
Modeling- and Analysis Techniques for Web

Services and Business Processes

W. Reisig

Humboldt-Universität zu Berlin

Abstract. Open distributed systems include in particular Web services
and business processes. There is a need of techniques to model such
systems formally, and to derive decisive properties from such models.
Three such techniques are presented in this paper, exemplified by help of
realistic examples, and mutually related w.r.t. their respective expressive
power and the availability of analysis techniques.

1 Web services and business processes

The term Web service describes a wide range of software architectures, and has
no entirely clear-cut definition. But most experts in the field would agree that
the following two aspects are essential for Web services:

Firstly, a Web service has a technological basis, which is a systematic com-
bination of conventional middleware components for transport (e.g. TCP/ IP),
messaging (e.g. SOAP, XML), description (WSDL), quality of service (e.g. WS-
coordination, WS-transaction) and integration (UDDI). This combination of
technologies has occasionally been denoted as the “technology stack” of Web
services. Business processes as well as other distributed services can then be
implemented on top of this. Hence, the technological basis of Web services is a
combination of existing middleware. The essential idea of Web services is however
not merely the middleware components and their combination in the technology
stack, but the second aspect of Web services, its abstraction from its technolog-
ical basis.

Web services are a prominent example for the paradigm of service oriented
architectures. They in turn are intended to overcome well known problems of
updating or replacing single components of conventional, monolithic IT systems.
Abstracting from their technological basis, Web services themselves provide the
ground for further abstractions, in particular abstractions from the technolog-
ical foundation of business processes. Such abstractions turn high-level objects
and operations into elementary notions. Typical examples include objects like
“client” and “message to client”, and operations such as “to answer a client’s re-
cent request”. This kind of objects and operations are elementary in the world of
business process. Their implementation in the technological basis of Web services
remains irrelevant for the user of business processes.

2 Modeling - and Analysis Techniques

The definition of a Web service must be communicated among its designers,
implementers, users, etc. This requires a language, i.e. a meta-model, capable
to represent Web services intuitively and uniquely. A commonly accepted meta-
model does not exist, however. Instead, notions and notations in the area of
Web services emerged quickly and, occasionally, with little mutual recognition.
Quoting the W3C consortium, and specifically the group involved in the Web
service activity [W3C02], a web service is “a software application identified by a
URI, whose interfaces and bindings are capable of being defined, described and
discovered by XML artefacts. A Web service supports direct interactions with
other software agents, using XML-based messages exchanged via Internet-based
protocols.” Hence, a meta-model for Web services must in particular be capable
of describing interfaces and bridging of services, in addition to abstract objects
as described in Section 1.

Specification languages for Web services and business processes differ funda-
mentally from conventional programming languages: The semantical basis of a
conventional programming language essentially consists of objects such as sym-
bols, sequences of symbols, binary integer representations, and operations such
as composing and comparing symbol sequences. The corresponding theoretical
framework is the world of computable functions. This framework can however
not be employed as the semantical basis of specification languages for Web ser-
vices and business processes, because elementary objects can be any items, and
elementary operations can be any operations. We consider two approaches to
tackle this problem: The first one starts out with the observation that many ques-
tions can be stated and answered without detailed semantical aspects, focusing
only onto the control structure of services. Typical examples of such questions
include necessary conditions for proper termination, usability and equivalence.
Low-level Petri nets turned out to be particularly useful for this purpose. This
line of research has mainly been started by [vdA96], [vdA98], and continued
by e.g. [KMR00], [Mar03], [Mar05b], [Mar05a], [RSS04], and [SS04]. The second
solution to the above stated problem applies a kind of mathematics that has
been designed to cope with any kind of items and operations on then: General
Algebra and first order logic. This kind of mathematics, however, describes static
structures, whereas we have to tackle dynamic behavior. This goal is achieved by
two formalisms, high-level Petri nets and Gurevich’s Abstract State Machines.
Each of the three modeling techniques trades expressivity for analysis techniques:
The more expressive the modeling technique, the less it offers specific analysis
techniques.

