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Abstract. We aim at defining an integrated framework for the specifi-
cation and (automated) analysis for security and trust in complex and
dynamic scenarios. In particular, we show how the same machinery used
for the formal verification of security protocols may be used to analyze
access control policies based on trust management.

1 Introduction

Computer security is a research area that is increasingly receiving the attention
of researchers. In particular, consider some security issues in ubiquitous com-
puting systems: these consist of different entities that have to cooperate and
share resources to achieve a certain goal. Cooperation is often enabled by trust
relationships between entities. There is a tight connection between the security
mechanisms used to guarantee the confidentiality and integrity of information
and mechanisms used to establish, manage and negotiate trust, reputation and
recommendation among the different entities.

In this paper we focus on the integrated formal modeling and analysis of
security and trust. In particular, we uniformly model security protocols and
some form of access control based on trust management.

Formal languages for modeling distributed systems have been applied in the
last decade to the analysis of cryptographic protocols. In this framework, cryp-
tography is usually modeled by representing encryptions as terms of an algebra,
e.g., E(m, k) may represent the encryption of a message m with a key k. Usu-
ally, the so-called perfect encryption abstraction is adopted: encryptions are
considered as injective functions which can be inverted only by knowing the cor-
rect information, i.e. the decryption key. For instance, common inference rules
for modeling the behavior of the encryption and decryption (in a shared-key
schema) are the followings:

m k

E(m, k)
E(m, k) k

m
(1)
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which should be read as: from a message m and a key k we can build the
encryption E(m, k); from an encryption E(m, k) and a decryption key k we can
obtain the encrypted message m.

The long standing tradition of modeling the specific features of cryptographic
functions as term-rewriting rules met the powerful verification techniques devel-
oped for process algebras. As a matter of fact, several formal languages for
describing communication protocols, for instance CSP [17], have been exploited
for representing cryptographic protocols without changes in syntax or semantics:
the inference rules have been given at the meta-level of the verification. Instead
others, like the π–calculus [1] and the CCS [19, 21], have been effectively refined:
the π–calculus have been equipped with two pattern matching constructs for
modeling message splitting and shared-key decryption, respectively; the CCS
has been equipped with an inference construct that permits to infer new mes-
sages from others, i.e.:

[m1 mn `r x].P
which denotes a process that tries to deduce a message m from the messages in
m1, . . . , mn and when it succeeds it substitutes this message for x in the process
specification P . The language is called CryptoCCS ([19]).

The inference relation could be defined in many ways. Often, we will consider
the transitive closure of the entailment relations used in each process. This would
give a complex inference system. Such inference systems allow us to cope with
the variety of different crypto-systems that can be found in the literature.

However, when one analyzes a security protocol, usually assumes that public
keys, digital certificates, and generally speaking credentials are already given,
and does not usually check how these are formated, negotiated and managed.
Such a limited view seems not completely appropriate for dynamic, fully inter-
connected systems, where access control policies may change and typically may
also depend on credentials presented by users.

Similarly, when one wishes to formally analyze (e.g., see [2]) access control
systems, the authentication mechanisms (usually a security protocol) are con-
sidered a priori “secure”, without further specification.

While separation of concerns is often desirable, this is not always possible.
The interplay between security protocols and access control mechanisms/policies
is crucial. Moreover, a good specification and analysis framework should take an
holistic point of view.

As a matter of fact, we show that the idea proposed by CryptoCCS of using
inference constructs is also useful to model access control mechanisms based on
credentials in distributed systems.
Example 1. Indeed, consider a set of credentials, i.e. (signed) messages contain-
ing information about access rights. Assume that {A, ob1,+}pr(C) means that
the user C (via the signature with its private key pr(C)) asserts A has the right
to access the object ob1 and may grant this access to other users (this is denoted
through the symbol +). A rule like:

{A, ob1, +}pr(C) pr(C) {grant B, ob1}pr(A)

{B, ob1,+}pr(C)
(accC)
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may be used by the controller C to issue other access right credentials, after
receiving an indication by A, i.e. the signed message {grant B, ob1}pr(A).

Thus, we may consider the inference rules as an abstract mechanism to ex-
press security policies usually defined using other mathematical models and log-
ics (e.g., see [10, 24]).

