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Abstract. The correctness of a component-based specification is not guaranteed
by the correctness of its components alone; on the contrary, integration analysis
is needed to observe their conjoint behavior. Existing approaches often leave the
results of the analysis at the level of the integrated system, without tracing them
onto the corresponding components. This effectively results in loss of architec-
ture, as it is no longer possible to reason over those components and evolve their
specification while keeping the results of integration analysis.
This paper presents a formal approach to automatically translate changes on the
integrated system into revisions of the components and the architecture initially
defined by the developers. Several architectural alternatives are provided that,
besides allowing developers to reason about the system from different points of
view, promote its correct modularization in two overlapping perspectives: the en-
capsulation of crosscutting concerns and the elaboration of the architecture de-
sired for the final implementation.

1 Introduction

Component-based approaches have been around for a long time as a means to split
complexity in software development, promising better understanding of a system by its
developers, improved quality and easier maintenance. A more recent idea to improve
software engineering practice has been to apply incremental development techniques,
which are based on obtaining successive revisions of a system until achieving the de-
sired functionality. These techniques are especially suitable to deal with changeable
specifications, and also with maintenance and evolution tasks.

Due to the well-known problem of feature interaction, the correctness of a system
is not guaranteed by the correctness of its parts, considering these in isolation. On the
contrary, certain properties can only be verified by observing the conjoint operation of
several components. This points out the need for integration analysis.

Current approaches to component-based development often limit themselves to find-
ing whether integration analysis succeeds. In case of failure, no information is given on
how to modify the components, forcing the developers to attempt manual changes until
getting a positive response, which is clearly unsatisfactory. The ideal would be to deter-
mine the changes needed to satisfy the integration properties over the integrated system
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(i.e., where the properties can be observed), and then trace those changes automatically
to the components. Unfortunately, support for this feature is missing nowadays, result-
ing in an effective loss of architecture, as it is no longer possible to reason over the
individual components while keeping the results of integration analysis. So, the ability
to trace integration results would represent a major aid to incremental development.

In this paper, we present a formal methodology to tackle this concern. Our pro-
posal is to automatically translate the changes resulting from integration analysis into
revisions of the components and the architecture defined by the developers. These are
provided with several architectural views, that promote the correct modularization of a
system and help to elaborate the architecture wanted for its final implementation.

The paper is organized as follows. Section 2 outlines the development model in
which our proposal takes place, with Section 3 describing our methodology to trace
integration analysis. Section 4 presents a simple example on applying this methodology,
which is later discussed in Section 5. Section 6 comments our ongoing work in the line
of this paper, and Section 7 discusses related work. Appendixes A, B and C gather the
technical details not included elsewhere.

2 The (SCTL/MUS)A Context

The context for our work lies in the SCTL-MUS methodology [14], a formal approach
to the specification of reactive systems that models the usual way in which a system
is specified: starting with an initially rough idea of the desired functionality, this is
successively refined until the specification is complete.

SCTL-MUS combines property-oriented and model-oriented formal description tech-
niques: on the one hand, the many-valued logic SCTL (Simple and Causal Temporal
Logic) is used to express the system’s functional requirements; on the other, the graph
formalism MUS (Model of Unspecified States) is employed to model systems for vali-
dation and formal verification purposes.

SCTL statements have the generic form Premise
⊕

Consequence, with
⊕

rang-
ing over the set of temporal operators {⇒,⇒©,⇒ ⊙} and the following semantics:

If Premise is satisfied, then [simultaneously (⇒) | next (⇒ ©) | previously (⇒ ⊙
)]

Consequence must be satisfied.

This causal semantics allows expressing under what circumstances during the op-
eration of a system shall a given condition be satisfied, so that the premise and the
temporal operator of a statement delimit the applicability of its consequence.