Various versions of automata and process algebras have been suggested to
model web services and business processes. They do not decisively contribute to
the aspects considered in this paper.

3 Low-level Petri nets for business processes

We start out with the quite elementary technique of business process nets (BP
nets), a special class of elementary Petri nets. BP nets model the structure of

control within a single business process, as well as control of communication
among processes.

Elementary Petri nets have frequently been advocated to model control as-
pects of communicating business processes. (e.g. [vdA96], [vdA98], [Mar05b])
We suggest a variant that is technically simpler, and slightly more general.

A reasonable well structured business process exhibits a number of regular-
ities and important properties: It can properly terminate in combination with
any “serving” environment, it may exhibit a “most liberal” serving environment
and a most abstract “public view”. One business process may simulate or be
equivalent to an other business process. Business processes may be composed to
larger business processes, thereby systematically transferring important proper-
ties of the component processes to the composed process. It should be possible
to decide those properties and to derive those processes from a representation of
given processes. A number of reasons favors low-level Petri nets as an adequate
technique for many of those questions:

– Many of those questions depend essentially on the control structure only, i.e.
are independent of concrete data and operations.

– The paradigm of message passing of business processes ignores concrete de-
lays among processes. In particular, the order of sent messages may swap
upon their arrival. This corresponds naturally to the behavior of tokens in
the places of Petri nets.

– Composition of business processes correlates exactly with gluing interface
places of the corresponding Petri nets.

– In business processes, in particular in cooperating, distributed processes,
actions occur locally and causally independently. Petri nets support and
describe this kind of behavior by help of distributed runs.

– Criteria for selecting an activity out of a set of alternative in a business
process, are frequently not fully characterized. Nondeterministic choice of
conflicting transitions of a Petri net adequately simulate this kind of behav-
ior.

– There exits a number of specific analysis tools for Petri nets, well applicable
to Petri net models of business processes.

3.1 Business process nets

As mentioned above, a business process is intended to begin its activities in a
definite start state and to terminate in a definite stop state. Activities include
message exchange with an appropriately cooperating environment. This fixes the
structure of Petri net models of the control structure of business processes. A
simple example is

N1:

a1

a b c

w1

(1)

The places a and c are input places, and b is an output place of the net.
Furthermore, the net has a start marking, with one token at place α1 and no
tokens elsewhere. Furthermore, the stop marking of this net has a token on place
ω1, and no tokens elsewhere. We assume the reader be familiar with the basics
of elementary Petri nets, and define the general pattern of a business process net
(a BP net, for short) N as a Petri net structure, consisting as usual of places
(circles), transitions (squares) and arcs (arrows) together with

– a distinguished subset of its places where no arcs end, called the input places
of N

– a distinguished subset of its places where no arcs start, called the output
places on N

– a start marking, startN , and a stop marking, stopN , both with empty input-
and output places.

The input- and output-places form together the environment places (also
called the channels) of N ; all other places are inner places. startN often has
tokens only on a set of inner places without ingoing arcs, usually denoted by
the (indexed) symbol “α”. stopN often has tokens only on a set of inner places
without outgoing arcs, usually denoted by the (indexed) symbol “ω”. We fol-
low the convention to draw α and ω at the left and right margin of graphical
representations, respectively. This implies control flowing from left to right. (1)
follows this convention. This definition of BP nets, as well as the forthcoming
definition of their composition, is more liberal than corresponding definitions
of [vdA96], [Mar03] and [RSS04]. It is technically simpler and intuitively more
natural, while preserving all relevant properties.

3.2 Closed business processes

Business process nets without input- and output places are useful for a number
of purposes. Such a net is closed ; here an example:

a2

c a

w2

a1

b

w1

(2)

Its start marking has tokens on α1 and α2, its stop marking has tokens on
ω1 and ω2.

