
DynaPeer: A Dynamic Peer-to-Peer Based Delivery
Scheme for VoD Systems*

Leandro Souza1, Fernando Cores2, Xiaoyuan Yang1, Ana Ripoll1

1 Computer Architecture and Operating System

Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
2 Computer Science and Industrial Engineering

 Universitat de Lleida, St. Jaume II, 69, 25001 Lleida, Spain

Leandro@aomail.uab.es, Fcores@diei.udl.es, Xiao@aomail.uab.es, Ana.Ripoll@aub.es

Abstract. Supporting Video-on-Demand (VoD) services in Internet is still a
challenging issue due to high bandwidth requirement of multimedia contents
and additional constraints imposed by such environment: higher delays and
jitter, network congestion, non-symmetrical clients’ bandwidth and inadequate
support for multicast communications. This paper presents DynaPeer, a peer-to-
peer VoD delivery policy designed for Internet environment. Our design
defines a Virtual Server, which is responsible for establishing a group of peers,
enabling service for new client requests by aggregating the necessary clients’
resources. Virtual Server operates in both unicast and multicast environments,
thereby improving system performance. To demonstrate the effectiveness of
DynaPeer, we have developed an analytical model to evaluate its performance,
understood as the server-load reduction due to request service distributed
among peers. We conducted a performance comparison study of our proposal
with classic unicast, multicast (Patching) and other P2P delivery schemes, such
as Pn2Pm, Chaining and Promise, improving their performance by 45%, 59%,
74% respectively, even when taking into account Internet constraints.

Keywords: On-Demand Media Streaming, Peer-to-Peer systems, Internet VoD.

1 Introduction

Advances in network technology will provide the access to new generation, full-
interactive and client-oriented services such as Video-on-Demand. Through these
services, users will be able to view videos from remote sites at any time. However,
serving video files to a large number of clients in an “on demand” and “real time”
way imposes a high bandwidth requirement on the underlying network and server.

To spread the deployment of VoD systems, much research effort [4][6][7][11] has
been focused on the delivery process of multimedia contents, exploiting both unicast
and multicast techniques, trying to reduce the bandwidth consumption and provide
better system streaming capacity. In spite of the success of these techniques, their

* This research is supported by the MEyC-Spain under contract TIN 2004-03388.

scalability requirements to provide service on a large-scale system, such as Internet, is
still limited by server and network resources.

Recently research has looked to the peer-to-peer (P2P) paradigm as a solution to
decentralize the delivery process among peers, alleviating the server load or avoiding
any server at all. P2P systems for streaming video have generated important
contributions. In the Chaining delivery policy [7], clients cache the most recently
received video information in the buffer and forward it to the next clients using
unicast channels. The P2Cast [4] and cache-and-relay [8] allow clients to forward the
video data to more than one client, creating a delivery tree or ALM. However, neither
chaining or ALM delivery policies consider client output-bandwidth limitation in
collaboration process, which limits their usage to dedicated network environments.
Other VoD P2P-based architectures such as PROMISE [1], CoopNet [9] or
BitVampire [10] assume that a client does not have sufficient output bandwidth to
generate the complete information to other clients, using n clients to send the required
bandwidth. However, they assume that clients work as proxies storing whole video
information. Furthermore, system scalability is compromised due to unicast
communication. To solve the scalability problem, in previous works [11] we proposed
Pn2Pm architecture that takes advantage of multicast technology on the client side.
This architecture works by exploiting the clients non-active resources in two ways:
first, it allows clients to collaborate with the server in the delivery of initial portions
of video, patches streams; and second, it establishes a group of clients to store the
available information of an existent server multicast channel to eliminate it. Pn2Pm
also requires that output bandwidth is, at least, the same as video play-rate.

The Internet environment imposes further restrictions to P2P streaming schemes in
order to provide VoD service. First, providing service over non-dedicated network
environments implies no QoS guaranties, transmission congestion, packet loss and
variable point-to-point bandwidth. Second, non-symmetrical clients’ bandwidth
involves a careful delivery strategy due to clients’ output-bandwidth limitation. Third,
Internet Service-Provider2 (ISP) networks differ on supporting (or not) the IP-
Multicast delivery technology. Finally, content copyright protection affects content
storage limited to non-persistent devices. Thus, content on peers is only available over
a limited period of time.

