
Hirschberg’s Algorithm on a GCA and its

Parallel Hardware Implementation

Johannes Jendrsczok1, Rolf Hoffmann1, and Jörg Keller2

1 TU Darmstadt, FB Informatik, FG Rechnerarchitektur
Hochschulstraße 10, D-64289 Darmstadt

{jendrsczok, hoffmann}@ra.informatik.tu-darmstadt.de
2 FernUniversität in Hagen, Fakultät für Mathematik und Informatik

Universitätsstr. 1, D-58084 Hagen
Joerg.Keller@FernUni-Hagen.de

Abstract. We present in detail a GCA (Global Cellular Automaton)
algorithm with 3n cells for Hirschberg’s algorithm which determines the
connected components of a n-node undirected graph with time complex-
ity O(n log n). This algorithm is implemented fully parallel in hardware
(FPGA logic). The complexity of the logic and the performance is evalu-
ated and compared to a former implementation using n(n+1) cells with
a time complexity of O(log2(n)). It can be seen from the implementation
that the presented algorithm needs significantly fewer resources (logic el-
ements times computation time) compared to the implementation with
n(n + 1) cells, making it preferable for graphs of reasonable size.

1 Introduction

The GCA (Global Cellular Automata) model [1, 2] is an extension of the classical
CA (Cellular Automata) model [3]. In the CA model the cells are arranged in a
fixed grid with fixed connections to their local neighbors. Each cell computes its
next state by the application of a local rule depending on its own state and the
states of its neighbors. The data accesses to the neighbor’s states are read-only
and therefore no write conflicts can occur. The rule can be applied to all cells in
parallel and therefore the model is inherently massively parallel.

The GCA model is a generalisation of the CA model which is also massively
parallel. It is not restricted to the local communication because any cell can be
a neighbor. Furthermore the links to the neighbors are not fixed; they can be
changed by the local rule from generation to generation. Thereby the range of
parallel applications for the GCA model is much wider than for the CA model.

The CA model suits to all kinds of applications with local communication,
like physical fields, lattice-gas models, models of growth, moving particles, fluid
flow, routing problems, picture processing, genetic algorithms, and cellular neural
networks. Typical applications for the GCA model are – besides all CA appli-
cations – graph algorithms, hypercube algorithms, logic simulation, numerical
algorithms, communication networks, neuronal networks, games, and graphics.

state

pointer1
pointer2

...
...

...

R
ule

nextstate

data

access
inform

ation
global state

dynam
ically

linked

F
ig

.
1
.
T

h
e

o
p
era

tio
n

p
rin

cip
le

o
f
th

e
G

C
A

.

T
he

generalaim
of

our
research

(supported
by

D
eutsche

Forschungsgem
ein-

schaft,projectM
assively

P
arallelSystem

s
for

G
C
A

)
is

the
hardw

are
and

softw
are

support
for

this
m

odel
[4].R

ecently
w

e
have

investigated
how

graph
algorithm

s
can

be
im

plem
ented

on
the

G
C

A
.
In

[5]w
e

have
described

the
hardw

are
im

ple-
m

entation
ofH

irschberg’s
algorithm

to
com

pute
the

connected
com

ponents
ofan

n-node
undirected

graph
[6]on

the
G

C
A

using
n

2+
n

cells.T
he

tim
e

com
plexity

w
as

O
(log

2(n)).
W

e
use

field
program

m
able

gate
arrays

(F
P

G
A

s)
as

hardw
are

platform
.

In
this

paper
w

e
present

a
different

hardw
are

im
plem

entation
ofH

irschberg’s
algorithm

on
a

G
C

A
using

only
3
n

cells
w

ith
tw

o
pointers

per
cell.

T
his

im
-

plem
entation

w
ill

be
evaluated

w
ith

respect
to

tim
e

com
plexity

and
hardw

are
com

plexity.
A

lso
this

algorithm
w

ill
be

com
pared

to
the

G
C

A
algorithm

w
ith

n
2

+
n

cells
in

order
to

find
out

the
advantages.

