a client’s perspective. At the moment, the framework offers
no validation to ensure the implementation of the infrastructure actually
conforms to the ESM.

3. Expected client behavior properties: A formal specification of a property that
some or all of the clients need to satisfy. Only incorrect client assumptions
that cause this property to fail will lead to mismatch that our framework
is able detect. While property specifications could be provided using any
formalism that the model checker understands (e.g., LTL, CTL, Buechi Au-
tomata), in this paper, we will assume that the specification is given as a
global system invariant or an assertion.

The conceptual framework will take the client component implementations
and transform them into the input language for model checking. During the
transformation, common optimizations include slicing and various abstraction
techniques such as data and predicate abstraction are used to reduce the state
space. The client component models produced via transformation are integrated
with the manually created event service model (ESM). The combined system

6 L.R. Cai, J.S. Bradbury, J. Dingel

model (client models + ESM) is input to a model checker that verifies the ex-
pected client behavior properties and reports any violations together with a
counter example. The conceptual framework allows client applications to be
checked for different incorrect assumptions through the use of different ESMs.
For instance, to see if the correct behaviour of the clients depends on the preser-
vation of the event order, an ESM is built which does not preserve event order.
To determine if a client is resilient to message loss, an ESM is built in which
messages can get lost.

It is important to note the advantages and disadvantages of using a manually
created ESM. A clear disadvantage is that the conformance of the infrastructure
to the ESM is not checked. If the ESM does not reflect the behaviour of the
infrastructure, our analysis may provide spurious results. Moreover, user effort
is required to construct the ESM. However, despite the availability of automatic
model extractors such as Bandera’s J2B tool, the automatic extraction of an
ESM suitable for model checking from the infrastructure code is currently not
an option, due to the size, complexity and typically distributed nature of event
infrastructures. A manually created ESM, on the other hand, will be consid-
erably more succinct. Moreover, one ESM could be used for checking several
applications so that the cost of building it can be amortized across multiple
uses. In conclusion, we feel that a manually created ESM is the best option, and
note conformance checking between ESM and the infrastructure implementation
as an important direction for future work.

3.1 Example Implementation of Framework using Bandera/Bogor

In this section, we will describe an implementation of our conceptual framework
using a customization of the Bandera/Bogor tool pipeline (see Figure 2). To
test the feasibility of the framework, we chose Java client applications that use
SIENA as the underlying distributed event-based infrastructure.

Client application transformation and optimization. The Java source
code of the client application is translated into a BIR model for model checking
using Soot to translate from Java to Jimple, Indus to slice and optimize the Jim-
ple representation, and J2B to translate the sliced Jimple into the BIR modeling
language.

Event service model creation. The behaviour of the SIENA event service
is captured by manually created BIR models (ESMi). The SIENA ESM (see
Figure 3) is quite small (less than 100 LOC of BIR code) and simple. It uses
two data structures to handle the events, a communication channel between the
client and the service model, and an event set to store the events at the server
before they are dispatched. As we discussed in Section 1, SIENA event service
does not guarantee the order of dispatching of events. By using an event set,
we will be able to exhaustively check all dispatching orders of the events. Since
events will be removed from the set in every possible order, a regular FIFO queue
is sufficient to simulate the communication channel. Bogor extensions are used to
implement the event set and the message queue. The SIENA ESM is developed
as an active thread that waits for the arrival of events and handles them based

Verifying Event-Based Applications Using Model Checking 7

J2B Tool

Bandera/Bogor PipelineDistributed Event-Based System
Implementation (Java)

Client

SIENA Event Service

Distributed Event-Based System Model

Client
Model

Client
Model

ESM

. . .

. . .

Soot Compiler Tool
(Java Jimple)

Bogor Model
Checker

1 n

1

i

Indus Tool
(Jimple Sliced Jimple)

abstract Translation Phase
(Sliced Jimple BIR)

Client
Model

Client
Model. . .

1 n

Merge Phase

Expected Client Behavior
Property (Global System
Invariant or Assertion)

. . .

ESM Library

Event Service Model (ESM)m

Event Service Model (ESM)i

Event Service Model (ESM)1

. . .

. . .

Clientn

Fig. 2. Software model checking framework for SIENA

Fig. 3. Event Service Model (ESM) and Client Model Interaction for SIENA

8 L.R. Cai, J.S. Bradbury, J. Dingel

function ThinClient.subscribe (Pattern p) {
loc loc0: invoke initialize()

goto loc1;
loc loc1: do invisible {

sub := new Event;
sub.pattern := p.pattern;
sub.type := EVENT TYPE.SUBSCRIBE;
Set.add<Event>(events, sub);

} return;
}

Fig. 4. Subscribe method in the event service model

on their types. The current implementation of the model only supports three
types of event operations: subscribe, unsubscribe and publish. Note that in our
examples, we do not check if clients are resilient to message loss. To do that, an
ESM would have to be created in which message can get lost. Recall that the
ESM for SIENA is independent of the client applications so the same ESM can
be reused to check for mismatch in all SIENA client applications.