To solve the above challenges, we propose a new delivery scheme called
DynaPeer, based on a P2P paradigm for an Internet environment. DynaPeer differs
from the previous P2P schemes in certain key aspects. First, DynaPeer works with
unicast and multicast communication techniques, depending on the technology
available to the ISP network. The combination of unicast and multicast could allow
DynaPeer to dynamically exploit the IP multicast mechanism, achieving better
network utilization and providing system scalability. Second, this scheme takes into
consideration the non-symmetric characteristics of client bandwidth, which is in
accordance with current xDSL technology. Third, our delivery scheme assumes the
non-homogeneity characteristics founded on a non-dedicated network such as
Internet, which allows us to design a realistic delivery scheme for VoD services. To
the best of our knowledge, our proposal is the first VoD delivery scheme that

2 Currently, certain ISPs provide multicast technology over the xDSL, through DsLAN technology.

Authors in [3], have demonstrated its usage and have proposed a connectivity architecture for multicast
ISPs.

combines non-dedicated network environment, asymmetrical connection on the client
side and multicast delivery technique for client collaborations.

The remainder of this paper is organized as follows. In section 2 we present
DynaPeer design. In section 3, an analytical model to evaluate DynaPeer performance
is presented. Section 4 shows the performance evaluation through the analytical
model. In Sections 5, we indicate the main conclusions and future works.

2 DynaPeer Design

DynaPeer is not a server-less system; rather, it combines a server-based architecture
with a P2P delivery scheme. The server holds the entire system catalogue, acting as
seeds for the multimedia content. It is also responsible for establishing every client-
collaboration process. DynaPeer takes advantage of client collaboration to
decentralize the server-delivery process, eventually shifting streaming load to peers.

The explanation of DynaPeer is divided into 3 parts. Section 2.1 describes the
collaboration model of DynaPeer and in sections 2.2. and 2.3, we present P2P
delivery schemes over unicast and multicast environments.

2.1 Collaboration Model

The principle of DynaPeer is based on clients’ collaborations in which clients (peers)
make their idle-resources available so as to generate a complete, or partial, stream for
incoming clients. In our system, a peer is an active client who plays a given video and
is able to collaborate with the system.

Peers’ collaboration capacity is limited by peer resources (bandwidth and storage)
and available video data. In our case, we consider that peers have an asymmetrical
input/output bandwidth (input bandwidth is, at least, the same as video play-rate and
output bandwidth is supposed to be lower than video play-rate) and a limited buffer
capacity. Having insufficient output bandwidth to transmit a complete video stream
implies that several peers (Ni, defined by the ratio between video i play-rate and
peers’ output bandwidth) have to collaborate in order to provide service for a
complete streaming session. Furthermore, due to copyright protection and peers’
limited buffer capacity, peers cannot permanently store a complete video. Therefore,
they can only serve, on the fly, video data previously received from an active
streaming session and temporally stored on clients’ buffer.

All collaborations in DynaPeer are managed by the Virtual Server (VS). The
objective of a VS is to establish a group of peers, aggregating sufficient resources,
enabling the service for new clients’ requests. Another important function attributed
to the VS is to perform distributed control tasks among peers in a distributed way,
minimizing server involvement. A virtual server (Fig. 1), denoted by VS(j,s,w), is a
logical entity defined as a set of peers that collaborate in a delivery process to offset s
of video j, during a period of time W. The VS’s service capacity is achieved by peers’
resource aggregation and will depend on the number of peers integrating this. The
sum of peers’ input (Ii) and output-bandwidth (Oi) will determine VS input and
output-stream capacity.

Initially, it is assumed that j is the video that all peers forming VS are reproducing.
Video data available on VS is defined by s (first video block currently stored on VS)
and the collaboration window W (period of time that any block remains stored on a
VS before it is replaced). Outside [s, s+W], the interval defined by W, the VS is
unable to make the collaboration as video data is not available in its buffer. Therefore,
to provide full service for a streaming session, DynaPeer policies have to implement a
sliding window over whole video. In this way, once the collaborative buffer is full, the
following blocks received (s+W, s+W+1,...) replace the older blocks (s, s+1,...).

In DynaPeer, each VS is bound to an existent ongoing channel. Thus, the number
of peers integrating a VS will depend on the peer’s collaboration window and video
request arrival-rate. To enlarge the collaboration window, we need to improve peers’
buffer capacity (B). DynaPeer manages the peer’s buffer by storing only data
proportional to the contribution that can be carried out by peers’ output-bandwidth
(i.e, the video data kept for future collaboration for a video j with a play rate Prj, will
be determined by Prj/Oi relation and buffer capacity). We term this strategy extended
buffer capacity. The extended buffer allows VS to provide a larger collaboration
window, increasing peers’ collaboration probability and system efficiency.

