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Abstract

Grid applications need to be fault tolerant, malleable, and migratable. In previ-
ous work, we have presented orphan saving, an efficient mechanism addressing
these issues for divide-and-conquer applications. In this paper, we present a
mechanism for writing partial results to checkpoint files, adding the capability
to also tolerate the total loss of all processors, and to allow suspending and later
resuming an application.

Both mechanisms have only negligible overheads in the absence of faults,
even with extremely short checkpointing intervals like one minute. In the case of
faults, the new checkpointing mechanism outperforms orphan saving by 10% to
15%. Also, suspending/resuming an application has only little overhead, making
our approach very attractive for writing grid applications.

1 Introduction

In grid environments, the availability of computing resources changes constantly.
Processor crashes are more likely to occur than in traditional parallel environ-
ments. Also, processors may be taken away from an application because they are
claimed by another, higher-priority application, or because a processor reserva-
tion has ended. At the same time, new processors may become available.

A grid application must be able to adapt to such changes in order to survive in
a grid environment and to achieve good performance. In particular, three issues
have to be dealt with: Fault tolerance, which is the ability of an application to
operate in the presence of hardware and software failures. Malleability, which is
the ability of an application to handle processors joining and leaving an on-going
computation. And migratability, which is the ability of an application to relocate
to a different set of computational resources during the run.

These three issues are closely related to each other. For example, if an ap-
plication can handle crashing processors (fault tolerance) and continue working
on the diminished number of processors, it can also handle leaving processors
(partial malleability). Even more, if the processors are leaving gracefully (i.e.,
after a prior notice) handling it may be more efficient than handling crashing
processors. Further, if an application is malleable, it is also migratable: it can be



migrated from one set of resources to another by first adding the new processors
to the computation and then removing the old ones.

In previous work, we have presented an efficient mechanism supporting fault-
tolerance, malleability, and migration of divide-and-conquer applications [1], in
the following called orphan saving. It is based on re-executing jobs done by pro-
cessors that have either crashed or left voluntarily, while preserving as many
partial results as possible in the application’s main memory. With this mecha-
nism, applications are guaranteed to complete successfully, as long as at least
one processor is alive, at any moment during the execution.

In this paper, we complement orphan saving by a mechanism for writing
partial results to checkpoint files, adding the capability to also tolerate the total
loss of all processors, and to allow suspending an application and to resume it
later, whenever CPU’s become available again.

Our performance evaluation shows that both fault-tolerance mechanisms
have negligible overhead in the absence of faults. Suspending and resuming the
tested applications has only 1% – 11% overhead, compared to uninterrupted
runs. In the case of faults, the new checkpointing mechanism even outperforms
orphan saving.

In Section 2, we briefly introduce the divide-and-conquer model, along with
the orphan saving fault-tolerance mechanism. Section 3 presents our new, check-
pointing fault-tolerance mechanism. In Section 4, we evaluate both mechanisms
using two application programs. Related work is discussed in Section 5. In Sec-
tion 6, we draw our conclusions.

2 Divide-and-conquer and the orphan saving mechanism

Divide-and-conquer applications operate by recursively dividing a problem into
subproblems. The recursive subdivision goes on until the subproblems become
trivial to solve. After solving subproblems, their results are recursively combined
until the final solution is assembled. This leads to an execution tree of nested
tasks. The excellent suitability of the divide-and-conquer paradigm for writing
grid applications has been shown many times before [2–4, 1].

We have implemented our fault-tolerance mechanisms within Satin, a Java
framework for creating grid-enabled divide-and-conquer applications. With
Satin, the programmer annotates the sequential code with divide-and-conquer
primitives (marker interfaces and a synchronization method). Satin’s byte-code
rewriter generates the necessary communication and load-balancing code. In the
following, we are using Satin to discuss and evaluate our fault-tolerance mecha-
nisms.

In Satin, invocations of annotated divide-and-conquer methods lead to the
creation of entries in the processor’s local work queue. Work is distributed across
the processors by work stealing: when a processor runs out of work, it picks an-
other processor at random and steals a job from its work queue. After computing
the job, the result is returned to the originating processor. Satin uses a very ef-
ficient, grid-aware load balancing algorithm which hides wide-area latencies by



overlapping local and remote stealing [3]. Though the combination of local and
remote stealing could allow for a job to be stolen from two or more processors
in turn, the problem of livelock does not arise, simply because the job will even-
tually be stolen by a processor with an empty work queue, where the job will
get executed immediately.
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Fig. 1. Orphan saving re-using orphan results.

