Defining Object-Oriented Execution Semantics
Using Graph Transformations

Harmen Kastenberg*, Anneke Kleppe**, and Arend Rensink

University of Twente
Department of Computer Science
Enschede, The Netherlands
{h. kast enber g, r ensi nk, kl eppeag}@s. ut went e. nl

Abstract. In this paper we describe an application of the theory of
graph transformations to the practise of language design. In particular,
we have defined the static and dynamic semantics of a small but real-
istic object-oriented language (called TAAL) by mapping the language
constructs to graphs (the static semantics) and modelling their effect by
graph transformation rules (the dynamic semantics). This gives rise to
execution models for all TAAL-programs, which can be used as the basis
for formal verification.

This work constitutes a first step towards a method for defining all as-
pects of software languages, besides their concrete syntax, in a consistent
and rigorous manner. Such a method facilitates the integration of formal
correctness in the software development trajectory.

1 Introduction

A widely recognized proposal for combating the maintenance and evolution prob-
lems faced in software engineering is the model driven approach, brought to the
world’s attention by the OMG’s Model Driven Architecture (MDA) framework
[17]. In this approach, models and model transformations are central concepts.
The models are specified in diverse (modeling and programming) software lan-
guages (SLs), and the model transformations define relations between these lan-
guages.

Model transformations are intended to be correctness preserving: they should
not introduce errors or essential changes. This, however, can be guaranteed only
if the meaning of the SLs involved is defined with sufficient precision. Unfor-
tunately, this is often lacking: many SLs have a well-defined syntax but only
an informal semantics, e.g. described by text or, in the case of a programming
language, by a compiler.

The longer-term goal of our research is to define a way in which all aspects
of SLs, besides their concrete syntax, can be defined in a consistent and rigorous

* The author is employed in the GROOVE project funded by the Dutch NWO (project
number 612.000.314).

** The author is employed in the GRASLAND project funded by the Dutch NWO
(project number 612.063.408).

manner. As a common formal foundation we use graphs and graph transforma-
tions, which we believe to be powerful enough to capture all relevant SL aspects.
Furthermore, current research in the field of graph transformations [23] offers
us a large knowledge base of theories ready to apply to our topic. Ultimately,
we plan to develop a meta-language for designing SLs. This meta-language will
enable us to provide semantic definitions of the source and target SLs involved
in a given model transformation on a compatible basis; this in turn will enable
us to precisely formulate and check the requirement of correctness preservation.
We believe these abilities to be essential in realizing the full potential of MDA.

This paper describes the first phase of our research: the formal definition
of both the static and the dynamic semantics of a small but realistic object-
oriented language, called TAAL, using graph transformations. We have defined
our own language because in this way we can avoid dealing with more com-
plex constructs like exception handling and multi-threading. Still TAAL includes
common object-oriented features like inheritance. While formal, we do not leave
this exercise on a theoretical level only: we have developed a parser /analyzer and
used an existing graph transformation tool so as to actually simulate programs.
In fact, all graphs shown in this paper are directly taken from the implemen-
tation. We are confident that we can extend the approach described here to be
applicable to a large category of SLs, including modeling languages and imper-
ative programming languages.

This paper is structured as follows. Sect. 2 gives an overview of our approach
and introduces graph transformations and TAAL. In Sect. 3 we discuss how we
represent and generate the flow of control of a TAAL-program. Sect. 4 then
discusses our main contribution, namely our way of specifying object-oriented
dynamic semantics through an operational definition. We conclude in Sect. 5
with a brief description of the tooling used and some remarks on related and
further work. All steps described in this paper are explained by using a simple
example.

2 Approach

In this work we model object-oriented programs as graphs, and specify their
semantics using graph transformations. The approach we have taken is to define a
small language that nonetheless contains the most relevant concepts from object-
oriented programming languages. This language is called TAAL. We define a
series of transformations that will turn any TAAL-program into a simulation of
its execution.

The transformations are depicted in Fig. 1. The first transformation, from
textual program to Flat Abstract Syntax Graph, actually consists of three trans-
formations. Due to space limitations, we do not discuss the details of these
transformations, two of which are similar to the first steps in a compiler [3].
The interested reader is referred to [13]. The more interesting transformations,
i.e. the flow graph construction and the simulation, involve the application of

graph transformations and will therefore be discussed in more detail. The graph
transformations are carried out in the Groove Tool Set [20].

parsing and flow graph
static analysis Flat construction

Textual program > Abstract Syntax Graph

> Program Graph

simulation

Y
Execution Graph

Figure 1: Overview of the transformation from program to simulation.