T
he

F
P

G
A

reconfigurability
allow

s
to

im
plem

ent
different

G
C

A
s

w
ith

very
low

overhead,
thus

enabling
the

use
of

highly
effi

cient
co-processors,as

argued
in

a
recent

journalissue,see
[7].

T
he

rem
ainder

of
the

paper
is

organized
as

follow
s.

In
Section

2
w

e
sketch

relations
and

differences
betw

een
P

R
A

M
s

and
G

C
A

s.
In

Sections
3

and
4,

w
e

review
H

irschberg’s
algorithm

and
present

how
it

can
be

m
apped

onto
a

G
C

A
.

Section
5

presents
results

about
our

hardw
are

realization.Section
6

concludes.

2
G

C
A

s
a
n
d

P
R

A
M

s

T
he

state
of

a
G

C
A

cell
consists

of
a

data
part

and
an

access
inform

ation
part.

In
a

com
m

on
im

plem
entation

the
access

inform
ation

part
contains

one
or

m
ore

pointers
(F

igure
1).

T
he

pointers
are

used
to

dynam
ically

establish
links

to
globalneighbors.W

e
callthe

G
C

A
m

odelone
handed

ifonly
one

neighbor
can

be
addressed,tw

o
handed

iftw
o

neighbors
can

be
addressed

and
so

on.A
dditionally

w
e

call
the

G
C

A
cells

uniform
if

all
cells

have
the

sam
e

transition
rule

and
otherw

ise
non-uniform

.
A

s
the

G
C

A
cells

w
ork

synchronously
and

can
only

read
from

other
cells,

the
G

C
A

resem
bles

the
concurrent-read

ow
ner-w

rite
(C

R
O

W
)

P
R

A
M

m
odel,

w
here

each
m

em
ory

location
m

ay
only

be
w

ritten
by

a
dedicated

processor,the

owner. In principle, the GCA is able to implement any PRAM algorithm, as any
algorithm consists of a finite number of instructions from a finite instruction set.
However, an automaton implementation is particularly advantageous for simple
algorithms, which are however available in abundance in the PRAM community.
In particular, Hirschberg’s algorithm is well-studied on the PRAM model [8].

A general simulation of CRCW or CREW PRAMs onto a GCA can be
achieved by sorting the requests according to owners; efficient sorting is available
on owner-write PRAMs [9]. Yet, as the PRAM algorithm for a particular prob-
lem can be compiled into the GCA rule set when using reconfigurable hardware,
i.e. FPGAs, more efficient methods normally are available.

On a PRAM one seeks an algorithm with a short parallel runtime Tp on a
number of processors P with P · Tp = Ts, where Ts is the sequential complexity
of the problem at hand, i.e. a work-optimal algorithm. Either, P is driven to its
maximum value in the range of the problem size, to explore the limits of paral-
lelism in a problem, or P is chosen so that a practical implementation is available.
While the latter case in general can be derived from the first one via Brent’s
theorem, often direct methods lead to simpler and faster implementations. In a
previous paper [5], we have investigated the first case, here we investigate the
latter, for the reasons given below.

If the number of processors is taken as a measure of machine cost or price, and
parallel time (for a fixed work) is seen as the inverse of performance, then P ·Tp

represents a price/performance ratio. While the cost measure may be appropriate
for PRAMs because even RISC microprocessors are much more complex than
memory cells, in GCAs the memory cost has to be taken into account, because a
finite automaton with a few registers is cheap in reconfigurable hardware, while
memory cost is comparatively high. This means that the price of a GCA requiring
n2 memory cells does not vary much no matter if one takes n2 or n2/ log2(n)
processors. This enables further simplification of algorithms.

Yet, our feeling was that employing n instead of n2 processors, and giving
each a local memory of size n, not implemented in registers as before but in
much denser RAM storage, might still improve the price-performance ratio, and
give processor counts that become practical.

Implementing a CROW PRAM algorithm or a GCA requires similar consid-
erations. The memory is mapped to the owners. For non-local read accesses, the
congestion, i.e. the number of cells reading from one cell, has to be controlled.
In the case that we investigate here, where each GCA cell only has a single data
value to be accessed, congestion can only occur because of concurrent reading.
Yet, this can be ameliorated by appropriate routing networks, such as Ranade’s
butterfly network. Hence, we will list the congestion numbers in our result table,
but not deal further with the congestion and routing problem.