Client model and ESM integration. The integration of the automatically
generated client application model and the ESM to form a system model happens
in the J2B tool. Recall that that the main function of the J2B tool is to translate
Jimple code into BIR models. After the BIR models are generated for the client
application, the J2B tool allows the user to replace methods and threads in the
models with user specified methods or threads. It also allows the user to add
additional BIR extensions, global variables, methods and threads to the existing
BIR model. The SIENA ESM is added as a BIR addition. In order to integrate
the client and service models, the methods on the client side that handle the
communication between the client and the service need to be replaced. The
SIENA implementation provides a standard ThinClient class as an interface for
the SIENA client to exchange events with the SIENA event service. Thus we
only need to replace all the methods in the ThinClient class. As the ThinClient
is standard, the replacement can be reused for different client applications with
minor customization. Figure 4 shows the subscribe method in the ESM that will
be invoked instead of the subscribe method in SIENA when Bogor carries out
its analysis. A large portion of the code of the ThinClient class handles low level
socket communication. As all methods of the ThinClient class will be replaced,
there is no need to translate this code into BIR. Thus only method stubs are
kept for the ThinClient class.

Model and property integration. A property that a client application is
expected to satisfy is provided as an assertion or global invariant. On the one
hand, an assertion can be inserted manually into the BIR code at the appropriate
place. Typically, we want to check if the behaviour carried out in response to
the receipt of a notification is correct. Therefore, the assertion is often placed
in the notify() method of a client (see Figure 3). which is called whenever the
client receives a notification from the event service. On the other hand, a global

Verifying Event-Based Applications Using Model Checking 9

Example program # pro-
cesses

Java
classes

Java
LOC

average #
BIR LOC

average #
relevant
BIR LOC

Chat program 3 11 906 8974 1815
Peer-to-peer file sharing system 3 16 1188 8133 2426

Table 1. A comparison of the Java source and BIR model sizes for our examples

invariant is inserted into an active monitor thread that is added to the integrated
client and service models.

Model checking the system model. The combined client model and ESM
is checked by the Bogor model checker with respect to the assertion or global
property invariant. We will discuss specific model checking results as well as the
relationship between property failures and architectural mismatch in the next
section during our evaluation of two real Java applications that use the SIENA
event service.

4 Evaluation

To evaluate the effectiveness of our implementation of the framework two re-
alistic examples are provided – a chat example and a peer-to-peer file sharing
system. Table 1 indicates the size of each example implementation as well as the
size of the BIR models. For each example the average BIR model size is given
which correspond to the average of the optimized model sizes for each property.
Additionally, the average relevant model size column refers to the average por-
tion of the BIR model that corresponds to actual client source code and excludes
the details related to included Java library files.

4.1 Chat program

Description. In this program, there are an arbitrary number of distributed
clients, which can subscribe, unsubscribe, create and close chat rooms, and post
messages to and display messages from the chat rooms. The system uses the
SIENA event service for message exchange. The basic events in the system are
SubscribeChatRoom, UnSubscribeChatRoom, CreateChatRoom, CloseChatRoom
and PostMessage. Each client acts as both a publisher and a subscriber and
maintains a list of all active chat rooms.

Our chat program has a GUI interface to display posted messages for each
chat room. Unfortunately, the current version of Bandera does not support the
Java Swing library, which is used to build the GUI for this program. However,
issues of architectural mismatch in SIENA client applications like the chat pro-
gram require analyzing and model checking the interaction between the client
and the SIENA event service not the GUI interface. Therefore, for the pur-
poses of our analysis we separate the GUI from the rest of the application.To

10 L.R. Cai, J.S. Bradbury, J. Dingel

facilitate the removal of the GUI code, we assume hat the client has been imple-
mented using the MVC (Model-View-Controller) architecture, which provides a
clean separation between the view (GUI) component and the model and control
part of the system. Recall that transforming client applications into client BIR
models in Bandera requires as input the client application byte code. Thus, the
application must compile even with the GUI code removed. A skeleton of the
GUI classes needs to be kept with all method body and the Java Swing class
names removed. This is a manual preprocessing step that is done prior to using
our framework. Additionally, some of the skeleton GUI classes are replaced with
BIR code during the model integration to simulate any interaction between the
GUI and the controller that is required during model checking.