During flow graph construction we apply a set of graph transformation rules
to transform a plain graph representing the abstract syntax of the textual pro-
gram, called the Flat Abstract Syntax Graph, into a graph that includes control
flow information. The result of this transformation is called the Program Graph.
The execution of the TAAL-program is simulated by Execution Graphs which
are the result of applying another set of graph transformation rules. These rules
define the dynamic (or execution) semantics of our object-oriented language
TAAL.

Note that the Program Graph and the corresponding Execution Graphs are
at a different level of modelling. This is reflected in Fig. 1 by the use of a vertical
arrow instead of a horizontal one. The Program Graph is a single graph rep-
resenting the static TAAL-program including control flow information, whereas
during simulation the dynamics of the program execution are represented by
a series of Execution Graphs, each of which represents the system state at a
certain point in time.

2.1 The Formalism

After the parsing and static analysis phase, the textual program in Fig. 1 is rep-
resented as a plain graph (the Flat Abstract Syntax Graph), and the subsequent
transformations are driven by sets of graph transformation rules. Such rules are
themselves given as graphs. This will be shown later in this section.

In this paper we use edge-labelled graphs, defined over a global set Lab of
labels, as follows.

Definition 1. A graph G = (V| E) consists of:

— a set V' of vertices (or nodes), and
—aset ECV x Labx V of edges.

The following is a definition of a graph transformation rule.

Definition 2. A graph transformation rule p = (L, R, N') consists of:
— a graph L being the left hand side (LHS) of the rule;
— a graph R being the right hand side (RHS) of the rule;
— a set of graphs N being the negative application conditions (NACs).

The application of a graph transformation rule transforms a graph G, the
source graph, into a graph H, the target graph, by looking for an occurrence of
L in G and then replacing that occurrence of L with R, resulting in H. The role
of the NACs [10] is that they can still prevent application of the rule when an
occurrence of the LHS has been found, namely if there is an occurrence of some
N € N in G that extends the candidate occurrence of L. A precise technical
description of the search for occurrences and the transformation process is given
n [22]; for a more theoretical exposition see [23].

It is important to realize that the application of a graph transformation
rule to a given graph G is non-deterministic in that there may be more than
occurrence of L in GG; but for any particular occurrence, the application is de-
terministic.

Individual graph transformation rules are collected into graph production
systems (GPSs), which as a whole are used to model transformation or com-
putation processes. The application of a GPS comes down to the unscheduled,
non-deterministic application of successive individual rules until a graph is ob-
tained that cannot be transformed any further. Note that this introduces another
level of non-determinism, namely in the choice of rule to be applied. A GPSs
is confluent if it is such that the order of application actually does not make a
difference to the end result.

In this paper we use two GPSs, namely to model the flow graph construction
and simulation steps of Fig. 1. As we will see, the first of these is confluent
whereas the second is deterministic due to the fact that at any stage during the
transformation system, at most one rule is applicable, which then has precisely
one occurrence.

When visualizing graphs and graph transformation rules, we use a shorthand
notation for labelled edges pointing from one node to itself, so called self-edges.
In this shorthand notation we put the label inside the node.

Ezample 1. Fig. 2 (i) depicts a graph transformation rule by showing its LHS and
its RHS. The LHS consists of three nodes and five labelled edges; the RHS con-
sists of three nodes and six labelled edges. Note that self-edges are also counted.
The result of applying this transformation rule is the creation of a flowNext-edge
and the redirection of the flowln-edge. (To be precise, the flowIn-edge in the LHS
graph will be removed and a new flowln-edge will be created.)

In this paper we use a shorthand notation for graph transformation rules by
displaying them as single graphs. The different roles a graph element can have
in the transformation process are distinguished by different coloured shapes:

— thin solid nodes and edges, called readers: they are required to be in the
source graph in order for the rule to apply, and are unaffected by rule appli-
cation, i.e. they are still present in the target graph.

— thin dashed nodes and edges (blue in a coloured print-out), called erasers:
they are required to be in the source graph in order for the rule to apply,
and are deleted by rule application.

— fat solid nodes and edges (green), called creators: they are not required to
be in the source graph, and are created by rule application.

— fat dashed nodes and edges (red), called embargoes (or negative application
conditions): they are forbidden to occur in a graph in order for the rule to

apply.