We will see later on that a closed net may result from composing two business
process nets. By construction, a closed net remains if we skip the environment
places of a BP net N , retaining the inner subnet of N, written inner(N).

3.3 Composition

Cooperation of business processes is properly reflected by the composition of
business process nets. Without loss of generality we assume for any two BP nets
M and N that a place or a transition of M does not belong to inner(N) and
vice versa: Otherwise one may construct two instances. Formulated differently,
M and N share only places in their environments.

Composition M ·N of M and N is then a BP net again, defined by identifying
shared places. This way, an input place of M that coincidently is an output place
of N , evolves into an inner place of M ·N .

As an example, one may compose (1) with the BP net

N2:

a2

c a b

w2

(3)

The resulting net N1 · N2 is the closed BP net (2). Fig. 1 shows a further
example.

Composition of BP nets is commutative, i.e. for any BP nets M and N holds

M ·N = N ·M (4)

Furthermore, for any three BP nets L, M and N with no interface place shared
by all three processes, the product is also associative, i.e.

(L ·M) ·N = L · (M ·N) (5)

3.4 Well-formed business process nets

We focused the static structure of BP nets so far, in particular their input- and
output-places, their start- and stop marking, and their composition. Now we
consider aspects of dynamic behavior, i.e. reachable states, runs, termination
etc.

The most important property of a BP net, concerning its dynamic behavior,
is termination: A BP net N can terminate if for each marking m reachable from
startN , the marking stopN is reachable from m. This definition reflects potential
loops of N .

Occasionally we require each component of a BP net to be “useful”: A BP
net N is covered in case each transition t of N occurs at least in one occurrence
sequence

startN −→ . . .
t
−→ . . . −→ stopN . (6)

aN

in

wN

out

BP net N

aM

in

wM

out

BP net M

aM

in

wM

out

aN

wN

BP net N · M

Fig. 1. composition of BP nets

It is furthermore reasonable to assume unambiguous start- and stop mark-
ings: A BP net N is unambiguous if there exist sets α and ω of inner places of
N such that

– startN is the only reachable marking with tokens on all places of α

– stopN is the only reachable marking with tokens on all places of ω.

The above three conditions define the important class of well formed BP nets:
A BP net N is well formed if N can terminate, is covered, and is unambiguous.

Any reasonable, closed business process has a well formed model. It remains
to decide whether or not a given BP net is well formed. [vdA96] reduces this
problem to classical problems of Petri nets: Given a BP net N , he suggests to
construct a Petri net N∗ from N , by an additional transition t that leads the
stop marking ω back to the start marking α. N is then shown to be well formed
iff N∗ is live and safe. (As a technicality, [vdA96] and others restrict α and ω to
one place. Our definition appears technically simpler, in particular the definition
of composition, while all analysis techniques are retained).

3.5 Usable business process nets

A well-formed bp exhibits a reasonable inner structure. In this section we ask
for “reasonable” behavior w.r.t. the partners in the environment of a BP net.

Two BP nets are partners if they together can reach their joint stop state.
As an example, (1) and (3) are partners.

More precisely formulated, two BP nets M and N are partners if M · N is
unambiguous and can terminate (as defined in 3.4). We do not expect M and
N together can employ all alternatives of M and of N . Hence we do not require
M ·N be covered.

Based on the above notion of partners, we can now define the central notion
of usability : A BP net is usable if there exists at least one partner of N . As an
example, (1) is usable due to its partner (3).

Here an example of a BP net that is not usable:

a

b

a

w
(7)

Intuitively formulated, this business process decides whether to expect a

or b from its environment. The process fails to propagate this decision to its
environment. But the environment needs this information to act accordingly. In
contrast, the following BP net is very well usable, e.g. by (3):

a1

a b

c b

c

w1

a

(8)

This rises the quest for an algorithm to decide whether or not a BP net is
usable. In fact, such algorithms have been constructed (e.g. in [Mar03]).