Given a set of requirements expressed in SCTL, the synthesis algorithm of SCTL-
MUS attempts to generate a MUS graph that adheres to all of them. As a distinctive
feature with respect to traditional Labeled Transition Systems (LTS), the events of a
MUS graph can be not only possible (true, 1) or non-possible (false, 0) in the different
states; on the contrary, if there are no requirements affecting the specification of an event
in a given state, that event is given the value 1

2 (not-yet-specified or unspecified) in that
state. Figure 1 shows two SCTL requirements and the MUS graph that implements
them —note that we do not explicitly represent unspecified actions (like a in state s 2),
because 1

2 is the default value; instead, we do represent false actions (like b in s2),
placing a symbol like next to every state where a given event is non-possible.



r1 ≡ a⇒ (¬b ∧©c
)

r2 ≡ c⇒©a s1

s2
b

a

c

Fig. 1. Two SCTL requirements and the MUS graph that implements them

The commented notion of unspecification was introduced to deal with the incom-
pleteness inherent to the intermediate stages of an incremental process, so as to en-
able reasoning about evolutions and satisfaction tendencies in the formal verification
process. A partial specification represents all the systems into which it can evolve by
adding new requirements, and the MUS formalism was devised to explicitly capture
that potentiality. This is achieved through the inclusion of an unspecified state —not
relevant for the contents of this paper and, therefore, not drawn in the figures— that
represents all the states that have not been specified so far (see [14] for the details).
With this definition, the addition of new requirements to a specification always results
in losses of unspecification in the MUS model that implements it (i.e., some unspecified
events are turned into possible or non-possible ones), which allows making the synthe-
sis an incremental process. These features are not fully catered for by other formalisms
intended to support partial specifications, like KPSs [3] or MTSs [6].

2.1 An Incremental Approach to Component-based Specification

SCTL-MUS lacks the notion of architecture, which hinders the simultaneous work of
several developers and makes specifications unmanageable for large systems. More-
over, it only defines mechanisms to handle evolutions of a specification to satisfy new
requirements, consistent with the current ones, but provides no support to modify the
current requirements so as to solve inconsistencies or revise previous design decisions.

To solve these flaws, we are now working on (SCTL/MUS)A, a fully incremen-
tal methodology aimed at facilitating task division and collaborative work. The new
methodology, whose motivation was given in [11], inherits most of the philosophy of
SCTL-MUS, keeping its dual approach in the use of formal description techniques, its
iterative life cycle and its notion of unspecification. It also uses the same formalisms
(SCTL and MUS), to reason over individual components and their compositions, but
extends this basis to handle component-based specifications.

(SCTL/MUS)A accommodates the multiple parts of a specification in composition
layers that relate components to the compositions in which they take part, with the over-
all system at the top. The composition operators allowed have been borrowed from the
LOTOS process algebra, though adapting them to the three-valued domain of MUS.
This is the key to make compositions reflect the unspecification —and, therefore, the
potentiality— of their forming components, which is essential to support the incremen-
tal approach. Appendix A explains this vision on the selective parallel composition
operator (denoted by |[Λ]|M), which is a powerful way to express the concurrent oper-
ation of several components. In brief, a composition C 1|[Λ]|MC2 can advance through
an event a �∈ Λ if a is possible in either C1 or C2, but it can advance through an event
b ∈ Λ only if b is possible in both of them; thus, if Λ is the empty set, the effect is that
of pure interleaving (in this case, the operator is denoted by |||M ).



2.2 Orientation to Aspects

(SCTL/MUS)A fits within the Early-Aspects initiative [16], which aims at extending the
principles of aspect-oriented programming [9] to the phases of requirements engineer-
ing and architectural design. Aspect-orientation is a way to achieve modularizations that
facilitate the management of crosscutting functionality, i.e., functionality that appears
scattered through the parts of any decomposition in objects. This is done by introducing
aspects that encapsulate the crosscutting functionality, and by defining mechanisms to
weave (combine) the aspects with the components they crosscut.

Due to the slight notion of structure available during requirements elicitation tasks,
our vision is not to make an explicit distinction between components and aspects; in-
stead, any component that is combined with the composition of several others may be
seen as an aspect, because it crosscuts their functionality. Nonetheless, treating a piece
of functionality as an aspect is only justified when it can be traced into modifications of
the crosscut components as a meaningful addition to their functionality.