Fig. 2 (ii) shows the graph transformation rule from Fig. 2 (i) using the
described shorthand notation. Note that this rule does not include negative
application conditions.

‘ ! ; FlowElement : FlowElement
I ! !] -
| flowin 3 ! flowin : : flowin flowin
! Y | > ! o I H { -
! [Expression [«—initExp—{varDecl | 3 ! [Expression [«—initExp 3 H [Expression] INitExp
1 1 .
| ! | ! :
i | v Tlovehext i : flowhext
,, :
(i) L and R separated (i) L and R in one graph

Figure 2: Example of a graph transformation rule.

When using graphs for representing states and graph transformations as state
transitions, applying graph transformations is analogue to creating a transition
system in which the transitions are labelled with the names of the transformation
rules. In Sect. 4 we will show a labelled transition system generated this way
representing the simulation of an example program.

2.2 The Mini Language TAAL

In this section we discuss the mini language TAAL, which incorporates the basic
aspects of many commonly used object-oriented programming languages. For in-
stance, the notions of class, attribute, operation, inheritance, instantiation and
overriding are all present. The meta-model shown in Fig. 3 gives an impression of
the abstract syntax of the language. The driving intuition behind the semantics
is that a TAAL-program has essentially the same meaning as a corresponding
Java-program. An important difference with Java is that the start of the program
is represented by a single start expression. Listing 1 contains a TAAL-program
that will be used as example throughout this paper. More details on the def-
inition of TAAL can be found in [13]. We emphasize that the developed sets
of transformation rules enable simulation of any TAAL-program, not just this
example.

Some elements from Fig. 3 that will be referred to later in this paper are
Program, ObjectType, Operimpl, and VarDecl. The class Program represents the
whole program. The Flat Abstract Syntax Graph of any TAAL-program has ex-
actly one instance of this class. Within a TAAL-program we can declare multiple
data-structures, each being an instance of ObjectType. Such a data-structure may
contain operations (being instances of Operimpl) and fields (being instances of

Program
ExpStat +startExp N 9! A
1 name : String

0.1
+paramTypes +types
{ordered} 0.n 0.n | {ordered}
+returnType 1 Type 1 +type
+owner 0..1__|name : String
ObjectType <<singleton>>
NullType

Signature

1 +signature

0.1

+superType

Primitive Type
+attributes

{ordered}

+operations
0..n {ordered}

+params 0.n
{ordered} 0.n

VarDecl

name : String

+localVars

{ordered} /I\ 0.n
+body +initExp
Expression
1 1

Figure 3: The types in the abstract syntax graph meta-model.

VarDecl). The classes Statement and Expression are abstract and indicate that
the language facilitates different types of both.

-

program anoebawor | d
{ new Anpeba().clone() }
class Anpeba
child: Anpeba;
clone() : Anpeba {
child : = new Anmpeba();
return chil d;
}
endclass
endprogram

QOO ~NOUA~WN

-

Listing 1: An example TAAL-program.

The result of the parsing and static analysis of a TAAL program (see Fig. 1) is
a Flat Abstract Syntax Graph. The Flat Abstract Syntax Graph of the example
from Listing 1 is shown in Fig. 4. This graph is an instance of the meta-model
from Fig. 3. Some cross-referencing edges have been grayed-out in order to make
the graph more readable.

3 Flow Graph Construction

Flow graph construction is the analysis of the flow of control and the construction
of flow graph elements which will later on enable the program’s simulation. The

Program
name = amoebaworld

startExp types types

[ExpStat] ObjectTyne
hame = Amoeha
expression - returnType
i Signature : operations .
referredSig name = clone signature attributes
OpervirtualCallExp Operimpl

referredvar —» VarDecl
hody name = child
source

subStats subStats

NullType
name = NullType

instanceOf

initExp

ReturnStat

source
rightHandSide

value

HNullLiExp

value

NullLitval

symhbol = hull

SelfExp CreateExp

VarCallExp
[

source

Figure 4: Flat Abstract Syntax Graph for the example.

result of this analysis is the Program Graph (cf. Fig. 1), which consists of the
Flat Abstract Syntax Graph enriched with a number of flow graphs. In this
section we will describe the structure of flow graphs and the way we construct
them.