3.6 Further Properties

Usability is a fundamental property; but a number of other non-trivial proper-
ties and derived artefacts are likewise important, including equivalence, abstract
views, operating guidelines, fault handling, and transactions. Various algorithms
to decided those properties and to generate those artefacts have been published,
including [FR05], [Mar05b], [MS05], and [SS04].

4 High-level Petri nets for BPEL

Here we suggest schematic high-level Petri nets as a modeling technique that
is expressive enough to model quite complex behavior, such as essentials of the
semantics of the business process execution language, BPEL. The core concept
of schematic high-level Petri nets are symbols to be interpreted by any item or
operation, not confined to conventional data structures. In analogy to low-level
Petri nets as considered above, this technique fits perfectly to model business
processes.

A number of analysis techniques are available for schematic high-level Petri
nets, quite useful for (but not particularly confined to) models of business pro-
cesses.

Efficient and reliable implementation of business processes is a tedious task.
Different local business processes, running on different hardware on different
software platforms, must correctly co-operate.

The business process execution language for web services, BPEL [CGK+03]
has risen to a quasi-standard to describe and to run distributed business pro-
cesses on an abstract level.

The semantics of BPEL has been presented in plain English, with some am-
biguities, in particular when it comes to the compensation of activities.

By help of a small example we will show in the sequel, why high-level Petri
nets provide adequate means to formulate the semantics of BPEL.

4.1 The BPEL language

A BPEL program describes the structure of a business process as a particular
Web service, and specifies the interaction of a business process with partner
processes in its environment.

A central problem of business processes is compensation of already executed
sub-activities (e.g. canceling an already booked flight) whenever it turns out
later on that the overall goal fails (e.g. no hotel room was available).

BPEL consequently distinguishes positive control flow of a business process,
formulating the intended activities to achieve its goal, and negative control flow,
managing the case of faults, in particular the problems of compensation.

4.2 Activities

A core construct of BPEL are activities: An activity may be elementary (e.g. it
may receive a message from its environment), or it may be composed from ele-
mentary activities. There are different ways to compose activities. They essen-
tially correspond to control structures of conventional programming languages,
i.e. sequences, loops and conditional alternative. In the next section we will
consider one of them, called scope. An activity may be executed. Execution of
an elementary activity strongly resembles conventional programming languages,
and will not be considered in detail here. Executing a composed activity means to

iteratively select the next component activity to be executed, in accordance with
the activity’s control structure, and governed by actual values and predicates.

An execution of an activity can come to an end in three different manners:

– it terminates successfully
– it causes a fault
– it is canceled by a stop signal from its environment

The activity would signal to its environment the manner of ending. Actually,
it is not activities but instances of activities that are executed. Various instances
of an activity may co-exist and be executed concurrently. The phrase “to execute
an activity” stands for “to execute one of the activity’s instances”. As it is
intuitive and convenient, we will apply the shorthand whenever confusion can
be ruled out.

4.3 Scopes

As mentioned above already, a set of activities may be combined in a scope. In
addition to its “ordinary” activities, a scope includes a fault handler managing
fault signals sent from the scope’s ordinary activities. In particular, the fault
handler may cancel all activities of the scope. Consequently, each activity must
be prepared to accept a stop signal, and to process it accordingly.

A message m, as controlled by a scope, has two components: Its contents
which is irrelevant in the sequel, and its correlation set, cor(m). Details of the
correlation set will not be relevant in the sequel. We only must be able to decide
whether or not two correlation sets are equal. So, it suffices to represent each
correlation set as a symbol.

4.4 The activity receive

A typical activity is receive. Its instances access three components of the receive
activity, provided by the overall process : an input channel, carrying messages
to be processed by receive, a correlation set to direct incoming messages to the
corresponding instance, and a variable to store the last accepted message.