In line with the ideas discussed in [13] and the works on multi-dimensional sep-
aration of concerns [18], the management of aspects in (SCTL/MUS) A is linked to
allowing developers to handle multiple architectural views, each one defining a differ-
ent decomposition of the system or any of its components. Different decompositions
enable different reasonings, and it is possible to work over any one of them, since we
can propagate what is done on a given view to the others. This way, multiple developers
can contribute to construct the desired system by reasoning from different perspectives.

3 A Methodology for Integration Analysis

This section introduces the methodology we have defined to perform integration anal-
ysis in (SCTL/MUS)A, which is targeted at facilitating incremental development. The
fundamental idea is that the analysis of a system should not be delayed until its parts
have been completely developed, in order to prevent doing much work over incorrect
foundations. Consequently, (SCTL/MUS)A allows integration analysis to be done at in-
termediate stages of the specification process. Furthermore, it supports analysis at any
level of composition, not necessarily on the whole system. Despite, for simplicity, we
will refer to the composition being analyzed as “the system”.

Figure 2 illustrates the steps of the methodology, which we proceed to describe.

S

C1 . . . Op . . . Cn

Integration

analysis
{Rnew}

Snew = S with the changes due to {Rnew}

OK

NOT OK
1

2 3

4
5

Fig. 2. The complete cycle of integration analysis



3.1 Specification

The starting point (step 1 in Fig. 2) is the specification of the system (S) as the combina-
tion of several components (Ci) by means of composition operators (Op). The analysis
is done on the MUS graph of the composition, that is computed from the MUS graphs of
the components by following the rules of the composition operators. The MUS graphs
of the components may have been derived from other components or, for those at the
lowest composition levels, synthesized from a set of SCTL requirements.

3.2 Integration Analysis

Once available, the MUS graph of the system is subject to verifying the integration
properties (step 2 in Fig. 2), to find whether the system satisfies them (OK) or it does
not satisfy them yet (NOT OK).

If the system satisfies the properties, the analysis is finished, and the developers
can continue working over the unchanged current specification. On the contrary, if the
system does not fulfill the properties, an evolution of its specification is needed to satisfy
the developers’ expectancies. In this case, as commented in Sect. 1, the goal of the
methodology is twofold: to find the modifications needed for the system to satisfy the
properties stated for it, and to trace those changes onto the components whose conjoint
behavior is being analyzed. Our proposal, as explained below, is to aid the developers
in the first task, and to fully automate the second.

3.3 The Creative Part

Determining the changes needed for a system to satisfy certain objectives (step 3 in
Fig. 2) requires participation from the developers, because many viable alternatives may
exist in the general case. To help in this process, we have adapted the analysis-revision
cycle presented in [5], that automatically provides some of those alternatives.

An important thing to note here relates to the concept of unspecification (Section 2),
that allows us to conjugate the two main methods proposed in literature to revise the
specification of a system: refinements [10, 17] and retrenchments [15]. Because of un-
specification, the developers can evolve a system in two different ways:

(i) By retrenchments, for properties that are explicitly violated. In this case, the
system includes unwanted behavior, that must be eliminated. The analysis-revision
cycle points out the circumstances under which the properties are violated, and
suggests possibilities to solve the problem.

(ii) By refinements, for properties that are not explicitly violated yet. These proper-
ties, which are neither fulfilled nor violated yet (they are unspecified), indicate that
behavior must be added to make the specification satisfy them. Here, the analysis-
revision cycle identifies evolutions that would make the specification violate the
properties, and suggests modifications to conduct it the other way.

Assisted by the suggestions of the analysis-revision cycle on how to evolve the
system, the developers are expected to come up with a set of requirements ({Rnew})
that specify the changes to be done on the system.



3.4 The Automated Part (I): Incorporating the New Requirements

Once the changes have been decided, it is easy to apply them over the MUS graph of
the integrated system (step 4 in Fig. 2), but the result is no longer obtainable from the
MUS graphs of the original components. At most, it can be expressed as a new system
where the architecture has been lost: Snew = S with the changes due to {Rnew}.