Flow Graph Structure. Traditionally (e.g. [9]), flow graphs are directed graphs
consisting of four types of nodes (also called flow elements), namely one start
node, one end node, and a number of procedure and predicate nodes in between,
which are connected by successor-edges. In our approach we enrich flow graphs
with a new node-type, namely the context node, and distinct between three
types of successor-edges, namely flowNext, flowTrue, and flowFalse. Fig. 5 shows
the meta-model of such Flow Graphs.

+flowTrue 1 1

FlowElement

+flowFalse 1 +flowNext

+flowNext

Expression ! PredicateNode ProcedureNode ContextNode
+condition

Figure 5: Flow Graph meta-model.

-

Procedure nodes represent statements or expressions after which it is deter-
ministic which statement to execute next. Predicate nodes represent executable
statements and expressions that are related to a boolean condition. The actual
value of the condition determines which statement will be executed next. The
context nodes represent the start and end node of each Flow Graph. Note that
as a result every Flow Graph is cyclic.

The edges in a Flow Graph represent the sequential relation between state-
ments. Fig. 5 shows what kind of edges are allowed between different flow ele-
ments. The edges have one of the labels flowNezt, flowTrue, or flowFalse.

Flow Graphs, in this paper, appear at three different contexts corresponding
to the type of context-node (the types are elements from Fig. 3).

— Program context. Program Flow Graphs control the startup of the program
being modelled. In TAAL, program startup is modelled by the execution of
the initial expression of the program (line 2 in Listing 1). A Program Graph
always contains exactly one Flow Graph at Program context.

— ObjectType context. ObjectType Flow Graphs are traversed when an object
is instantiated. Object creation will be discussed in more detail in Sect. 4.
A Program Graph contains an ObjectType Flow Graph for each ObjectType
being specified in the original program.

— Operlmpl context. Operlmpl Flow Graphs control the execution of the body
of operations. A Program Graph contains an Operlmpl Flow Graph for each
operation that has been implemented in the original program.

Flow Graphs that appear in the Program Graph at any context are not
interconnected. The connection between different Flow Graphs is established
during simulation. For example, when instantiating a class inside a operation,
the Flow Graph of that operation and the Flow Graph of the object to be created
are then ‘dynamically connected’. This will be discussed in more detail in Sect. 4.

Graph Transformations for Flow Construction. To extract the flow information
from the abstract syntax graph, we apply a set of graph transformation rules
that traverses the syntax graph in a top-down fashion. The general approach is
that for every type of statement or expression we specify a graph transformation
rule. Each rule contains a node representing the statement type involved. Fig. 2
showed the Flow Graph construction rule for a VarDecl-element. These graph
transformation rules together form a confluent graph production system.

After finishing the phase of Flow Graph construction the part of the Pro-
gram Graph which models the Flow Graphs (i.e. projected on the flow-edges)
is an instance of the meta-model shown in Fig. 5. The Program Graph which is
constructed from the Flat Abstract Syntax Graph from Fig. 4 is shown in Fig. 6.
Elements in Fig. 6 that are not part of any Flow Graph are grayed-out.

4 Simulation

This section presents the next step from Fig. 1, namely defining the operational
semantics of TAAL, in terms of graph transformation. The graphs being trans-
formed are so-called Fzxecution Graphs, which represent snapshots of the pro-
gram state. The transformation rules themselves simulate individual program
constructs. The resulting GPS, when applied to a flow graph of the kind dis-
cussed in the previous section, gives to a transition system, in which the graphs

ContextNode
Program

/" name = 1d
flowNext
ExpStat ContextNoie
ProcedureNade ObjectType
name = Amoeha
flowNext flowNext A
flowNext |ProcedureNode

OpervirtualCallExp ContextNode varDecl
PracedureNode Operimpl name = child

flowNext floweNext TowNext
flowHext

CreateExp - ProcedureNode MullLitExp
ProcedureNode AssignStat flowHext - ProcedureNode
PracedureNode ReturnStat
TlowNext
ProcedureNode
VarCallExp

flowNext

ProcedureNode
SelfExp

flowNext

CreateExp
ProcedureNode

ProcedureNode
SelfExp

flowHext

Figure 6: Program Graph of the example highlighting its Flow Graphs.

are states and rules applications are transitions. Since program execution is de-
terministic, so are the transition systems; in other words, at any point in time at
most one rule from the GPS is applicable. (In Sect. 5 we briefly discuss the exten-
sion of this work to parallel programs, which instead will be non-deterministic,
due the independent execution of parallel threads.)

