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Abstract. The distributed nature of the grid results in the problem of scheduling
parallel jobs produced by several independent organizations that have partial con-
trol over the system. We consider systems composed of n identical clusters of m
processors. We show that it is always possible to produce a collaborative solution
that respects participant’s selfish goals, at the same time improving the global
performance of the system. We propose algorithms with a guaranteed worst-case
performance ratio on the global makespan: a 3-approximation algorithm if the last
completed job requires at most m/2 processors, and a 4-approximation algorithm
in the general case.

1 Introduction

The grid computing paradigm [1] introduces new and difficult problems in scheduling
and resource management. A grid can be viewed as an agreement to share resources
between a number of independent organizations (such as laboratories, or universities),
with little, or no, central, administrative control [2], forcing them to interact. An orga-
nization is an administrative entity grouping users and computational resources. Orga-
nizations are free to join or to leave the system, if the gain experienced is lower than the
cost of participation. Therefore, in order to sustain the grid, the resource management
system must achieve an acceptable performance not only at the level of the community
of users (as in classic, monocriterion scheduling), but also on the between-organizations
level. Some globally-optimal approaches may be unacceptable because they implicitly
favor jobs produced by one organization, therefore reducing the performance experi-
enced by the others.

In this paper, we study the problem of scheduling parallel jobs [3] produced by sev-
eral organizations. Each organization owns and controls a cluster, that together form a
computational grid. The global goal is to minimize the makespan [3], the time moment
when all the jobs are finished. However, each organization is only concerned with the
makespan of its own jobs. An organization can always quit the grid and compute all its
jobs on its local cluster. Therefore, a solution which extends the makespan of an organi-
zation in comparison with such a local solution is not feasible, even if it leads to a better
global makespan. Such an organization would prefer to quit the grid, to compute all its
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jobs locally and not to accept any other jobs on its cluster. The considered scheduling
problem is therefore an extension of the the classic, parallel job scheduling [3] by a
series of constraints stating that that no organization’s makespan can be increased.

The main contribution of the paper is the demonstration that several independent or-
ganizations have always interest to collaborate in a load-balancing grid system. We pro-
pose an algorithm producing solutions that guarantee that no organization’s makespan
is increased, at the same time having guaranteed approximation ratio (worst-case per-
formance) regarding the globally-optimal solution. Assuming that each cluster has m
of processors, the proposed algorithm is a 3-approximation if the last finished job is low
(requires at most half of the available processors), and a 4-approximation in the general
case.

This paper is organized as follows. Section 2 introduces some notations, formally
defines the model and the problem and presents some motivating examples. Section 3
considers a problem of scheduling local and foreign jobs on a single multiprocessor
cluster with guaranteed performance for local jobs. Section 4 presents the algorithms
for n multiprocessor clusters and proves the approximation ratios. Related work is dis-
cussed in Section 5. Section 6 discusses the results obtained and concludes the paper.

2 Preliminaries

2.1 Notation and the Model of the Grid

By O = {O1, . . . , On}we denote the set of independent organizations forming the grid.
Each organization Ok owns a cluster Mk. Each cluster Mk has m identical processors.
By M we denote the set of all clusters.

The set of all the jobs produced by Ok is denoted by Ik, with elements {Jk,i}. By
Jk we denote the set of jobs executed on Ok’s cluster Mk. If Jk,i ∈ Jk, the job is
executed locally, otherwise it is migrated. Job Jk,i must be executed in parallel on qk,i

processors of exactly one cluster during pk,i time units. It is not possible to divide a job
between two, or more, clusters. We denote by pmax = max pk,i the maximum length
of job. Jk,i is low if it needs no more than a half of cluster’s processors (qk,i ≤ m

2 ),
otherwise it is high.

By Ck,i we denote the completion (finish) time of job Jk,i. For an organization
Ok, we may compute the maximum completion time (makespan) as Cmax(Ok) =
maxk,i{Ck,i : Jk,i ∈ Ik}. The global makespan Cmax is the maximum makespan
of organizations, Cmax = maxk Cmax(Ok).