The VS manages the collaborations by two different levels: full-stream and partial-
stream collaboration. Full-stream collaboration is achieved when the VS has sufficient
resources to deliver a full stream to a new client. In this case, the whole video stream
will be delivered by the VS. Otherwise, if there are not enough resources, the VS
proceeds with the partial stream collaboration. In this case, VS contributes with the
new client request proportionally to their service capacity, and the server will be
involved in the delivery process, sending data to the client in order to complete the
service and to guarantee the QoS. Of course, every VS begins applying partial-stream
collaboration and when it has sufficient size and resources, it switches to full-stream.

2.2 DynaPeer Unicast

Assuming that not all ISPs are powered with multicast technology in their access
network, our proposal also exploits the delivery scheme by using unicast both from
server and client side.

The mandatory condition for the collaboration process is that the requesting peer
arrives inside the collaboration window W of the required VS. Following these
conditions, if there are no candidate peers available for collaboration in a VS, the

Fig. 1. DynaPeer Virtual Server

server is responsible for opening a channel to serve the incoming request. If the
number of peers inside a VS is not enough to take the collaboration, the Vs performs a
partial stream collaboration. If there are sufficient candidate peers in the VS (enough
resources) to generate a complete stream, a new channel will be opened from the
peers to attend incoming request. All requesting peers, automatically, become
candidate peers inside a new VS in the system.

Fig. 2a shows a snapshot of Unicast collaboration mechanism in minute six of
DynaPeer stream process. In this example, we assume that a video stream must be
served by three clients (Ni=3). The first peer (peer 1) is being directly attended by the
server and it defines the collaboration window (W1) for the VS1. Peers 2 and 3 are
also being attended by the server and both are integrated in VS1. In minute three, the
VS1 has achieved its delivery capacity for one complete stream and when peer 4
makes a request in minute 4 (inside W1) it is attended by VS1 (Fig. 2a I), switching to
full stream collaboration mode. Automatically, peer 4 starts another Virtual Server
VS2. As peer 5 arrives, the VS1 does not have available service capacity to serve it.
The VS2 (composed by peer 4) applies partial stream collaboration with the server in
the streaming process to peer 5 (fig. 2a II). The same occurs with peer 6 request.

2.3 DynaPeer Multicast

Using the multicast scheme, DynaPeer allows the streaming process for clients in a
multi-source/multi-destination way, better exploiting the network capacity of ISPs.

0

W1

o1

VS 1

3

1

2
o2

o3

o5

1-o5 4

5

VS 2
1

1 1 1
Time

1
2

6

1-o6

o6

4
5
6

3 I

II

0

W2

o1

Multicast Channel I

1

2
o2

o5

o7 o5

Time

6

7

8

Multicast Channel II

VS 2

1 1 1 1 1

1

1 1 o5

1

1

2

3

4

5

6

P1

7

8

9

5

9
o8

W1

1 1
Multicast Channel III

VS 3

a) Unicast mode b) Multicast mode

VS 1
3
o3

54

Peer

Helper Peer

P2

1- o8

W2

P3

4

0

W1

o1

VS 1

3

1

2
o2

o3

o5

1-o5 4

5

VS 2
1

1 1 1
Time

1
2

6

1-o6

o6

4
5
6

3 I

II

0

W2

W1W1

o1

VS 1

33

11

22
o2

o3

o5

1-o5 44

55

VS 2
1

1 1 1
Time

1
2

66

1-o6

o6

4
5
6

3 I

II

0

W2W2

o1

Multicast Channel I

11

22
o2

o5

o7 o5

Time

66

77

88

Multicast Channel II

VS 2

1 1 1 1 1

1

1 1 o5

1

1

2

3

4

5

6

P1P1

7

8

9

55

99
o8

W1W1

1 1
Multicast Channel III

VS 3

a) Unicast mode b) Multicast mode

VS 1
33
o3

554

Peer

Helper Peer

Peer

Helper Peer

P2P2

1- o8

W2W2

P3P3

44

Fig. 2. DynaPeer Snapshot.