Each instance i of receive processes an incoming message, m. If the correlation
set cor(m) of m and the correlation set of i coincide, the variable of receive is
updated and given the message m as its new value. Otherwise the message is
extinguished and a “failed” message is generated. As described above, there is
always a chance for the fault handler to stop running instances of receive.

We are now prepared to state the problem to be solved: How can activities
such as receive be described? This includes in particular

– to properly administer the various instances of receive
– to provide a composition technique for descriptions, that reflect the cooper-

ation of activities.

In the next chapter we show that high-level Petri nets provide a more than
adequate technique to model such systems.

4.5 A model for receive

Fig. 2 shows a high-level Petri net model for the receive activity. The reader
familiar with high-level Petri nets will easily grasp this model. Other readers are
helped by the following explanations. One may conceive those explanations as
coincidentally providing an introduction to high-level Petri nets.

initial

channel t1

X

(X,CS)

cor(X) = CS

cor(X) = CS

stop

stopped

failed

CS
cs

(X,CS)

running

pending

n
Y

X

final

corr.set

vart2

t3

t4

t5

t6

t7

(X,CS)

(X,CS)

m

Fig. 2. The receive activity

In Fig. 2, the dotted frame separates the inner components of the model
from its surface and its environment. The five circles on the frame’s surface
(initial, stop, stopped, failed, final) are places, intended to exchange black dot
tokens with other activities. Tokens on these places represent control signals
to trigger activities, as discussed above. The three ellipses outside the frame
(channel, corr.set, var) are places that model the activities’ communication with
the overall process: The activity may receive a message along the place channel.
The process furthermore provides an initial correlation set at the place corr.set,
and an initial value at var. This place represents a variable that always carries
the last acceptable message.

Fig. 2 shows a typical state where the activity is ready to act: Some other
activity has triggered receive (black dot token on initial) and the scope has sent
a message, (token m on channel) A correlation set cs is anyway assumed at place
corr.set, as well as some value, n, at the place var.

Describing the behavior of the net, we start with the intended, positive con-
trol flow. The state shown in Fig. 2 enables the transition t1, provided the
variables X and CS are properly valuated: X by m, and CS by cs, respectively.
Occurrence of t1 then

– removes the black dot token from initial, and the m token from channel
– produces the pair (m, cs) as a token at place running
– retains the cs token at corr.set, as ←−p is a read arc.

In this situation, to continue one has to evaluate the predicates inscribed in
t2 and t3, again with X = m and CS = cs. If the correlation set cor(m) of the
message m coincides with the correlation set cs provided by the environment,
the transition t2 is enabled. Occurrence of t2 then updates the value at the place
var. With the fresh value X = n, given the old value Y = m, the execution
terminates (black dot token at final). If the predicate inscribed in t2 fails with
X = m and CS = cs, t3 is enabled and “throws a fault”, i.e. triggers some
other activity (black dot token on failed). This token will eventually, via the
fault handler activity, cause a token on stop, thus enabling t6. The activity then
terminates with a black dot token at stopped. This completes description of the
positive control flow.

A stop token may arrive any time. Hence at any state, the activity may leave
its positive control flow by one of the transitions t4, t5 or t7, resulting in a stopped
token.

During execution of receive, a fresh message, l, may arrive and another activ-
ity may provide a fresh start signal to the receive activity. This is the situation
where a new instance of receive must be created, executing concurrently to the
existing one.

In the Petri net of Fig. 2, this may be modeled by a token “l” on the channel
place, and another black dot token at the place initial. Concurrent execution of
the two instances is then properly modeled by the Petri net, due to the definition
of distributed runs, not considered here.

Schematic Petri nets come with a number of useful analysis techniques. For
example, for the model of the receive activity as given in Fig. 2, one may prove
that the token m, initially at the channel, eventually reaches the place var, or
the system fails. Technically, this is represented by the temporal logic formula

(channel.X ∧ initial ∧ |corr.set| ≥ 1) 7→ (var.X ∨ stopped)

with “7→” denoting the “leads-to” operator. This formula can be proven to be
valid in Fig. 2, by the help of techniques described e.g. in [Rei97].