For cluster Mk, a schedule is a mapping of jobs Jk to processors and start times
in such a way that, at each time, no processor is assigned to more than one job. We
can define the makespan Cmax(Mk) of cluster Mk as the maximum completion time
of jobs Jk assigned to that cluster, Cmax(Mk) = maxi{Cj,i : Jj,i ∈ Jk}. At any
time t, utilization Uk(t) of Mk is the ratio of the number of assigned processors to the
total number of processors m. A scheduler is an application which produces schedules,
given the sets of jobs produced by each organization.
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Fig. 1. Executing all the jobs locally (a) may lead to n approximation ratio regarding the globally-
optimal solution (b). All the jobs were produced by organization O1, the owner of M1.

2.2 Problem Statement

We consider off-line, clairvoyant scheduling with no preemption on time-sharing pro-
cessors. Those assumptions are fairly realistic in most of the existing scheduling sys-
tems, which use batches [4] and which require the user to define the run-time of the
posted jobs. Each organization Ok wants to minimize the date Cmax(Ok) at which all
the locally produced jobs Ik are finished. Organization Ok does not care about the per-
formance of other organizations, nor about the actual makespan Cmax(Mk) on local
cluster Mk, if the last job to be executed is not owned by Ok. However, Cmax(Ok)
takes into account jobs owned by Ok and executed on non-local clusters, if there are
any.

The Multi-Organization Scheduling Problem (MOSP) is the minimization of the
makespan of all the jobs (the moment when the last job finishes) with an additional
constraint that no makespan is increased compared to a preliminary schedule in which
all the clusters compute only locally produced jobs. More formally, let us denote
Cloc

max(Ok) as a makespan of Ok when Jk, the set of jobs executed by Mk is equal
to the set of locally produced jobs, i.e. Jk = Ik. MOSP can be defined as:

min Cmax such that ∀k Cmax(Ok) ≤ Cloc
max(Ok). (1)

By restricting the number of organizations to n = 1, the size of the cluster to m = 2
and the jobs to sequential ones (qk,i = 1), we obtain the classic, NP-hard problem of
scheduling sequential jobs on two processors 2|pj|Cmax [5]. Therefore, MOSP is also
NP-hard.

2.3 Motivation

A number of instances motivate organizations to cooperate and accept non-local jobs,
even taking into account the fact that the resulting configuration is not necessary glob-
ally optimal. A non-cooperative solution (without the grid) is that all the organizations
compute their jobs on their local clusters. However, such a solution can be as far as n
times worse than the optimal one (see Figure 1). Note also that careful scheduling offers
more than simple load balancing of the previous example. By matching certain types
of jobs, bilaterally profitable solutions are also possible (see Figure 2). Nevertheless,
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Fig. 2. By matching certain types of jobs, cooperative solution (b) delivers better makespans for
both organizations than a solution scheduling all the jobs locally (a). The light gray jobs were
produced by organization O1, the dark gray ones by O2.

a b c

Fig. 3. Globally-optimal solution (b) is inadmissible, as it extends the makespan of organization
O1 (the producer of light gray jobs) in comparison with the local solution (a). The best solution
not extending O1’s makespan (c) is 3

2
from the global optimum.

a certain price must be paid in order to produce solutions in which all the organiza-
tions have incentive to participate. Figure 3 presents an instance in which the globally-
optimal solution extends the makespan of one of the organizations. Consequently, all
the algorithms that meet the constraint have at least 3

2 approximation ratio regarding the
globally-optimal solution.

3 Scheduling on One Cluster

Let us first focus on the simple case of scheduling rigid parallel jobs on one cluster
consisting of m identical processors. Note that as in this section there is no reason
to distinguish between a cluster and an organization, we will simply use Cmax to de-
note the makespan and omit the index of the organization in other notations (e.g. qk,i

becomes qi). We will use here the classic list scheduling algorithm, which has an ap-
proximation ratio equal to 2 − 1

m . We show that if the jobs are ordered according to
decreasing number of required processors, the resulting schedule achieves fairly homo-
geneous utilization. Preliminary results established in this section will be later used to
solve the general problem of multi-organization scheduling in Section 4.

3.1 List Scheduling

List scheduling [6] is a class of heuristics which work in two phases. In the first phase,
jobs are ordered into a list. In the second phase, the schedule is constructed by assigning
jobs to processors in a greedy manner. Let us assume that at time t, m′ processors are
free in the schedule under construction. The scheduler chooses from the list the first job



Fig. 4. When jobs are presorted according to number of required processors, the schedule can
be divided into two regions with utilization U(t) > 1

2
(up to tHL) and U(t) ≤ 1

2
(after that

moment).