4.1 Execution Graphs

Each Execution Graph combines three kinds of information: a Program Graph
(see Sect. 3), which provides static context information, a Value Graph, which
models the data part of the current state, and a Frame Graph, which models the
process part of the current state. In compiler terms, the Value Graph models
the heap and the Frame Graph the stack during program execution.

A Value Graph contains elements representing the objects that will be created
and referred to while executing the program. A meta-model for the Value Graph
is shown in Fig. 7. The meta-model was inspired by the instance models from
[5] and [18]. The new concepts in value graphs are: Value, which stands for any
data value, be it a primitive value or an object; and Slot, which is essentially
a container for such a value. Slots can either represent program variables (the
sub-type VarSlot) or holders of auxiliary, intermediate values (AuxSlot). For the
former there is always an associated variable declaration (VarDecl), whereas the
latter are bound to Expressions in the Program Graph at which the intermediate
values occur.

The Frame Graph meta-model is shown in Fig. 8. It essentially introduces
only one new type of node: the Frame. This stands for the execution of the
program fragment at a ContextNode (see Fig. 5), with a pointer (labelled pc for
program counter) to the FlowElement in the corresponding Flow Graph at which

+attributes

0..n
ObjectVal LiteralVal AuxSlot VarSlot
symbol : String
+at \l/ 1 1 \|/+instance0f
VarDecl

| Expression

<<singleton>>
NullLitVal

PrimLitVal

+instanceOf

1], +resultType

1

e
Type
1+type

<<singleton>>
NullType

PrimitiveType

Figure 7: Value Graph meta-model.

control currently resides. In fact, for each sub-type of ContextNode there is one
Frame sub-type.

VarSlot

FlowElement

0.1

+pC
+executes

ContextNode

+actualPar

+caller 0..1
+calledFrom O0..

Expression
ProgramFrame | OperFrame ConstrFrame
+param +lookup)
0..n 1 |+signature +6e<1:ursweFrom
0.1 - =
ObjectType

VarDecl | Signature

Figure 8: Frame Graph meta-model.

An example (partial) Execution Graph can be found in Fig. 9. This repre-
sents the state of our example program (Listing 1) before executing the r et ur n-
statement in Line 7. At this moment three frames are active: the ProgramFrame,
the OperFrame for the cl one method, and the ConstrFrame for the creation of
the new object.

OperVirtualCallExp <calledFrom, B
- callr »{proggambrame}- rouran
referredSig Programrame [-executes name = amoebaworld

name = clone |, __
«

Samature auxiliar —>—7 [SelfExp]
value
sighature
‘Operlmpl I‘ IOperFrameI If- »] ObjectVal I—aﬂrihules WarSlot
instanceOf

caller

name = Amoeha
OhjectType

CreateExp «—calledFrom pc, executes

self

Objectval instanceOf. attributes
attributes
VarSlot instanceof name = child| . jnstanceor
VarDecl
value
instanceor—y NullTye

name = NullType

Figure 9: Fragment of an Ezecution Graph (at Line 7 of Listing 1).

4.2 Operational Semantics

We now discuss the graph transformation rules that define the dynamic seman-
tics of TAAL. The rules essentially define the effect of the individual statements
and expressions of the program in terms of the Value Graph and Frame Graph.
For instance, object creation, and assignment to attributes are reflected in the
Value Graph, whereas method invocation is reflected mainly in the Frame Graph.

This means that, when we apply the resulting transformation system to the
start graph of a given program (being the Program Graph resulting from the
Flow Graph construction described in the previous section), each rule application
corresponds to the execution of a small step in the program. As an example,
Fig. 10 shows the resulting transition system for the example program of Listing 1
in the form of another graph, where the edge labels are rule names. In Sect. 5
we describe the tools used to generate this view.

<Pmram>)|__r| <VarDecl-atlrihu(e>—)|;| <0per|mpl—param—nﬂne>)|;‘

<LiteralExp> <SelfExp>

<CreateExp> <ObjectType-return> <SelExp> <MarDecl-attribute> <\farCallExp-attribute:
<ObjectType-init> <OpervirtualCallExp> <CreateExp> <0OhjectType-return> <ReturnStat>
<LiteralExp> <OperCallExp-resotves <ObjectType-init> <AssignStat-attribute: <ExpStat>

final

Figure 10: Transition system of the simulation of Listing 1.