In this paper, we deal with the RT trust management system [16]. However,
our approach is very general. In particular, we will show also how to encode with
inference systems the mechanisms for reasoning about trust proposed in [12] and
modeled with different approaches.

Having a unique language will allow us to model the interplay between secu-
rity protocols that use the trust relationships among different users, and the ways
in which these relationships are created (that often rely on security/interaction
protocols).

The fact that we can both model cryptography and some form of creden-
tial/trust management with the inference construct of CryptoCCS allows us to
use the software tools and methodologies already developed for security proto-
cols analysis to the more general case where credentials are explicitly managed.
In particular, in [22] a software tool for automated security protocols analysis
has been defined in [20] has been extended to cope with a huge class of inference
systems.

It is worthy noticing that the CryptoCCS has been previously defined to set
up a uniform framework for the analysis of security properties and information
flow (non-interference) with the same machinery (e.g., see [7, 5, 6]). This helped
us quite a lot in establishing a precise correspondence of properties of trust
negotiation protocols with non-interference ones (as hinted in [28]).

To sum up, the main contribution of this paper is to present an effective
framework, based on the flexibility of the CryptoCCS inference construct, for
uniformly specifying and analyzing several aspects of network/system security
and trust management.

There are few attempts to analyze security protocols and trust management
altogether. A notable example is the recent work in [9]. There the trust is ex-
pressed at a meta-level by decorating protocol specifications with formulas of
a trust logic and by ensuring that such formulas hold at certain points. Our
approach is thus different and is based on modeling trust (in different flavors)
inside the protocol specifications.

The paper is organized as follows. Section 2 presents the CryptoCCS lan-
guage and recalls some of its analysis techniques. Section 3 shows how the Cryp-
toCCS may be naturally used to model trust management languages. Section
4 investigates the relationships between notions of safety in Automated Trust
Negotiation and non-interference. Section 5 concludes the paper.

2 CryptoCCS

CryptoCCS [21, 19] is a slight modification of CCS process algebra [23], adopted
for the description of cryptographic protocols.
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The CryptoCCS model consists of a set of sequential agents able to commu-
nicate by exchanging messages.

The data handling part of the language consists of a set of inference rules
used to deduce messages from other messages. We consider a set of relations
among messages as: `r⊆ Mir+1, where r is the name of the rule and ir the
number of premises. For the sake of simplicity, we assume that `r (for each
r ∈ R) is decidable.

2.1 The Language Syntax

CryptoCCS syntax is based on the following elements:

– A set Ch of channels, partitioned into a set I of input channels (ranged
over by c) and a set O of output channels (ranged over by c, the output
corresponding to the input c);

– A set V ar of variables, ranged over by x;
– A set M of messages, defined over a certain signature, ranged over by M, N ,

m,n ....

The set L of CryptoCCS terms (or processes) is defined as follows:

P,Q ::= 0| c(x).P | cM.P | τ.P | P |Q | P\L |

A(M1, . . . , Mn) | [〈M1, . . . ,Mr〉 `rule x]P ; Q

where M, M ′,M1, . . . ,Mr are messages or variables and L is a set of channels.
Both the operators c(x).P and [〈M1 . . . Mr〉 `rule x]P ; Q bind variable x in P .

We assume the usual conditions about closed and guarded processes, as in
[23]. We call P the set of all the CryptoCCS closed and guarded terms. The set
of actions is Act = {c(M) | c ∈ I}∪{cM | c ∈ O}∪{τ} (τ is the internal, invisible
action), ranged over by a. We define sort(P ) to be the set of all the channels
syntactically occurring in the term P . Moreover, for the sake of readability, we
always omit the termination 0 at the end of process specifications, e.g. we write
a in place of a.0. We give an informal overview of CryptoCCS operators:

– 0 is a process that does nothing.
– c(x).P represents the process that can get an input M on channel c behaving

like P [M/x]).
– cM.P is the process that can send m on channel c, and then behaves like P .
– τ.P is the process that executes the invisible τ and then behaves like P .
– P1 |P2 (parallel) is the parallel composition of processes that can proceed in

an asynchronous way but they must synchronize on complementary actions
to make a communication, represented by a τ .