3 Hirschberg’s Algorithm

Our example application is Hirschberg’s well known algorithm [6] to compute
the connected components of an undirected graph on a CREW PRAM. Yet,

only a CROW PRAM is really needed. Hirschberg’s algorithm was seminal and
is work-optimal for dense graphs, i.e. graphs with n nodes and m = Θ(n2) edges
where the sequential complexity of the problem is Θ(m + n) = Θ(n2). Starting
with every single node as a component, the algorithm divides the number of
components in every iteration by at least two, so log n iterations are needed at
most. Each iteration needs time O(log n) on n2/ log2(n) processors, therefore
the overall time complexity is O(log2(n)). Each component is represented by
its node vi with the smallest index i. These representing nodes are called super
nodes. The index of a component is the index of its super node. Our goal is to
show that the algorithm of Hirschberg et al. works efficiently on the GCA with 3n
cells, for the reasons given in the previous section. Our implementation will need
O(n log n) steps, hence we will see a speedup for graphs with m = Ω(n log n)
edges, and see maximum speedup for graphs with m = Θ(n2) edges. Examples of
such graphs appear e.g. when very large graphs are collapsed into smaller ones.

Listing 1.1 shows the original algorithm (reference algorithm) consisting of
6 steps. Each iteration starts with several non connected components. During
every iteration, each component searches a connection to another component.
First every node of the component searches a connection to a node belonging to
another component (step 2). If the node can connect to more than one compo-
nent, the component with the lowest index is selected. Afterwards the super node
picks the component with the lowest index (step 3). The components connect to
each other and for each new component a super node is chosen (step 4-6).

1. for all i in parallel do C(i) ← i
do steps 2 through 6 for log n iterations

2. for all nodes i in parallel do
T(i) ← minj{C(j) |A(i,j)=1 AND C(j) != C(i)} if none then C(i)

3. for all i in parallel do
T(i) ← minj{T(j) |C(j)=i AND T(j) != i} if none then C(i)

4. for all i in parallel do
C(i) ← T(i)

5. repeat for log n iterations
for all i in parallel do T(i) ← T(T(i))

6. for all i in parallel do
C(i) ← min{C(T(i)) ,T(i)}

Listing 1.1. Pseudo code for the algorithm of Hirschberg et al. on the PRAM
(reference algorithm)

The original algorithm was defined for SIMD (single instruction multiple
data) parallel processors (e.g. vector machines). Later the algorithm was investi-
gated for the PRAM machines [8]. All these algorithms use a common memory.
The algorithm uses the following variables and constants: Input is the adjacency
matrix A = {A(i, j)|i, j = 1 . . . n}. If A(i, j) = A(j, i) = 1 then there is a link be-
tween node i and node j. C(i) and T (i) are of type integer and hold the number
of a node or a super node: C = {C(i)|i = 1 . . . n}, T = {T (i)|i = 1 . . . n}. The
constant A, the variables C, T and the temporary variables have to be stored in
the common memory of the SIMD or PRAM computer.

CTT
em

p

0
(n-1)

1

012

……… …
col(index)

row
(index)

F
ig

.
2
.
G

C
A

F
ield

.

4
H

irsch
b
e
rg

’s
A

lg
o
rith

m
o
n

th
e

G
C

A

T
he

G
C

A
algorithm

uses
a

cell
array

Z
in

order
to

store
the

variables
and

com
putational

rules.
T

he
cell

array
Z

consists
of

three
row

s
w

ith
n

cells
each

(F
ig.

2):
R

ow
0

of
Z

corresponds
to

the
originalvector

C
(i):

Z
0

=
C

=
C

0
...C

n−
1 .

R
ow

1
of

Z
corresponds

to
the

originalvector
T

(i):
Z

1
=

T
=

T
0
...T

n−
1 .

R
ow

2
of

Z
is

used
to

hold
tem

porary
results

T
em

p(i):
Z

2
=

T
em

p
=

T
em

p
0
...T

em
p

n−
1 ,

as
w

ell
as

the
m

atrix
A

,
one

colum
n

per
cell.