The VSs are responsible for creating multicasts channels, from the client’s side3,
serving incoming client’s requests. In this way, DynaPeer avoids any extra server’s
resource for serving contents that have already been started by other peers.

The collaboration process for multicast environment works by letting a new peer
joining an ongoing multicast channel (complete stream) and still receives the entire
video data stream. For new requests for the same video, the VS acts in two different
ways: First, if an incoming peer can join an ongoing multicast channel, the VS
delivers only the missing portion of the requested video in a separate unicast channel,
patch stream, using the clients’ output-bandwidth capacity. The period of time that a
peer can join an ongoing multicast channel is called Patching Window (denoted as P
time), and it depends on client buffer capacity. Second, if a requesting peer does not
have sufficient buffer space for joining the ongoing channel (arrival time > P), the VS
starts a new multicast channel for the incoming peer. Once patching window finishes,
DynaPeer begins the multicast collaborative window, whose size depends on buffer
available for collaboration after patching policy. VS only can create a new multicast
channel if the next client request arrives inside the collaboration window. Different to
unicast delivery, in multicast, the peers need their buffer to store patching information
arising from the ongoing channel. Thus, extended buffer capacity for collaboration is
more limited, since it can be applied only in the unused portion of the peer’s buffer.

In multicast mode, the virtual server will be integrated by all the peers that arrive
inside patching window. Therefore, depending on a video’s popularity and on clients’
requests rate, it is possible that the number of peers participating in a VS can be larger
than Ni. In this case, as only Ni peers are required to propagate multicast stream, the
remaining VS peers for most popular videos will not collaborate in the streaming
process. On the other hand, less popular videos VS cannot have sufficient
collaborators peers; consequently their service capacity cannot be sufficient to fulfill a
complete streaming session in a collaboration process. We propose to use the idle
peers on over-sized VSs to improve the QoS and performance of VoD system. In
particular, we propose the utilization of those wasted peers to operate as Helper peers.

VS service capacity can be improved by the utilization of Helper peers. The main
function of Helper peers is to allow the VS of non-popular videos to achieve full
collaboration capacity, improving DynaPeer performance. Helper peers are allocated
to collaborate with other VS without sufficient service capacity for carrying out a full
stream collaboration. However, helper peers view another video and do not have the
video data required to collaborate with a different VS. Therefore, to assist a VS, they
previously need to receive video data, connecting Helpers in the ongoing channel of
assisted VS. As a result, the Helper downloads video data, proportional to its output-
bandwidth, stores it temporally on collaborative buffer and uses its output-capacity to
delivery it to another client. The requisite for receiving the new video before serving
it, will be wasteful unless the ingoing stream does not require additional resources.
This constraint let this approach feasible only with multicast communications.

Fig. 2b shows a snapshot of the system in multicast configuration. Client arrival
rates are shown in figures (time bar). Peer 1 has sent a video request to the server that
has started a multicast channel to attend it. A few minutes later and inside P1 time,
clients 2, 3, 4 and 5 request video j. Theses clients were joined to multicast channel

3 The mechanism of generating multicast trees from clients to other clients is orthogonal to the analysis

presented in this article. For instance, we assume the mechanism proposed in [1].

and they are incorporated to VS1. In time 2, patching window finishes and DynaPeer
begins the multicast collaboration window (W1). After P1 time, but also inside W1
time, peer 6 requests the same content j from the server. DynaPeer selects peers 1, 2
and 3 (Ni=3) to deliver the video and starts a new multicast channel (Channel II) for
attending to the client’s request. Once channel propagation is made, peer 4 and 5 is set
as a helper peer. In time 5, peer 7 request video j. It arrives inside P2 time and could
be joined to multicast channel II. Due to time constraints, peer 8 request was unable to
join either multicast channel I or II. The only possible alternative is to create a new
channel. The VS1 is unable to create this channel due to its collaboration window W1
is surpassed by peer arrival time. Regardless that VS2 was also incomplete in its total
stream capacity to serve the request, it could achieve its completed service capacity
by the utilization of VS1 helper peer 5. At that moment, VS2 could start the delivery
process to the requesting peer, generating multicast channel III. Finally peer 9 arrives
in minute 9, and it can join the ongoing multicast channel III.

3 Mathematic Analysis
In this section we present an analytical model for evaluate the DynaPeer performance.
The main objective of our model is to evaluate the performance that can be achieved
by DynaPeer and related P2P delivery policies. In this case, performance is
understood as the server-load reduction (streams) due to request service distributed
among peers (S*).