The complete set of simulation rules for TAAL is too large to include in
this paper. They can be found in [13]. Fig. 11 shows a few example rules. The
complete set of rules can be divided into three categories: flow element execution
rules, object creation rules, and method lookup rules. We believe these three
categories to be invariant with respect to the chosen language.

instanceof VarSlat | arSlot M .
attributes attributes
value

value value instanceOf

[1]
) n *_Ohject\lal
assighedvar - .
Obijectyal Varbeci -
A
m ! 1
H o4 --at-

rightHandSide | at | value
| !

referredyar

source value

flowNext " pe

. auxiliaries Ml ~. auxliarles
pe... . H auxiliaries T
FowElement 1 ——Frame} - - - - ; FlowElement nc ————————
(i) AssignStat-attribute (ii) VarCallExp-attribute

Objectyal
instanceOf |Value
self ObjectType Objectval [alue m

r executes, init - “pe self
e
Frame - -.-iConstrFrame’
CreateExp [~~~ -~ -~~~ " CTEEL ST

calledFrom caller

BPe calledFrom caller flowNext .
auziliaries

(iii) CreateExp (iv) ObjectType-return

Figure 11: Fxample simulation rules.

Flow Element Execution. This category consists of a small number of rules
(usually one, in some cases two) per kind of FlowElement. These rules describe
the essential function of that particular FlowElement. They are always triggered
by the fact that the pc-edge from a Frame node (in the Frame Graph) arrives at
an instance of the relevant flow element type (in the Program Graph), and they
also always adapt the pc-edge to point to a next statement in the Flow Graph.
We illustrate this on two examples.

VarCallExp. A VarCallExp is an expression that retrieves the value of a vari-
able. We distinguish two cases: the variable may be an instance variable or
attribute (signalled by the fact that the VarCallExp-node has a source) or a local
variable or parameter. The first of these is illustrated in Fig. 11 (ii). In either
case the referredVar (in the Program Graph) identifies a unique VarSlot (in the
Value Graph); execution of the VarCallExp-rule then consists of creating a fresh
AuxSlot for the expression and assigning the current value of the referredVar to
it. Furthermore, the pc-pointer is moved forward.

AssignStat. The effect of an AssignStat is to make a variable (modelled by a
VarSlot) point to a pre-computed value - the rightHandSide of the assignment.
Just as for the VarCallExp-rule, we have to distinguish the cases of instance
and local variables; the former is illustrated in Fig. 11 (i). In either case, the
assignedVar (possibly together with the AuxSlot at the source-referenced Expres-
sion) uniquely identifies a VarSlot-instance; this receives the value of the AuxSlot
at the rightHandSide. The AuxSlot-instances involved are subsequently discarded.

Object Creation. This consists of allocating and initializing nodes for a new ob-
ject and its instance variables. In most object-oriented languages, allocation and
initialization are done in two different passes, of which the first assigns a default
initial value to all fields. In TAAL, we have taken a more simplistic approach: all
attributes have an initializing expression. This means we can construct locations
for the variables and simultaneously assign initial values to those locations, pro-
vided we take care that this process starts at the top of the inheritance hierarchy.
This results in the following steps:

Allocation: The actual object creation occurs when control reaches a CreateExp-
instance. A ConstrFrame and an ObjectVal are created straight away. The Object-
Val is referenced through self from the ConstrFrame. Moreover, the fresh Constr-
Frame has an init-pointer to the ObjectType, to indicate the fact that we are ini-
tializing an instance of this type. This is shown as rule CreateExp in Fig. 11 (iii).

Initialization: A ConstrFrame-instance with an init-edge to an ObjectType is
treated in either of two ways, depending on whether the ObjectType has a super
type. If it has a super type, then a new ConstrFrame is created recursively for
that, but with the same self. If it has no super type, then execution is started, by
replacing the init-edge with a pc-edge pointing to the first FlowElement reachable
from the ObjectType. The subsequent simulation rules will compute initial values
and assign them to newly instantiated AuxSlot-instances for the ObjectVal.

Termination: A ConstrFrame terminates when the pc-edge has arrived (back)
at the ObjectType. The frame is discarded, and a pc-edge is (re)created at the
caller frame. Just as for initialization, there is a case distinction, depending on
whether the current frame was called recursively from a sub-type or directly
from a CreateExp. The latter case is depicted in Fig. 11 (iv): the ConstrFrame
is discarded and the underlying object, pointed to by self, is returned to the
caller, where it is assigned to an AuxSlot-instance (also created freshly) storing
the value at the CreateExp-node.