Adding a new machine to a divide-and-conquer computation is straightfor-
ward: the new machine simply starts stealing jobs from other machines. Re-
moving processors (both voluntarily and in case of faults) can be handled by
recomputing the work stolen by leaving processors. Implementing such a recom-
putation scheme efficiently, however, is not trivial, due to the problem of orphan
jobs: those jobs that have been stolen from a leaving processor. The novelty of
our orphan saving mechanism [1] is its ability to efficiently re-use the results of
orphan jobs in case of a fault. This is achieved by carefully inserting the results
of orphan jobs into the execution tree once the lost jobs have been resubmitted.

An example is sketched in Figure 1. Here, processor 3 has crashed. In re-
sponse, processor 1 has re-submitted jobs 2 and 6 (once stolen by processor 3)
to its work queue, while processors 4 and 5 have notified all processors that they
have results for jobs 9 and 17 (once stolen from processor 3) available. As it is
not known beforehand which processor will need an orphan result, all processors
have to be notified where it could be found. As soon as an orphan job is up
for recomputation, the processor in charge will check its orphan table first, thus
re-using the orphan results.



Divide-and-conquer is extremely robust because utilizing orphan results is
merely a performance optimization, albeit an important one. In case of several
errors, leading to the loss of some or all orphan results, the divide-and-conquer
application will still compute the correct result, only its performance will be
impacted, depending on the amount of losses.

Orphan saving is exclusively using the state inside the main memory of the
surviving (not leaving) processors to recover from faults. This mechanism is
sufficient to guarantee the successful completion of an application, as long as at
least one processor keeps alive. The special case of a crash of the processor with
the root job, below called the master, needs a separate mechanism; in this case,
Satin uses a traditional coordinator re-election mechanism.

In [1], we have shown that orphan saving works very efficiently, both in
the absence and in the presence of failures. The mechanism can handle fault-
tolerance, malleability, and migration. Its limitation is that it depends on at
least one processor at a time being alive, from application startup to successful
completion. This excludes both the case of “total loss” of all processors and
the ability to suspend and later resume an application. In the following, we
present a complementary scheme, using checkpointing to persistent storage, that
overcomes these limitations.

3 Checkpointing divide-and-conquer applications

To overcome the limitation of storing all orphan results in volatile main memory,
we have developed a mechanism that stores intermediate results, just like orphan
results, but on stable storage. Using the orphan result data structure allows us to
build a very light-weight checkpointing scheme, comparable to application-level
checkpointing, except that the Satin runtime system is taking care of storing the
relevant data. This combines the advantages of system-level checkpointing (user
transparency) and of application-level checkpointing (efficiency due to low data
volume.)

All processors of a divide-and-conquer application periodically save their par-
tial results in a checkpoint file. Along with a job’s result, both jobID and orig-
inating processorID are stored. Each processor writes its own checkpoint asyn-
chronously from the others, avoiding synchronization overheads. This is possible
due to the robustness of divide-and-conquer and orphan saving, as explained in
Section 2. The checkpointing interval is user defined.

Processors do not access the checkpoint file directly. Instead, they send their
data to a centralized coordinator processor that is in charge of reading and
writing the actual file. The coordinator’s role is twofold:

1. Fault tolerance: If a processor crashes, the coordinator searches the check-
point file for results computed by that processor. Those results are fetched
into the coordinator’s memory. Next, the orphan saving mechanism is used
to re-use those results; they are treated just like orphan jobs. For each of



those results, the coordinator forwards the jobID along with its own proces-
sorID to the other processors, allowing them to integrate these results into
the job tree, as necessary.

2. Suspend/resume: When a computation is started, the coordinator checks
whether the user-specified checkpoint file already exists. If so, the coordina-
tor assumes that the computation has been restarted. All results from the
checkpoint file are read into the memory of the coordinator and for each
of them, the jobID and the coordinator’s processorID are sent to the other
processors.