To perform this analysis some assumptions are made from points of view of
architecture, clients and system work-load. The model assumes a VoD system with a
single centralized server4, which stores whole system catalogue. We take in
consideration asymmetrical bandwidth behavior for clients. Moreover, this output-
bandwidth is not enough to provide video at the required play-rate. Also, the model
does not take in consideration clients’ or servers’ failures during a streaming session.

To undertake the model complexity, we do not handle dynamic behavior of the
VoD system (network congestion and jitter, and variable client bandwidth) and we
assume average values for clients’ output-bandwidths (O) and clients’ buffer capacity
(B). Furthermore, we suppose that video is encoded with a Constant Bit-Rate and all
videos’ catalogue has the same length (L) and the same bandwidth requirements (Pr).
Symbols used in the analysis are listed in Table 1.

Table 1. Analytical Model Main Parameters.
Symbol Explanation Symbol Explanation

S* Server Load (streams) i
CS *

Completed Streams for video i (streams)

M Video catalog size i
PS * Patch Streams for video i (streams)

L Video Length (min) Wi P2P collaboration Window time
B Peers mean Buffer size in minutes λi Requests arrival rate video i (req/min)
O Peer Output Bandwidth (Mbps) Pri Play rate for Video i

Ni Number of Peers for serve a
stream for video i, O

N i
i

Pr
= Gi Number of Collaborative Peers in a Group

4 The model can also be directly applied for others architectures composed by multiple servers (Proxy or

CDN based architectures).

In model development, we have evaluated the streaming capacity required by the
server without the utilization of P2P policies as reference, and afterward we have
evaluated the server load reduction resulting of the incorporation of DynaPeer
schemes. Due to space limitations we only present DynaPeer multicast model.

3.2 Multicast Performance Analysis

We present two performance models for DynaPeer multicast. First we start by
analyzing basic DynaPeer multicast delivery policy. Then we proceed by presenting
DynaPeer with Helpers analytical model.

DynaPeer multicast.
In multicast, there are two server costs to evaluate, the full stream cost (complete
stream created by the server for incoming clients) and the patch stream cost.
Therefore, the total server-load for DynaPeer based policy is given by the sum of total
server-load of complete streams and patch streams:

i
DynMul

M

i

i
DynMulDynMul

SpScS += ∑
=1

 (1)

To achieve DynaPeer functionality, clients able to participate in a collaboration
process are grouped inside a collaboration group (Gi). The collaboration group (Gi) is
achieved by the total number of candidate peers arriving in the patching window time,
which is made up of a VS:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<

=

B

BB

G

i

i
i

i

λ

λ
λ

1,1

1,*

 (2)

Once patching window has finished, DynaPeer begins the collaborative window (W),
whose size depends on the buffer storage available for collaboration after patching
policy. Peers’ available buffer capacity depends on their relative arrival time inside
the patching window. For modeling purposes, we assume the worst collaboration
buffer depending on candidate peers inside the collaboration group of video i (Gi),
which is multiplied by Ni in order to attain the extended collaboration window:

⎪
⎪
⎩

⎪⎪
⎨

⎧

<
−⋅

−

≥
−⋅

−

=

ii
i

ii
i

ii
i

ii
i

i

NG
GN

B

NG
NN

B
W

,
)1(

,
)1(

λ

λ
(3)

Then, the full stream cost, for a video i, is achieved by calculating the number of
channels that the server must open to serve this video during a period of time (L). In
DynaPeer, if there are sufficient peers inside the collaboration group to propagate the
requested video i (Gi ≥ Ni), the server needs only to open first stream. Subsequent
streams are managed by peers. Otherwise, peers can collaborate only partially or not

at all with the server (requiring the same streams as a central-server using patching
policy, SC

i
Mul). Therefore the server-required stream is defines as follows:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

≥

=

otherwiseSc

WandNGi
N
GScSc

NG

Sc

i
Mul

i
i

i
i

ii
Mul

i
Mul

ii

i
DynMul

,

1,*

,1

λ (4)

P2P patch streams service for video i is managed using the streaming resources
from VSj-1 and VSj (under construction) to serve the incoming client’s request. If
there is at least one peer in the current VSj, it collaborates proportionally with the
main server to send patch streams (Spi

Mu). The previous VSj-1 only helps if it has free
streaming resources (Gi-Ni>0):

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

=

otherwiseSp

G
L

Sc
N
BNG

N
Sp

Sp
Sp

i
Mul

i

i
Mul

i
ii

i

i
Muli

Mul
i
DynMul

,

1,**
 (5)

DynaPeer multicast with Helpers.
Helpers are only used when there is at least one incoming request arriving inside the
collaboration window time. Thus, the incoming request can take advantage of the
virtual server created with helpers.