– P\L is the process that cannot send and receive messages on channels in L;
for all the other channels, it behaves exactly like P ;

– A(M1, . . . , Mn) behaves like the respective defining term P where all the
variables x1, . . . , xn are replaced by the messages M1, . . . , Mn;
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m m′

(m, m′)
(`pair)

(m, m′)
m

(`fst)
(m, m′)

m′ (`snd)

m k

{m}k
(`enc)

{m}k k

m
(`dec)

Fig. 1. An example inference system for shared key cryptography.

– [〈M1, . . . , Mr〉 `rule x]P ; Q is the process used to model message manipu-
lation as cryptographic operations. Indeed, the process [〈M1, . . . , Mr〉 `rule

x]P ;Q tries to deduce an information z from the tuple 〈M1, . . . , Mr〉 through
the application of rule `rule; if it succeeds then it behaves like P [z/x], other-
wise it behaves as Q. The set of rules that can be applied is defined through
an inference system (e.g., see Figure 1 for an instance).

2.2 The Operational Semantics of CryptoCCS

In order to model message handling (and so cryptography in an abstract way) we
use a set of inference rules. Note that CryptoCCS syntax, its semantics and the
results obtained are completely parametric with respect to the inference system
used. We present in Figure 1 an instance inference system, with rules: to combine
two messages obtaining a pair (rule `pair); to extract one message from a pair
(rules `fst and `snd); to encrypt a message m with a key k obtaining {m}k and,
finally, to decrypt a message of the form {m}k only if it has the same key k
(rules `enc and `dec, respectively).

In a similar way, inference systems can contain rules for handling the basic
arithmetic operations and boolean relations among numbers, so that the value-
passing CCS if-then-else construct can be obtained via the `rule operator.

Example 2. Natural numbers may be encoded by assuming a single value 0 and
a function S(y), with the following rule: x

S(x) inc. Similarly, we can define sum-

mations and other operations on natural numbers.

Example 3. We do not explicitly define equality check among messages in the
syntax. However, this can be implemented through the usage of the inference
construct. E.g., consider rule x x

Equal(x, x) equal. Then [m = m′]A (with the

expected semantics) may be equivalently expressed as [m m′ `equal y]A where
y does not occur in A. Similarly, we can define inequalities, e.g., ≤, among
natural numbers.

The operational semantics of a CryptoCCS term is described by means of la-
beled transition relations, P

a−→ P ′, with the informal meaning that the pro-
cess P may perform an action a evolving in the process P ′. More formally, we
consider a labelled transition system (lts, for short) 〈P, Act, { a−→}a∈Act〉, where
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(input)
m ∈M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P
(internal)

τ.P
τ−→ P

(\L)
P

c(m)−→ P ′ c 6∈ L

P\L c(m)−→ P ′\L
(|
1

)
P1

a−→ P ′1
P1 |P2

a−→ P ′1 |P2

(|
2

)
P1

c(x)−→ P ′1 P2
cm−→ P ′2

P1 |P2
τ−→ P ′1 |P ′2

(Def)
P [m1/x1, . . . , mn/xn]

a−→ P ′ A(x1, . . . , xn)
.
= P

A(m1, . . . , mn)
a−→ P ′

(D)
〈m1, . . . , mr〉 `rule m P [m/x]

a−→ P ′

[〈m1, . . . , mr〉 `rule x]P ; Q
a−→ P ′

(D1)
6 ∃m s.t. 〈m1, . . . , mr〉 `rule m Q

a−→ Q′

[〈m1, . . . , mr〉 `rule x]P ; Q
a−→ Q′

Fig. 2. Structured Operational Semantics for CryptoCCS (symmetric rules for |1, |2
and \L are omitted)

{ a−→}a∈Act is the least relation between CryptoCCS processes induced by the
axioms and inference rules of Figure 2. The expression P

a⇒ P ′ is a shorthand for
P ( τ−→)∗P1

a−→ P2(
τ−→)∗P ′ where ( τ−→)∗ denotes a (possibly empty) sequence

of transitions labeled τ . The expression P ⇒ P ′ is a shorthand for P ( τ−→)∗P ′.