Method Lookup. This is a phase that occurs each time after a method is called
(through an OperCallExp). The call itself creates a new OperFrame (in the Frame
Graph). However, the call (in the Program Graph) only references the signature
of the method to be executed; a matching method implementation (Operlmpl)
must be looked up in the server object’s self-type. When it is found, the argu-
ments (in the Value Graph) are transferred to that Operlmpl’s formal parameters.
Finally, the new OperFrame is started by creating a pc-edge for it, after which
the flow element execution rules take over.

5 Conclusion

The work described in this paper shows a complete example of how program-
ming languages can be defined using graphs and graph transformation rules. The
language definition of TAAL includes all necessary parts of a language defini-
tion: (abstract) syntax and semantics, which have been defined using a single
formalism. Although other work has been presented that uses graphs and graph

transformation rules (e.g. [6]) for (parts of) language definitions, none of these
reaches the same level of completeness. For instance, the semantics specification
in [27] merely includes the static semantics, while our work encompasses execu-
tion semantics as well as static semantics. Independently, Hausmann and Engels
[11, 8] have developed a similar approach to the definition of language semantics.
Both their and our work is based on earlier work by the pUML group [15, 5].

The use of graph transformation rules to specify the semantic rules offers
a number of advantages. First, the visual representation of the graph transfor-
mation rules provides an intuitive understanding of the semantics. Second, the
graph transformation rules offer the possibility to include in one mathematical
structure, the graph, information on both the run-time system and the program
that is being executed. Traditional approaches to operational semantics (e.g. [1,
26,19,4,12,2,7]) often need to revert to inclusion of run-time concepts in the
syntax definition, e.g. inclusion of the concept of location to indicate a value
that may possibly change over time. This seems to be an artificial manner of
integrating parts of the language definition, i.e. of the abstract syntax and the
semantic domain, that become much more natural in a graph representation. Fi-
nally, in graph transformation rules, context information can be included more
naturally and uniformly than for example when using SOS-rules [26].

The example language that we have chosen comprises some of the fundamen-
tal aspects of object-oriented programming languages, like inheritance, includ-
ing dynamic method look-up, and object creation. The structure of our solution
makes us confident that the approach can be extended to real-life software lan-
guages in the object-oriented paradigm:

— All the transformation steps (parsing, static analysis, flow generation and
simulation) are structured according to the concepts in the abstract syntax.
This lends a modularity to the definitions that is independent of the language
being defined.

— The structure of the Flow and Execution Graphs is generic, in the sense
that the elements therein are not specific to TAAL; rather, they capture the
essential aspects of imperative, object-oriented languages.

Work that is closely related to ours is by Corradini et al. [6]. They use graph
transformations to formalize the semantics of a realistic programming language:
they address a fairly large fragment of Java. Technically, the difference is that
they interpret method invocation unfolding — meaning that the program graph
changes dynamically. This obviates the need for the frame graph, at the price of
having program-dependent rules (namely, one per method implementation).

Another difference is that they provide no tool support, and in that sense
theirs is a more theoretical exercise. Another, less directly related source of
research is on defining dynamic semantics of (UML-type) design models, where
also the idea of using graph transformations has been proposed, e.g. in [8, 16, 25].
Furthermore, in Engels et al. [8] ideas are presented on how to use collaboration
diagrams, interpreted as graph transformation rules, for defining SL semantics.

A final aspect of the work reported here is that we have not only developed
the TAAL language definition but supporting tools as well. This means that we
can actually compile and simulate any TAAL-program and store the resulting
transition system so, for instance, all the ingredients for verification are there.
Both tool sets as well as the full sets of transformation rules defined the flow
generation and simulation phases are available for downloading [14, 21].

An area of further research will be to lift the approach outlined here to a more
general level, thus creating a meta language to define software languages, includ-
ing their semantics. A first step has already been reported in [24], in which rules
are specified for building a control flow graph for any imperative object-oriented
language. This will give rise to a method for defining the semantics of SLs, which
fill the gap currently present in MDA as pointed out in the introduction. We also
intend to investigate whether this approach is applicable for non OO-languages
as well. Currently we are working on implementing model checking techniques
for verifying object-oriented programs where states are represented as graphs
and execution steps as graph transformations.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Abrahém, F. S. de Boer, W.-P. de Roever, and M. Steffen. Inductive proof
outlines for monitors in java. In E. Najm, U. Nestmann, and P. Stevens, editors,
Formal Methods for Open Object-based Distributed Systems, volume 2884 of Lecture
Notes in Computer Science, pages 155—-169. Springer, 2003.