The number of available peers to perform Helper functionality (HA) is achieved
after collaboration is established. This is defined by the total number of peers inside a
collaboration group (Gi) and that are not involved in the collaboration process:

∑
=

−=
M

i
iiA NGH

1
 (6)

The number of requested Helpers to participate in a collaboration process for a
video i is defined by the number of necessary peers to serve a stream, always
provided that the collaboration group needs Helpers. Expr. 7 gives the number of
requested helpers for video i.

()

⎪
⎪
⎩

⎪
⎪
⎨

⎧
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<∧<

=

otherwise

WNGN
H

i
i

iii
i
R

,0

1,
λ

 (7)

The number of available helpers are limited. Therefore, we have to decide to which
Virtual Server the helpers will be assigned and control when helpers will be
exhausted. To resolve the first issue, we assign helpers to those Virtual Servers that
have fewer requisites. To control the number of available helpers, we use expr. 6
(available helpers) combined with expr. 8, that evaluates the total number of helpers
required by first j more popular videos:

MjHjH
j

i

i
RTR ≤∀= ∑

=

,)(
1

 (8)

Using helpers, the server requirements are of one stream only, provided there are
sufficient helpers to complete the requisites of video i and also the previous ones
(HTR(i)<HA), and that video-request arrival rates support collaboration (1/λi<Wi). If
helpers can only partially fulfill the requirements, then only a portion of video streams
will be saved by peers. Otherwise, the central server has to manage all streams:

()

()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<∧<<−

−−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<∧<

=

otherwiseSc

WiHHiH
N

iHHSc

WHiH

Sc

i
DynMul

i
i

TRATR
i

TRAi
DynMul

i
i

ATR

i
DynHlpMul

,

1)()1(,)1(

1)(,1

λ

λ

(9)

4. Performance Evaluation

In this section, we show the analytical model results for the DynaPeer delivery
scheme, by evaluating the performance contrasted with traditional Unicast and
Patching delivery policies, and with other P2P delivery policies such as Promise[5],
Chaining[7], and Pn2Pm[11].

4.1 Workload and Metrics

In our experiments, we assumed that inter-arrival time of client requests follows a
Poisson arrival process with a mean of λ/1 , where λ is the request rate. We used a
Zipf-like distribution to model video popularity. The probability of the ith most
popular video being chosen is)1./(1 1∑ =

M
j z

z

j
i , where M is the catalogue size and z is the

skew factor that adjusts the probability function. For the study, the skew factor is fixed
to 0.729 (typical video-shop distribution [1]). The time of analysis was 90 minutes,
the same as a video length, the output-bandwidth of clients is fixed to 750kbps and
video play rate is set to 1500Kbps. The analyze values of the parameters are
summarized in table 2.

The comparative evaluation is based on the server load metric that is defined as the
mean number of streams required by the server at the end of analysis.

Table 2. Experimentation environment parameters.
Parameter Default Value Parameter Default Value
Request Rate 10 requests/minute Client’s Buffer Size 15 minutes
Play rate 1500 Kbps Client’s Output Bandwidth 750 kbps
Video length 90 minutes Video Catalogue Size 100 videos
Zipf Skew Factor 0.729

4.2 P2P Delivery Schemes Comparison

Fig. 3 shows the server-load achieved by DynaPeer other P2P approaches. For this
test, we have considered the analytical model described in section 3 and the analytical
model found in each one of the delivery policies. As we would expect, server load for
all P2P architectures is lower than that achieved by pure-Unicast and Patching
delivery mechanisms.

Comparing unicast delivery policies, Promise achieves 50% less server-load while
Chaining provides 70% compared with central unicast mode. DynaPeer-Unicast,
achieves 50% of server-load reduction, as we find with Promise. The gap
performance achieved by DynaPeer in unicast modes occurs because both Promise
and Chaining have specific requirements for their functionality. Promise requires
peers to have, at least, sufficient buffer capacity to store a whole video (90 minutes),
while DynaPeer only assumes a buffer of 15 minutes. On the other hand, Chaining
assumes that peer output bandwidth is, at least, the same of a video play-rate, while
DynaPeer and Promise assume half the output bandwidth.