2.3 Security protocol analysis

The security protocol analysis proposed in [19, 21] is based on the checking of
following property:

∀X s.t. S |X satisfies F

where F is a logical formula expressing the desired property. Often, when secrecy
properties are considered, F models the fact that a given message, i.e. the secret
to be verified, is not deducible from a given set of messages, i.e. the knowledge of
the intruder X acquired during the computation with S. The verification of such
property requires the ability of computing the closure of a inference systems, i.e.
the possibility to iteratively apply the inference rules. Given a set R of inference
rules, we consider the deduction relation DR ⊆ Pfin(M)×M. Given a finite set
of closed messages, say φ, then (φ,M) ∈ DR if M can be derived by iteratively
applying the rules in R. Under certain sets of assumptions on the form of the
rules, we may have that DR(φ) is decidable. Below, we present an example useful
in our case (e.g., see also [20]).

2.4 Some assumptions on the inference system

Given a well-founded measure on messages, we say that a rule

r
.=

m1 . . . mn

m0
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is a S-rule (shrinking rule), whenever the conclusion is a proper subterm of one
of the premises (call such premise main). The rule r is a G-rule (growing rule)
whenever the conclusion is strictly larger than each of the premises, and all the
variables in the conclusion must be in the premises.

Definition 1. We say that an inference system enjoys a G/S property if it con-
sists only of G-rules and S-rules, moreover whenever a message can be deduced
through a S-rule, where one of the main premises is derived by means of a G-
rule, then the same message may be deduced from the premises of the G-rule, by
using only G-rules.

Several of the inference systems used in the literature for describing crypto-
graphic systems enjoy this restriction1.

Indeed, using G-rules for inferring the main premises of an S-rules, is un-
useful. Thus, shrinking rules may be significantly applied only to messages in φ
and to messages obtained by S-rules. However, since the measure for classifying
the S-rules is well-founded then such a shrinking phase would eventually termi-
nate when applied to a closed set of messages φ. Then, only growing rules are
possible. Thus, if the inference system enjoys the G/S restriction then DR(φ)
is decidable when φ is finite. We may note that the inference system in page 1
enjoys the G/S restriction and so its deduction relation is indeed decidable.

In the case the inference system has no growing rules, we have decidability
even in the presence of a weaker form of shrinking rules. We say that a rule is
eq-shrink whenever the conclusion has an equal or smaller size than one of the
premises; moreover all the variables occurring in the conclusion must occur in at
least one of the premises. In such a case the decision procedure simply consists
of building the transitive closure of the inference rules.

3 Modeling several trust management languages

Through process algebras, one can formally specify communicating protocols
and complex distributed systems. For instance, one could use CryptoCCS to
describe the components and the communication interface of an access control
mechanism as the Policy Enforcement Point (PEP), the Policy Decision Point
(PDP) and the resource to be protected (see [26]).

In Figure 3 we may see the components of a common access control frame-
work. A request is performed by the user to the PEP. The PEP often applies
a communication with the user, often performing an authentication protocol.
Then, using the information acquired by PEP is sent to the PDP. Eventually
the access is granted to the resource.

1 It is worthy noticing that in [13] a similar terminology has been used, and a restric-
tion, called S/G, has been defined. However, this is rather different from ours and it
is not well suited to model cryptographic systems.
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PDPPEP

Resource

Decision request

Decision

Apply  
decision

Access 
request

Fig. 3. An access control system

In particular, in trust management systems, where policies are given through
credentials, this allow one to use the inference system of CryptoCCS to model
also the trust engine used in these frameworks. Let us see how it works with two
well known models.

3.1 RT0: Role-based Trust Management

We show how inference rules can be conveniently used to model RT languages
for trust management [16, 28, 15, 14]. In these languages, credentials carry infor-
mation on policies to define attributes of principals by starting from assertions
of other principals. The notion of attribute is general enough to permit to use
RT languages to model Role-based Access Control Mechanisms (RBAC), e.g. see
[25]. As a matter of fact, an attribute could be considered as a role. Then one
could use RT credential to express how principals are related to roles2. More pre-
cisely, we denote principals with A,B, C...; we denote role names with r, u, z....
A role takes the form of a principal followed by a role name, separated by a dot,
e.g. A.r.

RT assumes four kind of credentials that express possible policy statements.

– A.r ← D (simple member)
This statement defines that D has role A.r.

– A.r ← A1.r1 (simple containment)
This statement asserts that if D has role A1.r1 then it has role A.r. This
kind of credential can be used to delegate the authentication of attributes
from A to A1.