Analysis. For the chat program we consider the analysis of two properties both
of which demonstrates architectural mismatch between chat client applications
and the SIENA event service.

c1 : ChatClient s: SIENA c2: ChatClient

subscribe
publish(create)

notify(close)
publish(close)

notify(create)

(create, close)

Fig. 5. Counter example for
Chat Rooms Close Correctly

c1 : ChatClient s : SIENA c2 : ChatClient

subscribe(room1)
publish(room1)

notify(room1)

publish(room2)

publish(room1)
subscribe(room2)

notify(room2)

notify(room1)

unsubscribe(room1)

Fig. 6. Counter example for Dis-
played Msgs Always for Current-
Chat Room

Property 1 : Chat rooms are always closed properly. In this case, the client
creates a chat room and then closes it. We use a set to store the list of chat
rooms which the client maintains. When a chat room is created, the chat room
number is added to the list, and when it is closed, it is removed from the list. In
this example, the room list is empty at the beginning and there is only one chat
room being created and closed. Therefore, the set will be empty if the chat room
is closed properly. The property is expressed as an assertion, which is inserted
into the notify() method of the client:

assert allEventsDelivered -> chatRoomList.isEmpty();

where -> denotes implication. The analysis of the chat program with this as-
sertion using our framework shows that the assertion fails because the event
service does not preserve event order. The CreateChatRoom and RemoveChat-
Room events are not commutative. If the events are delivered in the right order,
a chat room will be created and closed properly. But if the order is reversed,

Verifying Event-Based Applications Using Model Checking 11

as shown in Figure 5, the chat room remains open after these two events are
delivered. In conclusion, the correct functioning of the operation of closing chat
room relies on an implicit assumption (preservation of message order) which is
not satisfied by the SIENA event service.

Property 2 : Displayed messages are always for the current chat room. There
are two steps involved in switching chat rooms: unsubscription from the current
chat room and subscription to a new chat room. This property is expressed as
an assertion which is again located in the client’s notify() method:

assert (PostMessage.roomName == currentRoomName);

This assertion states that the room name of the incoming message is the cur-
rent room name and is evaluated whenever a message is received. The analysis
using our framework shows that this assertion fails with a counter example as
shown in Figure 6. Since it is possible in SIENA for the client to receive unsub-
scribed events, it is possible for the client to receive messages for the previous
chat room after switching to a new chat room. If these messages are not pro-
cessed properly, as is the case in our example, they might be displayed in the
wrong chat room.

4.2 Peer-to-peer file sharing example

Description. In the paper [13], the author shows how to use SIENA to imple-
ment a file-sharing service similar to Gnutella – a well-known peer-to-peer file
sharing service. This example was also used in other research on compositional
reasoning of descriptions of architectural middleware [3]. Following the ideas
in [13], we have implemented a prototype of a peer-to-peer file sharing service
as a client application of SIENA. In this prototype, a client can play two roles:
file provider (subscriber) and query originator (publisher). There are three mes-
sage types, which are mapped to the communication events of the underlying
event-based system. First, Offer messages are sent out by file providers as a
subscription of queries. An offer message describes the files located on a host.
Second, Query messages are publications that a query originator sends to de-
scribe the files it is interested in with patterns. A query message publication will
be delivered by the event service to all file providers who offer the files matching
the patterns. Third, Response messages are generated by the file provider and
sent back to the query originator via the event service. A response message is
actually a notification that contains the detailed description of the files, which
match the query as well as a return address, which will be used by the query
originator.

Similar to the chat program, the peer-to-peer file sharing example has a GUI
interface, that we have implemented using the MVC pattern. Also, since we are
mainly concerned with the mismatch between the client and the SIENA event
service, the actual file sharing portion of the program is irrelevant and thus not
implemented.

12 L.R. Cai, J.S. Bradbury, J. Dingel

Analysis. We evaluate potential mismatch between SIENA and the peer-to-
peer client applications by evaluating two properties.

Property 1 : The displayed responses are for the current search. This property
is an assertion located in the notify() method of the query originator:

assert (currentQuery.pattern == Notification.pattern);

The model checking result shows that this assertion fails. When the query
originator starts a query, it sends out the query and subscribes to the response
from the file provider. The user of a query originator may choose to stop re-
ceiving responses to the current query and start a new query by unsubscribing
the old response and sending out a new query (as shown in Figure 7). With
SIENA, a query originator may receive unsubscribed responses. However, due
to architectural mismatch, the query originator in this example assumes that no
unsubscribed responses will be received and that all received responses will be
displayed as the responses for the current query.