Ji requiring no more than m′ processors, schedules it to be started at t, and removes it
from the list. If there is no such job, the scheduler advances to the earliest time t′ when
one of the scheduled jobs finishes.

Although straightforward, list scheduling of rigid parallel jobs is an approximation
algorithm with guaranteed worst case performance of 2− 1

m [7], no matter the order of
jobs in the first phase. A polynomial time algorithm with better approximation ratio is
not known.

3.2 Highest First (HF) Job Order

The 2− 1
m approximation ratio of list scheduling does not depend on the particular order

of jobs in the list. Therefore, we may choose a criterion which gives some interesting
properties of the resulting schedule without loosing the approximation ratio.

Let us consider jobs ordered according to the Highest First (HF) rule, i.e. by non-
increasing qi. The following proposition holds:

Proposition 1. All HF schedules have the same structure consisting of two consecutive
regions of high (t ∈ [0, tHL) : U(t) > 1

2 ) and low (t ∈ [tHL, Cmax : U(t) ≤ 1
2 )

utilization, where 0 ≤ tHL ≤ Cmax (Figure 4).

Proof: First, note that no high job is scheduled after a period of low utilization. Indeed,
as soon as a high job is completed, the following highest job is scheduled (according to
the HF rule). Thus there is no low utilization period before that all the high jobs have
been completed. The proof is now by contradiction. Let us assume that at time t the
utilization is low (U(t) ≤ 1

2 ), and that at time t′ > t the utilization is high (U(t′) > 1
2 ).

Let us consider a job Ji scheduled at time t′. It is not possible that Ji is a high job
because no high job can be scheduled after a period of low utilization, as noted before.
If Ji is low (qi ≤ m

2 ) then it could have been scheduled at time t, and scheduling it
after t contradicts the greedy principle of the list scheduling algorithm. �



4 Multi-Organization Scheduling

In this section we present an algorithm that address the Multi-Organization Scheduling
Problem. This algorithm has a guaranteed approximation ratio regarding to the global
makespan, at the same time not worsening the local solutions that are produced by the
organizations while computing independently.

The algorithm that we propose computes a lower bound of the global makespan and
then moves all the jobs which start after twice this date to the end of the schedules of
less-loaded clusters. Details follow.

Let us denote by W =
∑

pk,iqk,i the total work in the system, or the total surface
of the jobs. As all the jobs must fit into available processors, the global makespan Cmax

is not less than the lower bound LB = W
mn .

Let us assume that all the organizations list-scheduled their jobs on their local
machines according to HF order. The Multi-Organization Load Balancing Algorithm
(MOLBA) is the following one. It starts to compute LB. All the clusters with local
makespans between 2LB and 2LB + pmax are ignored (we do not move their local
jobs). For the rest of the clusters, all the jobs that start after time 2LB are moved from
their local clusters to a migration queue. Finally, the jobs from the migration queue
are list-scheduled onto all available clusters. The jobs are scheduled sequentially in a
greedy manner. No migrated job can delay a local job: a job Jk,i is scheduled before
the original makespan of the host cluster Mj (t < Cloc

max(Oj)) only if at least qk,i

processors are free on Mj from time t to time t + pk,i. Such a strategy is similar to the
well-known conservative backfilling in FCFS (First Come First Serve).

We prove in Sections 4.1 and 4.2 that this algorithm is a 3−approximation of the
global makespan Cmax when the last completed task is a low task, and that is it a
4-approximate algorithm in the general case. We also show that this algorithm does
not increase the local makespans of the organizations (therefore holding the constraint
in Eq. 1). We start with a lemma that characterizes the structure of all the clusters’
schedules.

In the schedule returned by MOLBA, on each cluster, we denote by tstart
L the first

moment when the utilization is lower than or equal to 1
2 . Similarly, tend

L is the last
moment when the utilization is larger than 0 and lower than or equal to 1

2 . We first
prove the following lemma:

Proposition 2. In the schedule returned by MOLBA, on each cluster, the length of the
time interval between tstart

L and tend
L (denoted by PL) is shorter than or equal to pmax.

Proof: Each cluster schedules its local jobs with HF. Then, it may add jobs from other
organizations, also in HF order. Proposition 1 shows that, in a schedule returned by HF,
the only zone of low utilization is at the end of the schedule. Thus, on each cluster, there
are at most two zones of low utilization: possibly one at the end of the schedule of the
local jobs, and also possibly one at the end of the schedule.