– A.r ← A1.r1.r2 (linking containment)
This statement asserts that E has role A1.r1 and D has role E.r2 then D

2 Similarly, credentials and attributes could be used to assign permissions to roles
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has role A.r. This kind of credential may be used to delegate the assignment
of A.r role not to specific entities but to entities of a given role.

– A.r ← A1.r1 ∩A2.r2 (Intersection containment)
This statement asserts that D has role A1.r1 and A2.r2 then D has role A.r.

Example 4. Consider the following set of credentials.

Univ.stud ← FM
Shop.discount ← Univ.stud

It follows that FM has role Shop.discount. So, the shop offers discounts to the
students of the University.

The language for credentials has been equipped with several semantics. In
particular, one semantics based on datalog is very similar to our inference rules
(that in this case can be seen as datalog rules). So, we define one inference rule
for each credential as follows.

A.r ← D {D, r}A

A.r ← A1.r1
{y, r1}A

{y, r}A

A.r ← A1.r1.r2
{z, r1}A1 {y, r2}z

{y, r}A

A.r ← A1.r1 ∩A2.r2
{y, r1}A1 {y, r2}A2

{y, r}A

However, this requires a rule for each credential. We wish to fix from the
very beginning the set of inference rules. Thus, we provide a slightly modified
version of the inference system where we consider only 3 rules, one for each kind
of credential defined in RT0 (with the exception of the first kind of credentials
that are simply messages).

A.r ← D {D, r}A

A.r ← A1.r1
{y, r1}A {r,A1, r1}A

{y, r}A

A.r ← A1.r1.r2
{z, r1}A1 {y, r2}z {r,A1, r1, r2}A

{y, r}A

A.r ← A1.r1 ∩A2.r2
{y, r1}A1 {y, r2}A2 {r,A1, A2, r1, r2}A

{y, r}A

Note that, under the common measure of the size of terms, all the pre-
vious rules are eq-shrink rules and there are no growing rules. Thus, estab-
lishing whether a given principal, say D, has a certain role in a policy φ, i.e.
{D, r}A ∈ D(φ) is decidable. This kind of analysis3 is called Simple Safety in
[14] and can be performed by our analysis tool PaMoChSA [22].

3 Actually, that work considers a dynamic set of policies. However, the analysis tech-
nique adopted is actually based on a subset of the set of prolog rules that represent
the initial problem. Thus, we are also able to manage it.
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3.2 Josang et al. topologies

We also show how the trust model of Josang et al. [12] can be managed in
our framework. The authors suggest trust is always linked to a purpose. The
most natural situation is when one trusts another for performing a certain func-
tion/task. This may be expressed as A

f−→ D, i.e. A trusts D for performing
f . Moreover, it is often common that one, say A, asks another, say D, for sug-
gesting/reccomendating a third one for doing a given task, i.e. f . This could be

expressed by the following credential A
r,f−→ D.

The main idea is that when one calculates whether a given chain trust exists,
it must always consider that the last step in the chain is a functional trust
one, while all the others are recommendation steps. Thus, we have another kind
of credential like A

r−→ B
f−→ D, , expressing the fact that A trusts D for

performing f via the recommendation of B.

A
f−→ D {f, D}A

A
r,f−→ D {r,D, f}A

A
r,f−→ B B

r,f−→ D

A
r,f−→ D

{r,B, f}A {r,D, f}B

{r,D, f}A

A
r,f−→ B B

f−→ D

A
r−→ B

f−→ D

{r,B, f}A {f, D}B

{r,B, f, D}A

As in the previous case, the deduction relation of this set of rules is decidable.
This gives us an alternative strategy w.r.t. the one presented in [12].

As in [12], one could insert further information into the credentials, as mea-
sure of trust. For instance, credentials could be enhanced with such information
and rules could derived the trust measure of resulting credentials in the ap-
propriate way. For instance, consider the following credential enhanced with a
trust measure, i.e.: A

r,f,m−→ B. Then the transitive composition rule could be the
following:

A
r,f,m1−→ B B

r,f,m2−→ D

A
r,f,m3−→ D

where m3 is a function of m1,m2, for instance m3 = min{m1,m2}.
If the set of possible trust values is finite, then the deduction relation is still

decidable. More complex trust measures can be found in [11]. Clearly, one may
try to define specific strategies for each set of inference rules in order to obtain
decidability. However, we argue that the mechanisms we proposed are general
enough to deal with common trust management systems.