3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

4. K. Bruce, J. Crabtree, and G. Kanapathy. An operational semantics for TOOPLE:
A statically-typed object-oriented programming language. In S. Brookes, M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations of
Programming Semantics, volume 802 of Lecture Notes in Computer Science, pages
603-626. Springer, 1994.

5. T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A feasibility study in
rearchitecting UML as a family of languages using a precise OO meta-modelling
approach, September 2000. Version 1.0 available from www. puni . or g.

6. A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating Java code to graph
transformation systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, Proceedings of the 2nd International Conference on Graph Trans-
formations (ICGT’04), volume 3256 of Lecture Notes in Computer Science, pages
383-398. Springer, 2004.

7. F. S. de Boer and C. Pierik. How to cook a complete hoare logic for your pet
OO language. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
editors, Formal Methods for Components and Objects (FMCO’04), volume 3188 of
Lecture Notes in Computer Science, pages 111-133. Springer, 2004.

8. G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In A. Evans, S. Kent, and B. Selic, editors, Proceedings of the Third International

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

Conference on the Unified Modelling Language (UML2000), volume 1939 of Lecture
Notes in Computer Science, pages 323-337. Springer, 2000.

N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous € Practical Ap-
proach. International Thomsen Publishing Inc., 2nd edition, 1997.

A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3-4):287-313, 1996.

J. H. Hausmann. Dynamic Meta Modeling, A Semantics Description technique for
Visual Modeling Languages. PhD thesis, University of Paderborn, 2006.

im B. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe poly-
morphic object-oriented language. ACM Trans. Program. Lang. Syst., 25(2):225—
290, 2003.

H. Kastenberg, A. Kleppe, and A. Rensink. Engineering object-
oriented semantics using graph transformations. CTIT Tech-
nical Report 06-12, University of Twente, 2006. Available at
http://ww. cs. utwente. nl / ~kast enbe/ papers/taal . pdf.

A. Kleppe. Taal eclipse plugin, 2006. Available from

http://ww. kl asse. nl/english/research/taal-install.html.

A. Kleppe and J. Warmer. Unification of static and dynamic semantics of UML, a
study in redefining the semantics of the UML using the pUML OO meta mod-
elling approach. Technical report, Klasse Objecten, July 2001. Available at
http://ww. kl asse. nl / papers/unification-report. pdf.

S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An integrated semantics
for UML class, object and state diagrams based on graph transformation. In
M. J. Butler, L. Petre, and K. Sere, editors, Proceedings of the 3rd International
Conference on Integrated Formal Methods (IFM’02), volume 2335 of Lecture Notes
in Computer Science, pages 11-28. Springer, 2002.

OMG. MDA guide version 1.0.1, June 2003. Available from www. ong. or g.
OMG. UML 2.0 OCL specification, October 2003. Available from www. ong. or g.
B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

A. Rensink. The GROOVE Simulator: A tool for state space generation. In J. L.
Pfaltz, M. Nagl, and B. Bohlen, editors, Applications of Graph Transformations
with Industrial Relevance (AGTIVE’03), volume 3062 of Lecture Notes in Com-
puter Science, pages 479-485. Springer, 2004.

A. Rensink. The Groove Tool Set, 2005. Available from htt p://groove. sf. net.
A. Rensink. The joys of graph transformation. Nieuwsbrief van de Nederlandse
Vereniging voor Theoretische Informatica, 9, 2005.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, volume I: Foundations. World Scientific, 1997.

R. M. Smelik. Specification and construction of control flow semantics. Master’s
thesis, University of Twente, January 2006.

D. Varré. A formal semantics of UML statecharts by model transition systems.
In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings
of the 1st International Conference on Graph Transformation (ICGT’02), volume
2505 of Lecture Notes in Computer Science, pages 378-392. Springer, 2002.

G. Winskel. The formal semantics of programming languages: an introduction.
MIT Press, 1993.

K.-B. Zhang, M. A. Orgun, and K. Zhang. Visual language semantics specification
in the vispro system. In J. S. Jin, P. Eades, D. D. Feng, and H. Yan, editors, VIP,
volume 22 of CRPIT. Australian Computer Society, 2002.