4.6 Lessons learned

The above example provides a first glimpse at schematic high-level Petri nets,
and the motivation to model business processes with this kind of Petri nets. Here
the most important aspects:

– Elementary objects and operations of business processes are fairly abstract.
Examples are “message”, “correlation set of an activity”, or “correlation
set of a message”, but also “reply to a quest” or “cancel an order”. All
these objects and operations, though elementary in the given context, come
without any fixed or agreed representation in conventional data structures.
High-level Petri nets, in their schematic setting as applied in Fig. 2, support
this approach.

– The paradigm of business processes ignores delays of messages passing be-
tween processes. In particular, messages may “overtake”. The semantics of
Petri nets, with tokens residing at a place without any order, correspond
naturally to this paradigm.

– Single business processes cooperate along message channels: An output chan-
nel of one process serves as an input channel of another process. This is
mimicked in Petri nets by glueing (identifying) the corresponding places.

– Activities of different business processes operate locally and independently.
This is reflected in Petri nets by the occurrence rule for transitions: The
behavior of a transition depends only on and only affects the adjacent places.
No notion of global state or global time is required.

– Generation of instances of a business process, to occur concurrently, are per-
fectly modeled in Petri nets by more than one initiating tuple of transitions,
and the notion of distributed runs. We refrain from details here.

– Analysis techniques as available for schematic high-level nets, are useful to
verify business processes.

5 ASMs for Web services

As a most universal modeling technique we suggest Gurevich’s Abstract State
Machines (ASM). The demand of ASM to be “most universal” has been justified
in [Gur00]. We refrain from details here. But we show that ASM in fact are
expressive enough to model a wide range of Web Service oriented Systems in a
natural way.

5.1 The abstract basis of Web services

The monograph [ACKM04] provides a comprehensive view on Web services.
Concepts are presented in plain English, supported by various kinds of graphical
representations, in about 140 Figures. About half of the figures show static,
mainly hierarchical structures. The rest of the figures show dynamic behavior,
both of middleware components (i.e. the technological basis of Web services) and
of abstract components (in particular, components for business processes).

Web services are usually implemented on top of some middleware. Any for-
mal description of the semantics of Web services hence must rely on a formal
semantics of those middleware components. Fortunately, the semantics of Web
services requires only quite abstract aspects of middleware semantics. What is

needed, however, is a formalism to adequately represent those aspects of mid-
dleware. This comes in addition, of course, to an adequate representation of the
Web service components themselves.

5.2 The core idea of ASM

The above problem can be solved by help of an idea that we applied in the
context of high-level Petri nets already: Items and operations are symbolically
represented, leaving their semantical aspect to be defined elsewhere. For example,
in Fig. 2, m is a constant symbol and cor(m) is a term. We only informally
specified what a “message” is assumed to be; we only assume that a message
has a correlation set, and that the term cor(m) represents the correlation set
of m. This idea of “pseudo code” used to represent dynamic behavior, given
meaning only up to the interpretation of the involved symbols. It is central to the
specification technique of Abstract State Machines (ASM). An ASM is essentially
a set of conditional assignment statements, to be executed in parallel. Condition,
left side, and right side of each assignment statement are terms over a signature
(i.e. a set of symbols, each with an arity). An ASM can be executed for any
arity respecting interpretation of its symbols. Details on the ASM method can
be found e.g. in [BS03].

ASM provide in fact an adequate framework to formally represent Web ser-
vices.

5.3 A small case study

Here we consider a small example, taken from [ACKM04]. This case study as-
sumes a scenario where a customer and a supplier communicate along the web.
The customer starts an interaction, sending a request for an offer (a quote re-
quest) to a supplier. After receiving a quote from the supplier, the customer
returns and order, and after receipt of the ordered goods, submits his payment.
Fig. 3 outlines this behavior, as given in [ACKM04], page 198.