4 An application to Automated Trust Negotiation
problems

The usage of credentials for policy decision is useful, but as mentioned before is
not the unique part of access control. When one user (i.e., a requester) tries to ac-
cess to a resource controlled by another entity (i.e., access mediator) there could
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be a trust establishment phase where the two entities exchange some credentials
in several steps. As a matter of fact, the requester could not know exactly which
kind of credential to present. Then, the access mediator could try to help him
by prompting the access control policy for its resource. Some user’s attributes
stated in the credentials used for the negotiation phase could be sensible. Thus,
specific procedures for controlling the disclosure of such credentials have been
designed. Credentials are managed like resources to be protected, and have their
own access (disclosure) control policies. This applies to both the requester and
the access mediator. This aspect of trust management is an active topic of inves-
tigation and is called in the literature Automated trust negotiation (ATN, for
short), e.g. see [3, 27, 29, 28].

Since ATN actually deals with protocols for exchanging credentials, it seems
natural that it should be modeled in our framework. This has a very nice conse-
quence to make it formal the intuition expressed in [28] that some properties of
ATN resemble non-interference ones. We exactly identify a notion that is very
good for describing properties of ATN.

We briefly present a slightly simplified version of the theory developed in
[28].

A participant in a trust negotiation protocol is described through a finite
configuration G = 〈KG, E, PolicyG, AckG〉, where:

– KG is the public key of the participant (i.e., the participant knows the cor-
responding private key);

– E is a set of credentials, where we assume that the subject of each credential
is KG;

– PolicyG is a table where to each entry corresponds a positive propositional
logic formula expressing a disclosure policy for attributes (such a logic may
be easily modeled through a suitable inference system);

– AckG is a partial function mapping attributes to an entry in PolicyG. Basi-
cally, a credential proving an attribute may be disclosed only if the attributes
presented by the other participants satisfy the corresponding (ack-)policy.

The goal is to protect attributes rather than credentials where these at-
tributes are stated (see [28] for a deeper discussion).

A negotiation starts when the requester sends a request to the access mediator
and continues by exchanging of messages. Each participant has a local state that
keeps track of the negotiation steps. We have two special states: failure, success.
The negotiation process fails when one of the two participants enters into the
failure state. The negotiation process succeeds when the access mediator enters
into the success state.

A negotiation strategy strat describes the behavior of each negotiator (in
contrast to [28] we do not assume it is deterministic).

– strat.rstart(G,KO) is used by the requester just after the sending of the
access request to the access mediator; it returns the requester’s initial local
state;
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– strat.start(G, pid, KO) is used to respond to the first message from the re-
quester; the access mediator checks the policy associated with the resource
(identified by pid) and then determines the next local state and message
to be sent to the requester. (The negotiation proceeds only if the state is
different from success and failure.)

– strat.respond(G, st,msg) is used to respond to a message from the other
negotiator; it returns the new local state and the next message to be sent.
(The negotiation proceeds only if the state is different from success and
failure.)

Using CryptoCCS, we may model the negotiation steps performed by a ne-
gotiator starting in a configuration G and using a strategy strat through a term
of the process algebra. Note that states simply record the execution history of a
negotiation (and the initial request). Thus, by recording the messages received
and sent, one may avoid the usage of states. Moreover, note that having in the
term algebra a constructor for pairs one may express sequences of messages using
a single one. We assume to have two special messages used to encode the success
and failure states, and an inference system `G,strat that suitably mimics strat
strategy. Eventually, the definition of the term corresponding, for instance, to
the requester is as follows:

AG,rstart = c(resource). outpus the resource requests
AG,respond(resource, nil) proceeds to the respond phase

AG,respond(s, r) = c(y). receives the message
[r y `pair r1] added to received ones
[s z `G,strat x] next message
[x = success]AG,success; ( success
[x = failure]AG,failure; ( failure
c(x). outputs next message
[s x `pair s1] added to sent ones
AG,respond(s1, r1) continues the negotiation
))

In [28] there is an interesting discussion about the privacy issues in ATN. This is
out of the scope of this paper. We are simply interested in presenting the main
notion of privacy preserving negotiation defined in that paper, i.e., credential-
combination-hiding4.

Roughly, no adversary, using observations it can make during the negotiation
phase with the other participant, may infer something about credentials proving
attributes it is not entitled to know (i.e., it does not satisfy the appropriate
disclosure policies).