Property 2 : No queries are received after a file provider revokes the offer.
This property is expressed with the following assertion in the notify() method of
the file provider:

assert offerRevoked(p) -> (Notification.pattern != p);

Model checking using the framework determines that the assertion is violated
with the counter example shown in Figure 8. Consider a file provider that stops
sharing certain files by sending a revokeOffer(pattern) event (i.e., an unsubscrip-
tion). In our example the SIENA event service sends out a response every time
a query is received assuming no queries for the offer will be received after it is
revoked. But since this is not always the case files can still be shared after being
revoked.

: FileProvider : SIENA : QueryOriginator

offer(f1,f2)

query(f1)

response(f1)

response(f2)

query(f2)

query(f1)

subscribe(f1)

unsubscribe(f1)

query(f2)

subscribe(f2)

response(f1)

response(f2)

Fig. 7. Counter example for Dis-
played Responses For Current Search

: FileProvider : SIENA : QueryOriginator

offer(f1)
query(f1)

query(f1)
subscribe(f1)

response(f1)
response(f1)

revokeoffer(e1)

Fig. 8. Counter example for
No Queries After Revoke Offer

4.3 Summary

We have successfully used our framework to identify architectural mismatch be-
tween two realistic client applications and the SIENA event service. The counter

Verifying Event-Based Applications Using Model Checking 13

Global system invariant or assertion Result Time # of Reason for
(h:m:s:) states mismatch

Chat program
Chat Rooms Close Correctly False 00:25:53 67291 Reordering
Displayed Msgs Always For Curr Room False 01:23:23 222566 Unsubscription

Peer-to-peer file sharing system
Received Responses For Current Search False 00:00:43 2379 Unsubscription
No Queries After Revoke Offer False 00:01:08 3008 Unsubscription

Table 2. Anaylsis results for all global system invariants and assertions

examples produced were used to locate the bugs and correct the programs. Ta-
ble 2 summarizes the results of our analysis together with some relevant metrics.
All of the timing results were achieved on a Linux system with 5 GB of memory
and four 3 GHz processors.

One drawback to our current approach is limitations of applying it to GUI-
basd event systems. For both of our GUI examples a limited amount of manual
modification of either the input Java code or the the generated BIR model was
required and we have not considered how to check applications that do not use
the MVC pattern. Moreover, our SIENA model does currently not support the
advertise and unadvertise operations and complex filters available in SIENA.
Finally, state space explosion only allowed minimal configurations with only 3
processes to be analyzed. Nonetheless, we believe that we have presented a viable
approach to the discovery of architectural mismatch in distributed event-based
system implementations and that most of the limitations mentioned above can
be mitigated or even removed with further research.

5 Related work

Several existing projects have focused on model checking event-based systems
using publish/subscribe architectures [10, 1, 12, 21]. The work started by Gar-
lan, Khersonsky and Kim [10] and later extended by Bradbury and Dingel [1]
focuses on model checking systems with a centralized event services, not dis-
tributed. Further extensions to this work have allowed for the model checking
of event systems written in a special purpose language, IIL [21]. The Cadena
project uses an approach to model checking systems that use CORBA [12].
Similar to our project, Cadena uses Bogor as a model checker, however, unlike
our work Cadena requires manual specification of component behavior. Another
related project by Caporuscio et al. focuses on compositional model checking
of middleware specifications but does not consider middleware implementations
which is the focus of our paper [3]. Other related work in the area of event-based
systems includes a semi-automatic approach to the analysis of GUI systems us-
ing Bandera/Bogor [8], and several approaches to the analysis of distributed
Java that use remote method invocation [18, 6]. Another related project in the

14 L.R. Cai, J.S. Bradbury, J. Dingel

area of model checking software architectures is CHARMY which allows for the
specification of UML-like diagrams for system design and verification [14].

Previous work on discovering architectural mismatch has primarily focused
on specification-based approaches. For example, discovering mismatch using ar-
chitecture description languages (ADLs) [19, 20]. Our approach differs from this
work in that we allow for the discovery of mismatch in existing applications and
do not require the manual specification of all component and connector assump-
tions, instead we require only a global system invariant or assertion. and the
manual construction of the ESM. Our approach does not require specification of
any of the client applications.

6 Conclusions and future work

In this paper, we have proposed an approach for the discovery of architectural
mismatch between an event-based system and its clients based on invalid as-
sumptions the client makes about the behaviour of the event service. We have
described a proof-of-concept implementation of this approach that targets the
Java version of the SIENA event service and uses a customized version of the
Bandera/Bogor tool pipeline. Finally, we have demonstrated the viability of the
approach by evaluating our implementation on several case studies – a chat
program and a file-sharing application.