3.1 The checkpoint file

The checkpoint file is accessed by the coordinator, but it need not necessarily
be located on the coordinator’s local filesystem. In fact, the user may specify
an arbitrary location for the checkpoint file. Access to the checkpoint file is
implemented using the Java implementation of the Grid Application Toolkit
(GAT) [5]. The GAT provides transparent access to various grid middleware
systems. For accessing remote files, a programmer only needs to specify a URI
referring to the location. The GAT then takes care of selecting and using the
appropriate protocol, like, for example, FTP, SSH, HTTP, or GridFTP.

The results stored in a checkpoint file are partially redundant. This is caused
by the fact that many jobs are stored in the checkpoint file, along with their
direct parent or another ancestor job. In such cases, only the ancestor is useful.
Depending on the checkpoint interval, there may be more or less redundancy.
We use checkpoint compression to reduce the number of such redundant jobs in
a checkpoint file.

3.2 The coordinator

Initially, the master is elected as checkpointing coordinator. To achieve good
I/O performance, however, the coordinator is re-elected from among the pro-
cessors taking part in the computation, based on actual I/O performance with
the checkpoint file. For this purpose, each processor measures the time it takes
to write a small file to the location of the checkpoint file. The master collects
these results and selects the processor with the shortest file write time as the
new coordinator.

If the coordinator crashes, a new coordinator has to be elected. The new
election is initiated by the master, which sends a coordinator reelection message
to all processors. Then, the above coordinator election procedure is performed.
The processors postpone checkpointing until the election is completed.

If the coordinator has crashed while another process was sending checkpoint
data to it, this data will be lost. Because loss of checkpoint data may only affect
performance of the application but never its correctness, we do not take any
action to avoid such situations.

The coordinator may also crash while writing to the checkpoint file and
the checkpoint file may be corrupted. Therefore, each time a coordinator is



initialized, it inspects the checkpoint file for possible errors. If errors are found,
a new checkpoint file containing all non-damaged results is created and used.

We are using two different mechanisms to detect coordinator crashes: one
implemented in the communication layer (Ibis), another one implemented in the
Ibis Registry. If one of both mechanisms would lead to false positives, still this
would only affect the performance of our system, but not its correctness.

To minimize the overhead of checkpointing, we use concurrent checkpoint-
ing [6]. The results are written to the checkpoint file by a separate thread in the
coordinator process. This thread runs concurrently with the Satin computation.

There is no synchronization between the workers and the coordinator in terms
of sending/receiving the checkpoint data.

4 Evaluation

We will now evaluate the performance of our fault-tolerance mechanisms, both
in the absence and in the presence of faults. We compare the orphan-saving algo-
rithm to the new checkpointing mechanism, the latter with various checkpointing
intervals.

The experiments were carried out on the Distributed ASCI Supercomputer
(DAS-2), consisting of five clusters that are located at universities in the Nether-
lands. We have used a total of 32 nodes on two DAS-2 clusters (16 nodes each).
Each node contains two 1-GHz Pentium-III’s and at least 1 GB RAM. All nodes
run RedHat Linux. Within a cluster, nodes are connected by 2Gb/s Myrinet.
For intra-cluster communication we have used 100 Mb/s Ethernet and SurfNet,
the Dutch academic Internet backbone. The bandwidth between the clusters is
about 700Mb/s. The round-trip latencies are around 2ms.

In order to gain broad insights about our checkpointing mechanism, we have
selected one computation-intensive application (TSP) and one communication-
intensive code (Raytracer). The code for the Traveling Salesman Problem (TSP)
searches for a shortest path connecting a set of cities. TSP is a well-known, NP-
complete problem that has many applications in science and engineering. TSP
was parallelized by evaluating different paths in parallel. TSP is a computation-
intensive application and sends only little data. Raytracer renders a bitmap
image from an abstract scene description. Raytracer has been parallelized by
recursively subdividing the bitmap into smaller parts, and rendering the parts
in parallel. Raytracer is a relatively communication-intensive application.

Table 1. Checkpoint file sizes.

interval 1 min 2 min 5 min

Raytracer 28.0 MB 13.8 MB 16.6 MB
TSP 217 KB 128 KB 55 KB
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Fig. 2. Application overhead during crash-free execution.