We give below a variant of the notion of indistinguishability for non-determi-
nistic strategies originally presented in [28].

4 Note also we are not advocating this property; we simply show how it is possible to
relate it to a specific notion of non-interference.
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Definition 2. (Indistinguishability) Given an adversary M and a negotiation
strategy strat, two configurations G = 〈K, E, Policy, Ack〉, G′ = 〈K, E′, Policy,
Ack〉 are indistinguishable under strat by M , if and only if for every attack
sequence seq, any possible response sequence induced by seq from G is among
the ones induced by seq on G′.

Clearly, this definition depends on the notion of attack sequence and response.
A consequence of using our formalism equipped with a precise operational se-
mantics and an abstract model of cryptography is that these notions come for
free. (For instance, in [28] a notion of computationally feasible is referred while
dealing with cryptography forgery, without mentioning the difficulties on man-
aging it in an automated manner.)

Then, one identifies the set of credentials that can be safely disclosed without
revealing information about attributes the adversary M is not entitled to know
(i.e., it cannot present the necessary credentials during the negotiation phase).
Call this set RelG,M . Then, an adversary should not be able to tell apart two
configurations that are equal but for the set of credentials not in the Rel set.
Note that here we do not consider the strategy that will be used by M but
simply the set of credentials it has at the beginning of the computation (called
usually initial knowledge in security protocol analysis, e.g. see [7]).

Definition 3. (Credential-combination hiding safe) A negotiation strategy strat
is credential-combination hiding safe if for every pair of configurations G =
〈K,E, Policy, Ack〉 and G′ = 〈K,E′, Policy, Ack〉, and adversary M with RelG,M

= RelG′,M then G and G′ are indistinguishable.

4.1 ATN properties as non-interference properties

To solve the problem of preventing unauthorized information flows, be they di-
rect or indirect, in the last two decades many proposals have been presented,
starting from the seminal idea of non interference proposed in [8] for determin-
istic functions. In [4–7], many non interference-like notions in the literature have
been uniformly defined in a common process algebraic setting based on Cryp-
toCCS, producing one of the first taxonomies of these properties reported in the
literature.

We recall here a notion of secrecy about security protocols defined by Abadi
and Gordon [1].

Basically, a protocol S(x) keeps secret the variable x iff for any message
M,M ′ there is no attacker able to tell apart S(M) from S(M ′). This secrecy
property has been nicely modeled by exploiting an equivalence notion, called
testing equivalence.

May-Testing Equivalence states that two processes cannot be distinguished
by any process (tester). In our framework, it is possible to formally impose the
fact that the tester is not able to break cryptography and so to forge credentials.

Consider a special action ω available only to testers. We say that two pro-
cesses P and Q are may testing equivalent iff for any tester T , P |T ω=⇒ P ′ iff
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Q |T ω=⇒ Q′. Basically, the tester plays the role of the adversary. Thus the no-
tion of indistinguishability is similar to the notion of testing equivalence, when
one considers as testers only the ones with any credentials able to infer a fixed
set of attributes. Eventually, one configuration G and one configuration G′ that
have the same Rel set and differ on the credentials that cannot be released,
may be analyzed by using with a single process AG,Rel(y) that has as parameter
y the set of credentials that cannot be disclosed. Thus, this amounts to check
whether or not AG,Rel keeps secret such credentials (again we assume that a set
of messages may be encoded as a single one).

Probabilistic notions of this property may be easily given by using suitable
modifications of the process algebra and of the corresponding may testing equiv-
alence.

5 Conclusions and future work

We have shown how the same machinery used for the formal specification and
verification of security protocols may be used to analyze a variety of access con-
trol approaches based on trust management. In addition, in [5, 7, 21] CryptoCCS
has been proposed as a uniform specification and verification framework for se-
curity protocols properties and non-interference ones, usually managed with dif-
ferent techniques. This made it very natural for us to model automated trust
negotiation problems as proposed in [28] as non-interference ones.

The approach presented in this paper may be considered as a step towards
the creation of a uniform and automated verification framework for studying
security properties of networked systems. As future work we wish to extend our
analysis tool called PaMoChSA [22] to fully support our approach. Moreover, we
wish to investigate more deeply the relationships of non-interference with ATN
properties.
Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments.
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