Let Jk,i be the low job that finishes last on cluster Mj . After Jk,i finishes, utilization
is either high, or zero. Thus, by PL definition, Jk,i cannot finish before tend

L . Jk,i does
not start after tstart

L , as utilization at tstart
L is low, so there are enough free processors



to execute a low job. Thus, the length of PL is smaller than or equal to the length of
Jk,i, which is not longer than pmax. �

Proposition 3. After MOLBA finishes, there is at least one cluster whose tstart
L ≤

2 LB.

Proof: The proof is by contradiction. Suppose that there exists ε > 0 such that all
the clusters have high utilization until time 2 LB + ε. Then, the total surface of jobs
computed by all the clusters is greater than 2 LB · mn · 0.5 = W , i.e. greater than the
total work available, which leads to a contradiction. �

4.1 Low Jobs

We show in this section that, in the schedule returned by MOLBA, if the last completed
job is a low job, then MOLBA is a 3−approximate algorithm.

Proposition 4. The makespan of the schedule returned by MOLBA is a 3-
approximation of the optimal makespan, if the last completed job is low. Moreover,
all the organizations have incentive to cooperate.

Proof: The proof uses two well known lower bounds of the optimal makespan C∗
max.

Firstly, the longest job (of length pmax) must be completed, so C∗
max ≥ pmax. Secondly,

all the jobs must fit onto available processors, so C∗
max ≥ LB = W

mn . The last job Jk,i

finishes at Cmax. Recall that this job is a low job. Proposition 3 guarantees that there is
at least one cluster with low utilization before or at time 2 LB. Thus, job Jk,i does not
start after 2 LB, since we use a list scheduling algorithm. Hence, Cmax ≤ 2LB+pk,i ≤
2LB + pmax ≤ 3C∗

max.
As no migrated job can delay a local job, makespans of organizations that were

receiving tasks are not modified. The organizations that were sending tasks have their
makespan reduced because of the global approximation ratio. The schedule of the rest
of organizations is not modified. Thus, the constraint in Equation (1) is satisfied and all
the organizations have incentive to cooperate. �

4.2 General Case

Let us now consider the case where the last completed job can have any height. We now
show that MOLBA achieves an approximation ratio of 4 on the global makespan. We
suppose here that we “cut” the schedule where each organization schedule its local jobs
at time 3 LB (and not 2 LB as in the previous case). We do not move the local tasks
of organizations with local makespans smaller than 4 LB. For the rest of the clusters,
all the jobs which start after time 3 LB before the load balancing procedure are moved
into a queue and then scheduled using the HF list algorithm.

Proposition 5. MOLBA is a 4-approximate algorithm and all the organizations have
incentive to cooperate.



Proof: Let us prove this Proposition by contradiction. Let C∗
max be the makespan

of an optimal schedule, and let us suppose that a job starts after time 3 C∗
max in the

schedule returned by MOLBA. This means that this job could not have been started
before : for all i ∈ {1, . . . , n}, Cmax(Mi) ≥ 3 C∗

max. Proposition 2 shows that, for
each cluster, the zone where at most half of the processors are busy is smaller than or
equal to C∗

max. Thus, on each cluster, the zone where at least half of the processors are
busy is larger than or equal to 2 C∗

max. As we have seen it previously, C∗
max ≥ W

n m ,
where W =

∑
pk,iqk,i. Thus, the total work which is done before 3 C∗

max in the zones
of high utilization is larger than or equal to n m

2 (2 W
n m) = W . This is not possible since

the total work which has to be done is equal to W . Thus, no job starts after time 3 C∗
max,

and no job is completed after time 4 C∗
max.

The proof that all the organizations have incentive to cooperate is analogous to the
proof of Proposition 4. �

There are some other special cases in which the presented approximation ratio can
be improved. When there are n = 2 organizations, the original version of the algorithm
(“cutting” the schedules at 2 LB) is 3−approximate. We omit the proof because of
the lack of space. For n clusters, and when all the jobs are low, the algorithm is also
3−approximate, since this special case is included in the proof presented in Section 4.1.
Finally, when all the tasks are high, no two tasks can be scheduled in parallel on one
cluster. Thus, the problem corresponds to scheduling sequential tasks on n processors.
Any list scheduling algorithm is, in this case, 2− 1

n approximate. It is straightforward to
guarantee that all the organizations have incentive to cooperate. Each task is scheduled
on its local processor, unless there is a free processor that already scheduled its local
tasks.