4.1 Performance overhead in the absence of crashes

First, we assess the overhead on application performance, caused by either or-
phan saving or checkpointing, when no processors are leaving or crashing. For
both applications, we compare the plain Satin system (without any fault tol-
erance) to Satin with orphan saving, and to Satin with checkpointing, using
checkpointing intervals of one, two, and five minutes. Note that these check-
pointing intervals are rather short, compared to traditionally used values, like
30 minutes or one hour.

Figure 2 shows runtimes of the two applications. The overhead of orphan
saving is negligible. Likewise, checkpointing has small overhead and the overhead
does not seem to depend on the checkpointing interval. This is because our
checkpointing is completely asynchronous, both on the nodes sending the data
to the coordinator, and on the coordinator itself. Table 1 lists the maximal sizes
of the checkpoint files for different checkpoint intervals. The checkpoint files
produced by TSP are small, since TSP does not process much data. Raytracer
is more data intensive, and therefore produces bigger checkpoint files.

4.2 Performance in the presence of crashes

Next, we evaluate the performance of both orphan saving and checkpointing in
the presence of crashes. Again, we have run the two applications on 32 nodes in



2 clusters. We removed one of the clusters in the middle of the computation, that
is, after half of the time it would take on 2 clusters without processors leaving.
The case when half of the processors leave is the most demanding, as the biggest
number of orphan jobs is created in this case. On average, the number of orphans
does not depend on the moment when processors leave, except for the initial and
final phase in the computation.

For our analysis, we compare to two extreme cases. One is naive fault toler-
ance, where orphan results are always discarded. The other extreme is running
on a smaller number of processors right from the beginning, without processors
leaving, denoted as the 1+1/2 cluster case. We also compare to the situation in
which nodes are leaving gracefully (after a prior notification) where all orphan
results are used via the orphan saving mechanism.
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Fig. 3. Application performance in the presence of crashes.

We used checkpointing intervals of 1, 2, and 5 minutes. To allow a fair com-
parison between the checkpointing intervals, we enforced that the crash always
occurred exactly in the middle of a checkpointing interval. We achieved this by
adjusting the time the first checkpoint during the computation was taken.

The graphs in Figure 3 show the runtimes of both applications. The runtimes
shown are averages taken over 4 runs. In 50% of the runs, the crashing (or leaving
gracefully) cluster contained the master.



Table 2. Runtimes and checkpoint file size for suspending/resuming applications.

application uninterrupted run suspend/resume file size

Raytracer 322 s 360 s 12 MB
TSP 1106 s 1116 s 19 KB

Figure 3 shows that orphan saving outperforms the naive approach by 15%
to 25%. Checkpointing improves the performance of the system by further 10%
to 15%. The performance improvement is the largest with small checkpointing
intervals. This is a consequence of the (quasi-) constant checkpointing overhead,
as shown in Figure 2. If nodes are leaving gracefully, the orphan saving algorithm
provides up to 40% performance improvement over the naive algorithm.

Figure 3 also presents runtimes for the situation in which, instead of nodes
leaving or crashing, a smaller number of nodes is available to the application right
from the beginning. This smaller number of nodes is chosen to be equivalent to
the accumulated number of nodes in case of the investigated crashes and graceful
leaves, denoted as the 1+1/2 cluster case. This case is best being compared to
the situation of graceful leaves, indicating a small but noticeable cost (12% for
Raytracer and 15% for TSP) of the orphan saving algorithm which is to be paid
for moving the orphan results and some amount of redundant computation of
orphan jobs that get recomputed before their results arrive at the other nodes.

4.3 Performance of suspending/resuming an application

To evaluate the performance of the suspend/resume mechanism, again we ran
both applications on 32 nodes in 2 clusters. In the middle of the computation, we
stopped the applications, which, in turn, checkpointed their results and exited.
Next, we have restarted the applications on the same processor set, using the
checkpoint files just created.

The runtimes of both uninterrupted and suspended/resumed execution, along
with the checkpoint file sizes, are listed in Table 2. These times are application
runtimes only, they do not include the overhead of scheduling and (re-)starting
the applications. The overhead of suspending and resuming an application is 11%
for the data intensive Raytracer application and only 1% for the compute-bound
TSP. This overhead is caused by the need to write and read the checkpoint file,
The size of the checkpoint file is determined by the checkpoint data structures
(including data serialization) and the size of checkpoint intervals. Practically no
work is lost while suspending and resuming an application.