3.5 The Automated Part (II): Tracing Changes onto the Original Specification

In order to avoid loss of architecture, and to permit future iterations in the specification
of the individual components, our approach traces the changes done on the system into
revisions of the original architecture and components (step 5 in Fig. 2). We do this by au-
tomatically refactoring Snew into two different architectural views, as shown in Fig. 3:

(i) In the first view, a new component is created that materializes the new requirements
and that, combined with the original components, makes the system behave as in-
tended. As shown in Fig. 3, the new architecture only adds the new component
(Cn+1), preserving the original ones and the ways they were combined (Op).
The new component, that manifests the crosscutting nature of the integration prop-
erties, may have significance in the domain of application of the system, in which
case it can be further developed (in functionality and architecture), and may even
be reused for other systems.

(ii) Just because the new component may be meaningless in the implemented system,
our methodology provides a second architectural view, where its functionality is
discharged over the original components. In other words, since the new component
may be seen as an aspect (A) that modifies the original components, we offer a
view that re-expresses the original architecture in terms of modified components
(C∗i ), possibly changing the original composition operators (note the Op ′′ instead
of Op in Fig. 3). We represent the weaving operation by means of a newly-defined
operator, that we call “projection” and denote by←∗.

To complete the process of tracing changes, (SCTL/MUS)A supports the automatic
reformulation of the requirements of the original components. Using mechanisms like
the ones presented in [5], we modify the SCTL requirements provided by the develop-
ers from the transformations done over the MUS models that implement them, which
allows the developers to see the changes made to the system expressed in the same
language used to specify it. This is an essential aid to go on with the incremental speci-
fication process: the requirements are the mechanism by which developers express their
conception of the system, and so their formulation holds the key to understand what is
being constructed.

Reformulating requirements is necessary in the second architectural view, to enable
reasoning about some behavior of a given component that can only be observed in its
combination with the aspect. In this case, the requirements for C ∗

i are derived from
the requirements of the corresponding C i. As for the new components Cn+1 and A in
Fig. 3, at most we can annotate the situation and the set of requirements that led to their
appearance —inventing a set of requirements from which their MUS graphs could be
generated is purposeless, because those requirements would not capture any expressive
effort from the developers.



Snew

S Op′ Cn+1

C1 ... Op ... Cn

Arch. view 1

Snew

C∗1 ... Op′′ ... C∗n

C1 ←∗ A Cn ←∗ A

Arch. view 2

Fig. 3. Two architectural views for the new system

4 An Example on Synchronization Concerns

This section illustrates the methodology presented in Sect. 3, with an example of trac-
ing synchronization requirements over the parallel composition of several components.
We describe an evolution of the system based on suppressing unwanted behavior, and
show how the two architectural views are automatically computed. These include the
restrictions imposed at the composition level while keeping the original architecture.
Details about the algorithms applied are left for Appendixes B and C.

4.1 Specification

Let Sender be a component whose functionality, at the current stage of development,
is “a Sender starts a transmission when it has data to send; it waits for new data after
each transmission”. A system is wanted that defines a communications network with n
senders operating on a shared channel. To model this, the developers initially specify
the system Sn as the interleaved combination of n instances of component Sender:

Sn ≡ Sender1 . . . |||M . . . Sendern = |||M
i=1...n

Senderi (1)

Figure 4(a) shows the MUS graph of the i-th sender in the system, in its current
status of specification. The sender waits for data in state s1 (the initial state), and tran-
sitions into s2 when action rdyi occurs, meaning that new data are available. Once in
s2, the sender can begin transmitting the data by executing ini i. It stays at s3 until the
transmission finishes (action endi), and then goes back to s1 to wait for new data. All
the other actions are not-yet-specified.

4.2 Integration Analysis

The specification of the senders is not yet complete, because some unspecification re-
mains in their MUS graphs. However, it may be wise to analyze their conjoint behavior
before completing them, to make sure that what has been specified so far is correct,
avoiding futile efforts in evolving incorrect specifications.