The supplier Web service offers three operations, symbolically represented
as requestQuote, orderGoods and makePayment to the customer. The customer
is allowed to envoke the operations only in the order as fixed by the supplier.
This order is denoted as conversation. To demonstrate the ASM method, we just
model the – admittedly quite simple – customer behavior.

We first consider the items we speak about. Each time the customer starts
a conversation, he newly chooses the goods he wants to order, as well as the
supplier for those goods. In the ASM formalism, this is modeled by the two
constant symbols Goods and SupplierMsg. One may have expected variables at
this point. But the idea is that the value of a constant symbol is fixed upon
the start of an ASM program. Each time the forthcoming ASM conversation
is started, it starts in a different initial state. Each initial state interprets the
above mentioned two constant symbols by a newly chosen set of goods, and a
newly chosen supplier. We assume corresponding messages to be sent from the
client to the supplier Web service. Technically, Messages represents the set of

1:requestQuote

2:orderGoods

3:makePayment

customer
(client)

supplier
(Web service)

continueOrder

 requestQuote

 orderGoods

 makePayment

cancelOrder

 logout

 replyQuote

 cancelOrder

receive item

 supplyGoods

 receive req.

The interaction between clients and services is
often formed by a set of operation invocations
(i.e., it is a conversation).
A service provider may support some
conversations while disallowing others.

The internal business logic of clients and Web
services must support the conversation, and
maintain the state across different operation
invocations belonging to the same conversation.

Fig. 3. A sample conversation between a customer (client) and a supplier (Web service)

potential messages symbolically. The undefined element, symbolically undef, is
also assumed as a message. Furthermore, we assume the two constant symbols,
true and false, to be always interpreted as expected. Finally, we assume two
further constant symbols, GoodsOrdered and GoodsPayed, each to be initially
valuated by a truth value.

The next issue to be tackled are the necessary functions. The first function
is, symbolically,

RequestQuote : Messages×Messages→ Messages

Semantically, the parameters should be the supplier to offer a quote, and the
goods. The function should return the quote as given by the supplier.

The second function is

OrderGoods : Messages×Messages→ Boolean

This is merely a predicate, expecting a supplier and an order, and declares
whether goods have been ordered already.

Finally,
MakePayment : Messages×Messages→ Boolean

is again a predicate and declares whether goods have been payed.
We are now ready to formulate the ASM. This is a program, i.e. a text,

using the above introduced constant- and function symbols, together with the
keywords par, endpar, if, and, 6= :

par

if (Goods 6= undef) and (SupplierMsg 6= undef) and (Quote = undef)
Quote := RequestQuote(SupplierMsg, Goods)

if (Quote 6= undef) and (GoodsOrdered 6= true)
GoodsOrdered := OrderGoods(SupplierMsg, Quote)

if (GoodsOrdered = true) and (GoodsPayed 6= true)
GoodsPayed := MakePayment(SupplierMsg, Quote)

endpar

Constant symbols play the role of variables of programming languages here.
In general, an ASM may employ any kind of terms also on the left side of an

assignment statement. Variables are used in ASM as bounded by a quantifier,
as usual in logic.

Further examples of ASM models for Web services business processes, and
the language BPEL can be found in [RB04], [FR05].

6 Conclusion

Service orientation is a principle to organize software architectures, independent
of platforms, programming languages, and any other implementation oriented as-
pect. Service oriented architectures nevertheless deserve a unique representation,
i.e. a formal model. This raises the quest for adequate techniques to formulate
such models.

In this paper we advocate three such techniques, spanning from a very spe-
cific class of low-level Petri nets up to the most universal technique of Abstract
State Machines. High-level Petri nets are located somewhere in the middle of
the spectrum.

Each modeling technique trades expressivity for analysis techniques. This
implies the following rule of thumb: To cover a specific problem, choose a mod-
eling technique expressive enough to represent all relevant aspects intuitively
and comprehensively. Coincidently, the chosen modeling technique should be as
restrictive as possible, thus exploiting particular structures and regularities for
verification issues.