5 Related work

Checkpointing is used in grid computing by systems such as Condor [7] and
Cactus [8]. Dynamite [9] uses checkpointing to support load balancing through
the migration of tasks for PVM and MPI applications.



Unfortunately, checkpointing causes execution time overhead, even if there
are no crashes, mainly caused by writing the state of the processes to stable
storage. This overhead might be reduced by using concurrent checkpointing [10].
Another problem of most checkpointing schemes is the complexity of the crash
recovery procedure, especially in dynamic and heterogeneous grid environments
where rescheduling the application and retrieving and transferring the check-
point data between nodes is non-trivial. The final problem of checkpointing is
that in most existing implementations, the application needs to be restarted
at the same number of processors as before the crash, so it does not support
malleability. An exception is SRS [11], a library for developing malleable data-
parallel applications.

The checkpointing overhead can be reduced by application-level checkpoint-
ing, as, e.g., done by Cactus [8]. Here, the application itself determines which
data to checkpoint, allowing to reduce the data to a minimum. Satin pushes this
idea even further by not only writing small data sets, but also by writing the data
asynchronously, without interrupting the ongoing computation. This leads to a
very efficient checkpointing scheme, albeit being restricted to divide-and-conquer
applications.

Several fault tolerance mechanisms for divide-and-conquer applications have
been proposed. In the DIB system [12], processors redo work of other processors
even if no crash has been detected. Redoing occurs while a processor waits for its
steal request being granted. Instead of staying idle, the processor starts redoing
work that was stolen from it earlier but the result of which has not yet been
received. This approach is robust since crashes can be handled even without
being detected. However, this strategy can lead to a large amount of redundant
computation.

Another approach was proposed in [13]. Here, the problem of orphan jobs is
partially addressed by storing not only the identifier of the parent processor (the
processor from which the job was stolen), but also the identifier of its grandparent
processor. When the parent processor crashes, the orphaned job is directed to the
grandparent instead. Obviously, if both ancestor processors crash, the orphaned
job cannot be reused anymore. While this mechanism can be extended further,
the price to pay is higher overhead for the additional control data.

Atlas [2] is yet another divide-and-conquer system, based on CilkNOW [14],
an extension of Cilk [15], a C-based divide-and-conquer system, to networks of
workstations. Atlas was designed with heterogeneity and fault tolerance in mind
but aims only at moderate performance. Its fault tolerance mechanism is also
based on redoing work. The problem of orphan jobs is not addressed in Atlas.

6 Conclusions

Grid applications need to be fault tolerant, malleable, and migratable. In previ-
ous work, we have presented orphan saving, an efficient mechanism addressing
these issues for divide-and-conquer applications. With orphan saving, applica-



tions are guaranteed to complete successfully, as long as at least one processor
is alive, at any moment during the execution.

In this paper, we have presented a mechanism for writing partial results to
checkpoint files, adding the capability to also tolerate the total loss of all pro-
cessors, and to allow suspending an application and to resume it later, whenever
CPU’s become available again.

Our performance evaluation has shown that both fault-tolerant mechanisms
have only negligible overheads in the absence of faults. This allows us to use
very short checkpointing intervals, such as one minute. In the case of faults, the
new checkpointing mechanism outperforms orphan saving by 10% to 15%. Due
to the short checkpointing intervals, our mechanism is recovering from crashes
very efficiently. In our tests, suspending and later resuming an application has
only between 1% and 11% overhead, compared to uninterrupted runs. We also
use a special technique, checkpoint file compression, to control the size of the
checkpoint file.

Divide-and-conquer lends itself very well for fault-tolerant, malleable, or mi-
gratable execution, because any job of an application’s execution tree can always
be recomputed in case its result was lost. Both our mechanisms, orphan saving
and the new checkpointing scheme, can execute very efficiently due to effective
re-use of partial (orphan) results in the case of crashes, malleability, or migration.

The new checkpointing mechanism also adds the capability of suspending the
execution of an application, and to resume it later from a checkpoint file. Due
to the robustness of divide-and-conquer, the computation can even be resumed
from (the valid parts of) a damaged checkpoint file which might be the result of a
crash of the processor writing the file. With this added value, divide-and-conquer
becomes an even more attractive paradigm for implementing grid applications.
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