As the senders will operate on a shared channel, it is necessary to ensure that it
is not possible for several of them to be transmitting simultaneously. According to the
MUS graph of Fig. 4(a), a sender is transmitting only when it is in state s 3, and this can
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Fig. 4. The MUS graphs of Senderi and S2 ≡ Sender1 |||M Sender2

be referred to as the only state where action end i is possible. Therefore, for the n = 2
case, the developers can specify the desired property as P ≡ true ⇒ ¬(end 1 ∧ end2)
—since the premise (true) is satisfied in every state, the property is violated in those
states where both end1 and end2 are possible.

The first step to analyze the satisfaction of P is to obtain the MUS graph of the
system Sn, by combining the graphs of n senders according to the rules of the |||M
operator. Figure 4(b) shows the MUS graph of the network with two senders,M S2 .

4.3 The Creative Part

Analyzing the property P reveals that it is explicitly violated in the state s9 ofMS2 ,
since both end1 and end2 are possible there. Therefore, as explained in Sect. 3.3, a re-
trenchment is needed to ensure proper behavior. From among the possible evolutions
suggested by the analysis-revision cycle, the developers decide to incorporate the re-
quirements of Eq. (2), which prevent one sender from starting a transmission while the
other is transmitting:

{R2
new} = {R1,R2}, where

{R1 ≡ end1 ⇒ ¬ini2
R2 ≡ end2 ⇒ ¬ini1

(2)

For the general case of n senders, the new requirements would be those of Eq. (3):

{Rn
new} = {Ri}1≤i≤n, where Ri ≡ endi ⇒

∧
j �=i

¬inij (3)

4.4 The Automated Part

To describe how the new requirements are applied onto the MUS graph of the original
system (Sn), we consider again the case n = 2, without loss of generality. Due to R1,
the specification of action ini2 changes to false in the states s7, s8 and s9 of MS2 ;
similarly, R2 changes the specification of ini1 to false in s3, s6 and s9. The resulting
graph (MS2

new
) is shown in Fig. 5, where it can be seen that the problematic state s9 is

now unreachable —this is the desired effect of the new requirements.
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Fig. 5. The MUS graph of the revised overall system,MS2
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Returning to the general case, the important thing to note is that, despite MSn
new

represents the desired functionality, it is not expressed in terms of the original compo-
nents. In fact, it represents a system without architecture (remember point number 4
in Fig. 2), which prevents from continuing its modular development. (SCTL/MUS) A

addresses this problem by automatically refactoring S n
new into two architectural views,

which are revisions of the original system.
The first architectural view includes a new component, Synchronizern, that ma-

terializes the new requirements and ensures the correct operation of the senders. This
view is expressed in Eqs. (4) and (5), where Λn

sync = {inii, endi}1≤i≤n.

Sn
new = Sn |[Λn

sync]|M Synchronizern (4)

Sn
new = ( |||M

i=1...n

Senderi) |[Λn
sync]|M Synchronizern (5)

The Synchronizern component, whose MUS graph is shown in Fig. 6(a), and the
Λn

sync set of actions are automatically derived from from S n and {Rn
new} using the

algorithm described in Appendix B. This algorithm guarantees by construction that the
MUS graph of the composition Sn |[Λn

sync]|M Synchronizern is equal toMSn
new

.
In the second architectural view, Synchronizern is seen as an aspect that crosscuts

the original senders. This allows re-expressing the system S n
new as the composition of n

modified senders, in a way that resembles the original architecture of Eq. (1). The new
expression is shown in Eq. (6), where the Λn

sync set of actions is the same as above.

Sn
new = |[Λn

sync]|M
i=1...n

Sendern
csmai

(6)

We refer to the modified components as Sendern
csma, because they have the basic

functionality of the original Sender, though enhanced with the capability to prevent
collisions on a communications channel shared with other Sendern

csma components.
Figure 6(b) shows the MUS graph of the i-th instance of Sendern

csma in the system,
where it can be seen that the start of a transmission is forbidden while another sender
is using the channel (inii is false in s4 and s5). Therefore, a retrenchment of the overall
system has led to a loss of unspecification of the MUS graphs of its forming compo-
nents; as noted in Sect. 3.5, this can be translated into a refinement of the requirements
provided for those components by the developers.
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Fig. 6. The MUS graphs of Synchronizern and Sendern
csmai

Sendern
csmai

results from weaving Synchronizern with the Senderi components,
by applying the projection operator as described in Appendix C (again, the composition
of the Sendern

csmai
components is guaranteed to yield a MUS graph equal toMSn

new
).