Our implementation leverages the increasing maturity of software model
checking tools in general and the customizability and power of the Bandera/Bogor
tool pipeline in particular. The biggest drawback of our approach is its reliance
on a manually created event service model that correctly captures the relevant
aspects of the behaviour of the event service. Currently, the conformance of the
event service to its model is not checked, but it is conceivable that ideas from
model-based testing (e.g., [2]) or conformance checking (e.g., [9]) could be used
to address this issue. Additional directions for future work include: increase the
degree of automation of the framework, and evaluation of the framework on
other event-based infrastructures such as CORBA.

7 Acknowledgments

We would like to thank the members of the SAnToS Laboratory at Kansas State
University for support in customizing the Bandera/Bogor tool pipeline.

References

1. J. S. Bradbury and J. Dingel. Evaluating and improving the automatic analysis
of implicit invocation systems. In Proc. of ESEC/FSE 2003, pages 78–87, Sept.
2003.

2. C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Model-based testing of object-oriented reactive systems with Spec
Explorer. Technical report, Microsoft Research, 2005.

Verifying Event-Based Applications Using Model Checking 15

3. M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification of
middleware-based software architecture descriptions. In Proc. of ICSE 2004, pages
221–230, 2004.

4. A. Carzaniga. Personal e-mail correspondance with J. Dingel. Feb. 9, 2005.
5. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-

area event notification service. ACM Trans. on Comp. Sys., 19(3):332–383, Aug.
2001.

6. T. Cassidy, J. Cordy, T. Dean, and J. Dingel. Source transformation for concur-
rency analysis. In Proc. of the Int. Work. on Language Descriptions, Tools and
Applications (LDTA 2005), Apr. 2005.

7. J. C. Corbett, M. B. Dwyer, J. Hatcliff, et al. Bandera: extracting finite-state
models from java source code. In Proc. of ICSE ’00, pages 439–448, 2000.

8. M. B. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing interaction orderings
with model checking. In Proc. of ASE 2004, pages 154–163, 2004.

9. C. Fournet, C. Hoare, S. Rajamani, and J. Rehof. Stuck-free conformance. In Proc.
of the Int. Conf. on Computer Aided Verification (CAV 2004), Jul. 2004.

10. D. Garlan, S. Khersonsky, and J. Kim. Model checking publish-subscribe systems.
In The Int. SPIN Work. on Model Checking of Software (SPIN 2003), May 2003.

11. M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Filtering and scalability in
the ECO distributed event model. In Proc. of the Int. Symp. on Soft. Eng. for
Parallel and Distributed Systems (PDSE ’00), page 83, 2000.

12. J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath. Cadena: an in-
tegrated development, analysis, and verification environment for component-based
systems. In Proc. of ICSE 2003, pages 160–173, May 2003.

13. D. Heimbigner. Adapting publish/subscribe middleware to achieve Gnutella-like
functionality. In Proc. of the ACM Symp. on Applied Computing (SAC ’01), pages
176–181, 2001.

14. P. Inverardi, H. Muccini, and P. Pelliccione. Charmy: an extensible tool for archi-
tectural analysis. In Proc. of ESEC/FSE-13, pages 111–114, 2005.

15. R. Meier and V. Cahill. Taxonomy of distributed event-based programming sys-
tems. The Computer Journal, 48(5):602–626, 2005.

16. Robby, M. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular soft-
ware model checking framework. In Proc. of ESEC/FSE-11, pages 267–276, Sept.
2003.

17. B. Selic. On the semantic foundations of standard uml 2.0. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems (SFM-
RT 2004), pages 181–199. Springer, 2004.

18. S. D. Stoller and Y. A. Liu. Transformations for model checking distributed
Java programs. In Proc. of Int. SPIN Workshop on Model Checking of Software
(SPIN’01), 2001.

19. S. Uchitel and D. Yankelevich. Enhancing architectural mismatch detection with
assumptions. In Proc. of the Int. Conf. and Work. on the Engineering of Computer
Based Systems, pages 138–146, Apr. 2000.

20. B. Zhang, K. Ding, and J. Li. An XML-message based architecture description
language and architectural mismatch checking. In Proc. of Comp. Soft. and Ap-
plications Conf. (COMPSAC 2001), pages 561–566, Oct. 2001.

21. H. Zhang, J. S. Bradbury, J. R. Cordy, and J. Dingel. Using source transforma-
tion to test and model check implicit-invocation systems. Special Issue on Source
Code Analysis and Manipulation, Science of Computer Programming, 62(3):209–
227, Oct. 2006.