Comparing multicast mode, Promise is unable to take advantage of server-load
reduction while Chaining keeps reducing server-load in the order of 39% compared
with Patching’s non-P2P policy. Results show that multicast usage, in conjunction
with P2P scheme, provides the best solution for system performance. Pn2Pm (that
assumes that peer output bandwidth is the same as video play-rate) and
DynaPeer+Helpers achieves the best server-load reduction, being 54% and 75%
betters than Patching, and 24% and 59% if compared with Chaining. Finally
DynaPeer+Helpers improve system performance by 45% and 74% if compared with
Pn2Pm and Promise, respectively.

5. Conclusions
We have proposed and evaluated a new delivery policy based on a P2P paradigm and
multicast communication mechanism for Internet VoD services. Our design defines a
Virtual Server, which is responsible for establishing a group of peers, enabling service

Fig. 3. DynaPeer Comparison

113

208

455

274

450

450

900

0 200 400 600 800 1000

Server-Load (Streams)

DynaPeer Helpers

Pn2Pm

Patching

Chaining

Promise

DynaPeer Unicast

Unicast

for new client requests by aggregating the necessary resources. The Virtual Server
also performs distributed control tasks among peers by saving server control
requirements.

The analytical study shows that DynaPeer policies improve VoD system capacity
and decrease the server-load, taking major advantage of client resources to
decentralize the delivery process. Compared with traditional unicast and patching
delivery schemes and also with highly similar proposals found in the literature, we
conclude that DynaPeer has the best performance.

We have started several future research projects. We are going to analyze the
impact of Internet dynamic behavior on our schemes. In addition, we are studying a
mechanism to automatically adapt DynaPeer to a heterogeneous environment and
fault tolerance techniques. All these characteristics will be considered in future work,
using simulation tools and a real prototype.

References
1. C.C. Aggarwal, J.L. Wolf, and P.S. Yu. The maximum factor queue length batching

scheme for video-on-demand systems. IEEE Transactions on Computers, vol. 50, no. 2,
pp. 97-109, 2001.

2. K. C. Almeroth, M.H. Ammar. “Multicast group behavior in the Internet's multicast
backbone (MBone)”. IEEE Communications Magazine, vol. 35, pages 124-129, June
1997.

3. Cisco Systems, “Delivering Multicast Video over Asymmetric Digital Subscriber Line”.
White Paper available in http://www.cisco.com/en/US/products/ps6598/products_white_paper
9186a00804f9d11.shtml, 2003

4. Y. Guo, K. Suh, J. Kurose and D. Towsley. “P2cast: peer-to-peer patching scheme for vod
service”. In Proceedings of the 12th Int. Conf. on World Wide Web, pp 301–309, ACM
Press, 2003.

5. M. Hefeeda, A. Habib, B. Botev, D. Xu, and D. B. Bhargava. “PROMISE: Peer-to-peer
media streaming using collectcast”. In Proc. of ACM Multimedia’ 03, Berkeley, CA, pages
45-54, 2003.

6. K. A. Hua, Y. Cai, and S. Sheu. “Patching: A multicast technique for true video-on-
demand services”. In ACM Multimedia Conf., Bristol, U.K., September 1998.

7. K. A. Hua, M. Tantaoui, and W. Tavanapong. “Video delivery technologies for large-scale
deployment of multimedia applications”, In Proc. of the IEEE, volume 92, September
2004.

8. S. Jin and A. Bestavros. “Cache-and-relay streaming media delivery for asynchronous
clients”. In Proceeding of NGC’02, Boston, MA, USA, October 2002.

9. V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. “Distributing streaming
media content using cooperative networking”. In Proc. NOSSDAV’02, Miami Beach,
USA, 2002.

10. Xin Liu and Son T. Vuong. “A Cost-Effective Peer-to-Peer Architecture for Large-Scale
On-Demand Media Streaming”. Journal of Multimedia (JMM), Volume 1, Issue 2. May
2006.

11. X. Y. Yang, P. Hernández, F. Cores, A. Ripoll, R. Suppi and E. Luque. “Dynamic
Distributed Collaborative Merging Policy to Optimize the Multicasting Delivery Scheme”.
In Proc. of 11th Int. Euro-Par 2005 Conference, Lisbon, Portugal, August 30-September
2005.