5 Related Work

In this paper we have studied the interest of collaboration between independent parties.
We have claimed that if a proposed, collaborative solution does not deteriorates any
participant’s selfish goal, it will be adopted by all the participants.

Using a reasonable set of assumptions, we have demonstrated that it is always possi-
ble to produce such collaborative solutions. Moreover, we have developed an algorithm
which has a worst-case guarantee on the social goal (the makespan of the system), at
the same time respecting selfish goals of participants.

In this section we will briefly summarize how the concept of collaboration and the
distributed nature of systems has been understood by and used in other works.

Non-cooperative game theory studies situations in which a set of selfish agents op-
timize their own objective functions, which also depend on strategies undertaken by
other agents. The central notion is the Nash equilibrium [8], a situation in which no
agent can improve its own objective function by unilaterally changing his/her strategy.
It can be useful to define a social (global) objective function, which expresses the per-
formance of the system as a whole. The ratio between the values of this function in
the worst Nash equilibrium and in an optimal solution is called the Price of Anarchy
(PoA)[9]. This can be interpreted as the cost of no cooperation and can be high. In the



context of scheduling, [10] measures PoA when selfish sequential jobs choose one of
the available processors. A related measure, Price of Stability (PoS) [11, 12] compares
the socially-best Nash equilibrium with the socially-optimal result. Usually, in order to
find such an equilibrium, a centralized protocol gathers information from, and then sug-
gests a strategy to, each participant. Since the proposed solution is a Nash equilibrium,
the participants do not have incentive to unilaterally refuse to follow it. [13] computes
PoS in the same model as [10], but relaxes the selfishness of jobs by a factor of α and
studies the trade-off between α and the approximation ratio of the global makespan. The
collaborative solution proposed by our algorithm approximates the socially-best Nash
equilibrium, because it optimizes the global goal with a guarantee that no participant
has the incentive to deviate from the proposed solution.

Cooperative game theory studies similar situations, but assumes that players can
communicate and form coalitions. The members of a coalition split the sum of their
payoffs after the end of the game. Note that this requires that the payoffs are transfer-
able, which is not the case in our problem.

Papers proposing distributed resource management or distributed load balancing
usually solve the problem of optimizing a common goal with a decentralized algorithm.
[14] shows a fully decentralized algorithm that always converges to a steady state. [15]
presents a similar algorithm with the divisible load job model. Those approaches con-
trast with our algorithm. Although the algorithm is centralized, it respects the decen-
tralized goals of participants. We are, however, aware that a load balancing algorithm in
large scale systems must be decentralized. In [16] a fully distributed algorithm balances
selfish identical jobs on a network of identical processors. The aim of each job is to be
on the least loaded machine. The work focus on the time needed to converge towards
a Nash equilibrium. Alternative approaches propose to balance the load by an implicit
barter trade of CPU power [17], or explicit computational economy [18].

6 Conclusion and Perspectives

In this work we have considered the problem of cooperation between selfish partici-
pants of a computational grid. More specifically, we studied a model of the grid in which
selfish organizations minimize the maximum completion time of locally-produced jobs.
Under some basic assumptions (off-line, clairvoyant system, idle time of machines is
free) we have demonstrated that it is always possible to respect the selfish goals at the
same time improving the performance of the whole system. The cooperative solutions
have a constant worst case performance, a significant gain compared to selfish solutions
that can be arbitrary far from the optimum. We deliberately focused on the analysis of
the worst-case performance in order to avoid the plethora of problems of the experi-
mental methodology in grid systems.

Our aim was not to find an algorithm solving the general problem of grid resource
management, which complexity is overwhelming for any kind of mathematical model-
ing. However, we claim that the positive results given by this paper proves that cooper-
ation achieved at the algorithmic (as opposed to e.g. economic) level is possible. Note
that it should be fairly straightforward to relax some of our assumptions, e.g. to use



on-line scheduling in batches instead of off-line. An interesting direction would also be
to consider this mutiorganization scheduling problem with heterogeneous clusters.

In our future work, we would like to study the effect of the increased effort of indi-
viduals on the global goal. More specifically, we would like to relax the hard constraint
of “not being worse than the local solution” to an approximation of “not being worse
than α times local solution”.
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