So, Equation (6) can be rewritten with an additional lower composition layer:

Sn
new = |[Λn

sync]|M
i=1...n

(Senderi ←∗ Synchronizern) (7)

To sum up, Equations (4) and (5) describe two composition layers in the first archi-
tectural view proposed for Sn

new , and Eqs. (6) and (7) do the analogous with the second
one. These two views are illustrated in Fig. 7.

5 Analyzing the Example

About the Architectural Views Handling different architectural views of a system is
useful to advance towards the architecture desired for its implementation, while keeping
the ability to reason about different features of its functionality. In our example, if the
developers expect Synchronizern to have significance of its own in the implemented
system (as an arbitrage mechanism controlling the concurrent execution of the senders),
they should continue evolving the first architectural view. Conversely, they should work
on the second if synchronization will be up to the senders themselves.

Multiple views also help to gain understanding about the desired functionality, be-
cause some evolutions of the system may be easier to identify from certain perspec-
tives. For example, moving from CSMA to CSMA/CD synchronization is easier (and
less error-prone) to attain by evolving the Synchronizern component and projecting it
again over the senders, than by directly modifying these. This witnesses the advantages
of encapsulating crosscutting concerns.

Furthermore, from the second architectural view, we can recover the notion of a
sender in which the start of a transmission can be delayed due to environmental condi-
tions, a feature that is not present in the other view. Thus, Sendern

csmai
can be taken

as a reusable component, with the basic functionality of a generic sender and the added
value that, in the presence of other components of the same kind, it incorporates ad-
ditional functionality to model synchronization. Even the Synchronizer n component
may be reused, since it works as a mutual exclusion semaphore.
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Fig. 7. The two architectural views for the system Sn
new

About Tracing Integration Results Tracing the results of integration analysis back to
the composed components is essential to continue their incremental development. It is
particularly frequent that a component needs to incorporate considerations from higher
layers before doing new iterations of its specification. This would be the case if we
wanted to enhance Sendern

csmai
with behavior to execute when the state s5 is reached

(after receiving data to send, the attempt to use the channel is blocked by other sender).
Thus, the methodology presented here, together with the management of unspecifica-
tion, endows (SCTL/MUS)A with great levels of incrementality.

About the Algorithms and Formalisms Even though the methodology of Sect. 3 is
general, we have focused on handling retrenchments over compositions with the |[Λ]|M
operator, for which the algorithms described in Appendixes B and C are always valid.
This specificity does not imply loss of generality or interest, because parallel compo-
sition is, by far, the most important construct in the field of reactive systems (see [1]),
being not only valid to model distribution or the concurrent operation of several com-
ponents, but also for the general management of interacting features.

The algorithm to derive the synchronizer component succeeds at encapsulating the
crosscutting concerns. As a proof for this, note that, during integration analysis, the
developers referred to the fact that Senderi was transmitting by the possibility of exe-
cuting endi, which would be incorrect if the senders had more actions between ini and
end. Nonetheless, Synchronizern remains valid even if new actions are inserted be-
tween ini and end in a posterior evolution. This is because Synchronizern captures the
intention of the new requirements in the context of their formulation, having nothing to
do with the component that would be synthesized from those requirements alone.

On its part, the projection algorithm modifies the original components by adequately
introducing true and false events. It forbids just what the synchronization requirements
forbid, and maintains the unspecification not affected by those requirements so as not
to limit future evolutions unnecessarily. Besides, it does not incorporate irrelevant facts
about the environment into the specification of the individual components (note that
there is no trace of rdyj in Sendern

csmai
, for any j �= i).