Business process nets have been defined as a special class of elementary Petri
nets. Consequently, their distinguished structure is exploited in the definition
of derived notions such as well formedness, usability, etc. This structure has
furthermore been exploited in analysis algorithms.

One my define corresponding classes of schematic high-level Petri nets and
Abstract State Machines, together with corresponding analysis algorithms.

The above outlined spectrum of modeling techniques may cover operational
models. One my wonder what other models may be useful. An example may
be logic based models, with Lamport’s Temporal Logic of Actions as a typical
representative. It was particularly useful in this context, would composition of
specifications just turn out as conjunction, and implementation as implication.
These principles have been advocated by Abadi and Lamport in the early 1990ies
already.

References

[ACKM04] G. Alonso, C. Casati, H. Kuno, and V. Machirajv. Web Services. Springer
Verlag, 2004.

[BS03] E. Börger and R. Stärk. Abstract State Machines – A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[CGK+03] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, and S. Weer-
awarana. Business Process Execution Language for Web Services Version
1.1. Specification, BEA Systems, IBM, Microsoft, SAP, Siebel, 05 May
2003. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbiz2k2/html/bpel1-1.asp.

[FR05] D. Fahland and W. Reisig. ASM based semantics of Web services: the neg-
ative control flow. International conference, ASM05, Paris, March 2005.

[Gur00] Y. Gurevich. Sequential Abstract-State Machines Capture Sequential Al-
gorithms. ACM Tranactions on Computational Logic, Vol.1 No.1:77–111,
July 2000.

[KMR00] Ekkart Kindler, Axel Martens, and Wolfgang Reisig. Inter-operability of
Workflow Applications: Local Criteria for Global Soundness. In Business
Process Management, LNCS 1806, pages 235–253, 2000.

[Mar03] Axel Martens. On Usability of Web Services. In Proceedings of WQW
2003, Rome, Italy, 2003. IEEE Computer Society Press.

[Mar05a] Axel Martens. Analyzing Web Service based Business Processes. In Pro-
ceedings of Intl. Conference on Fundamental Approaches to Software En-
gineering (FASE’05), Edinburgh, Scotland, April 2005. Springer-Verlag.

[Mar05b] Axel Martens. Consistency between Executable and Abstract Processes.
In Proceedings of IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE’05), Hong Kong, China, March 2005. IEEE
Computer Society Press.

[MS05] P. Massuthe and K. Schmidt. Operating guidelines – an alternative to
public view. Internal report, Humboldt-Universität zu Berlin, 2005.

[RB04] W. Reisig and A. Brade. ASM models of Web Services. Technical report,
Humboldt-Universität zu Berlin, Computer Science Institute, December
2004. No. 181.

[Rei97] W. Reisig. Elements of Distributed Systems. Springer Verlag, 1997.
[RSS04] W. Reisig, K. Schmidt, and Chr. Stahl. Geschäftsprozesse modellieren und

analysieren auf der Basis von Petri-Netzen. Technical report, Humboldt-
Universität zu Berlin, Computer Science Institute, December 2004. No.
182.

[SS04] Karsten Schmidt and Christian Stahl. A Petri net Semantic for BPEL4WS
- Validation and Application. In Ekkart Kindler, editor, Proceedings of
the 11th Workshop on Algorithms and Tools for Petri Nets (AWPN’04),
pages 1–6. Universität Paderborn, October 2004.

[vdA96] W.M.P. van der Aalst. Structural Characterization of Sound Workflow
Nets. Technical report, Eindhoven University of Technology, Dept. of
Mathematics and Computing Science, 1996. Computing Science Report
96/23.

[vdA98] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[W3C02] W3C. Web Services Architecture Requirements. Working group note,
W3C, October 2002. http://www.w3.org/TR/wsa-reqs/.