As a final remark, it must be noted that our methodology is not dependent on us-
ing SCTL, since other logics could be employed —our use of SCTL is motivated by
its causal semantics, which we consider adequate for the first stages of the develop-
ment process, in line with the comments given in [12]. In contrast, the management of



MUS models is indispensable for several reasons: i) to allow deciding when to apply
refinements or retrenchments, ii) for the transformation algorithms to work, and iii) to
effectively support an incremental specification approach.

6 Work in Progress

An immediate continuation of our work is to present the algorithms that apply the
methodology of Sect. 3 to handle refinements of the integrated system, providing again
two architectural views: one in which a new component gathers the added behavior, and
other in which the new behavior is allotted over the original components. Analogous
comments hold for the algorithms that perform the transformations over compositions
involving other operators than |[Λ]|M .

We are also considering the possibility of offering other meaningful architectural al-
ternatives, besides the two commented here. For instance, while the second view brings
into the components what their environment forbids about them, a third one could in-
corporate what each component prohibits in its environment. Another option would be
to discharge the functionality of the aspect onto a subset of the original components,
though we conjecture that this may not be possible in all cases.

Our proposal in this paper represents an aid to go from the customers’ requirements
to a system that satisfies them, allowing to progressively conduct the specification to-
wards the desired architecture while not preventing reasoning over the different con-
cerns in isolation. In this regard, we intend to provide additional assistance by support-
ing the automatic identification of crosscutting functionality and its posterior extraction
into aspects, which may be weaved with the crosscut components through parallel or
sequential composition. To handle the first case, we are experiencing with algorithms
similar to those of bipartition employed in [2], though considering unspecification and
taking the requirements into account; to handle the second, we are currently involved
with the definition of a suitable language for the definition of pointcuts.

The identification of aspects will be helpful to assist the developers when they fail to
identify a modular decomposition of a system’s functionality. As argued in Sect. 5, en-
capsulating crosscutting concerns is desirable even when they will not represent compo-
nents in the final implementation. Besides, we remark the importance of an early identi-
fication, before the aspects get so tangled in the hierarchy of components that their iden-
tification becomes unfeasible —we believe that the incrementality of (SCTL/MUS) A

can be a good basis to advance research in this topic.

7 Related Work

The work presented here is involved with the conjoint treatment of requirements and ar-
chitecture in the specification of software systems, an area that has received little atten-
tion to date. In [20], it is noted that “little work has been devoted to techniques for sys-
tematically deriving architectural descriptions from requirements specifications”, notic-
ing that this is somewhat paradoxical, as long as architecture has a profound impact on
the achievement of a system’s goals. The same author discusses in [19] the desirability



of doing analysis on specification drafts and carrying out development in an incremen-
tal fashion, whereas “many specification techniques require that the specification be
complete in some sense before the analysis can start”.

To the best of our knowledge, ours is the first formal approach that completes the cy-
cle for integration analysis shown in Fig. 2. Elementary approaches finish at step 2, only
informing about whether the analysis succeeds or not. In other cases, counterexamples
are provided to help finding the source of the errors [7], but this is limited assistance
(insufficient to claim step 3), because no guidance is given on how to modify the sys-
tem. Even when such an aid is provided —as in [4]—, changes are made only at the
level being analyzed, not being traced throughout the architecture of the system.

We only found works on traceability within the paradigm of assume-guarantee
reasoning [8], which attempts to characterize the influence of the environment over
the components to guarantee the satisfaction of the integration properties, resembling
what we do with our second architectural view. However, the techniques based on this
paradigm usually demand manual intervention and great expertise in formal verifica-
tion, deviating intellectual efforts from the specification tasks. Our proposal addresses
these shortcomings by allowing developers to reason continuously over the problem at
hands; the key to achieve it is that we lean intermediately against an operational model
(MUS) instead of reasoning directly over mathematical formulae (requirements).

Some transformations similar to the ones presented in this paper have been ap-
plied in the Lotosphere environment [2], though with remarkable differences. In Loto-
sphere, transformations were applied to refine abstract specifications into component
processes, with those specifications typically describing the service offered by a com-
munications protocol that was completely known in advance. In contrast, the vision in
(SCTL/MUS)A is that no complete idea of the desired functionality is known before-
hand, and that developers gain knowledge about the desired system as the development
progresses. Thereby, we do not take a top-down approach to development, but an incre-
mental one in which requirements and architecture can be elaborated in parallel. This
way, we relate refinements to a progressive removal of incompleteness, which is sup-
ported by the management of unspecification and the reformulation of the requirements.
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A Selective Parallel Composition of MUS Graphs

The selective parallel composition operator (|[Λ]|) has been typically defined over La-
beled Transition Systems. For example, in Fig. 8(a), the overall systemL3 = L1 |[c]| L2

can evolve through actions a and b in any order, because they are not in the Λ set. In
contrast, c must be executed by the two individual processes simultaneously, which
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Fig. 8. Parallel composition of LTS and MUS graphs

guarantees that they terminate at the same time. Note that, as LTSs only handle true and
false actions, the actions not explicitly represented are false.

Based on the |[Λ]| operator, we define |[Λ]|M by adapting its semantics to deal with
unspecification. In a compositionM1|[Λ]|MM2, the specification value for an action
a is computed as the minimum between its values inM1 andM2 if a ∈ Λ, and as the
maximum otherwise (note that 0 ≤ 1

2 ≤ 1). Intuitively, if a �∈ Λ, the two components
need no agreement to go on, so it is possible to evolve through a if any of the two
components can. On the contrary, if a ∈ Λ, the two components have to agree on a. If a
is false inM2 and true inM1, the agreement is not possible, but if a were unspecified
inM2 (as in Fig. 8(b)), the agreement would be possible if a evolved into true in a later
iteration of the specification process. This way, the definition of |[Λ]|M preserves the
incompleteness of the components in the composition.

B Synthesis of the Synchronizer Component

This appendix outlines the algorithm used in Sect. 4 to derive the Synchronizer n com-
ponent. This algorithm is applicable whenever the new requirements suppress behavior
in the MUS graph of the composition, by turning true or unspecified actions into false
ones. For simplicity, we illustrate the steps for the n = 2 case.

1. The first step is to turn false actions in the starting MUS graph into unspecified ones,
to distinguish the actions forbidden by the specification of the components from the
actions that will be prohibited by the new requirements. In the example, this returns
the original MUS graphMS2 (Figure 4(b)) because it had no false actions.

2. Next, the new requirements are materialized over the composition, by turning into
false all the actions they forbid. As explained in Sect. 4, the new requirements of
Eq. 2 lead to the MUS graph of Fig. 5.

3. The MUS graph resulting from the previous step is reduced, to remove the actions
whose occurrence is irrelevant for the integration properties. This is done by suc-
cessively merging contiguous compatible states, that is, states in which the specifi-
cation values of the actions are not contradictory (what is true in the one is not false
in the other) —remark that no reduction would be possible without the management
of unspecification.
In the MUS graph of Fig. 5, it is possible, for instance, to merge state s 1 with s4,
s2 with s5 and s3 with s6, which yields the reduced graph of Fig. 9(a). The process
eventually produces the graph of Fig. 9(b).
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Fig. 9. Synthesis of the synchronizer component

4. To finish, it only remains to turn into unspecified the actions that are either un-
specified or forming unitary loops in all the states —those actions are not rele-
vant at the composition level. Then, the Λsync set of actions is formed by those
actions which are true or false in any state. In the graph of Fig. 9(b), both rdy 1

and rdy2 can be turned into unspecified actions in all the states, leading to the fi-
nal component Synchronizer2, shown in Fig. 9(c). The Λ2

sync set is found to be
{ini1, ini2, end1, end2}.

C Projection of the Synchronizer Aspect (←∗)

We briefly describe here how to derive the modified components in the second archi-
tectural viewpoint of Sect. 4 by projecting the synchronizer aspect onto the original
ones. As shown in Fig. 10, this is achieved by operating the original Sender i with
the Synchronizern component using the |[Λ]|M operator, with Λ computed as the
intersection of Λn

sync with the alphabet of actions of each Senderi. This process is
applicable whenever the original components are combined with |[Λ]|M , for any Λ.
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Fig. 10. Projection of the synchronizer aspect