T
he

m
atrix

colum
ns

are
only

accessible
by

the
cell

holding
them

3.
T

he
cells

of
Z

are
ordered

by
a

linear
index

K
=

0
...3

n−
1.A

cell
z

=
Z

(K
)

w
ill

be
accessed

from
another

cell
using

the
linear

index
K

.
For

convenience
a

cell
z

=
Z

(J
,I)

=
Z

(K
)
m

ay
also

be
accessed

by
the

row
index

J
=

row
(K

)
and

the
colum

n
index

I
=

colu
m

n(K
)

using
the

access
functions

row
and

colum
n.

E
ach

cell
z

=
(d

,p0
,p1)

consists
ofa

data
part

d
and

tw
o

pointers
p0

and
p1.

T
he

data
part

is
used

for
the

com
putation

of
the

connected
com

ponents
storing

the
node

or
super

node
num

bers.
T

he
pointers

dynam
ically

establish
links

to
tw

o
other

cells
(globalcells

z ∗(p0),z ∗(p1)).T
he

globaldata
is

denoted
as

d ∗(p0)
and

d ∗(p1).In
generalthe

next
cellstate

z ′=
(d ′,p0 ′,p1 ′)

depends
on

its
current

state
z

and
the

states
z ∗(p0),

z ∗(p1)
of

its
current

neighbors.
A

G
C

A
algorithm

consists
of

a
sequence

of
parallel

com
putations.

In
each

com
putation

all
cells

update
their

state
in

parallel
in

accordance
to

the
local

rule.
T

he
globalstate

(configuration)
of

the
G

C
A

is
given

by
the

cross
product

ofallthe
localcellstates.T

he
configuration

changes
from

tim
e

step
to

tim
e

step.
In

order
to

em
phasize

the
changing

of
the

configurations
w

ith
tim

e
g

the
term

generation
is

com
m

only
used.T

he
configuration

at
tim

e
g

is
the

g
th

generation.
A

G
C

A
algorithm

can
be

clearly
represented

by
a

state
graph.

T
he

state
graph

consists
of

states
w

hich
are

reached
under

certain
conditions,

e.g.
cen-

tral
counter

states.
In

each
state

tw
o

types
of

operations
are

perform
ed:

data
operations

and
pointer

operations.
T

he
state

graph
(F

ig.
4)

show
s

on
the

left
the

com
putation

of
the

actual
pointer

p
and

on
the

right
the

data
operation

of
a

cell.T
he

pointer
p

can
either

be
com

puted
in

the
current

generation
or

one
generation

in
advance.In

our
algo-

rithm
the

pointer
is

com
puted

in
the

current
generation

to
be

used
im

m
ediately

3
If

th
e

d
eg

ree
o
f

th
e

g
ra

p
h

is
k
n
ow

n
to

b
e

low
,
th

e
m

a
trix

co
lu

m
n
s

ca
n

b
e

rep
la

ced
b
y

lists.

Step State Active # cells with δ = # of N algor. N2 algor.
Cells read access concurrent Gen. Sub- Gen. Sub-

(modifying read accesses gen. gen.
cell state) (congestion)

1 0 n 0 0 1 1

2 1 n 0 0 2 + n n 3 + log n log n
2 n n + 2n 2 + 0
3 2n n + 2n 0 + 1

3 4 n n + 2n 0 + 1 1 + n n 3 + log n log n
5 2n n + 2n 0 + 1

4 6 n n + 2n 1 + 0 1 1

5 7 n n + 2n n + 0 log n log n log n log n

6 8 n n + 2n n + 0 1 1

Table 1. Generations for each step. Active cells are cells that perform a calculation
within a generation. δ is the number of concurrent read accesses to each of the # cells.

in the data operation. Therefore the assignment symbol ”=” is used for pointer
operations. In contrast the synchronous assignment symbol ”←” is used for the
data operations.

Although in principle each cell obeys to the same uniform algorithm, the
operations to be performed may depend on certain conditions. In this algorithm
the data operations depend on the positions of a cell in the field, in partic-
ular whether a cell is located in C, T or Temp. The conditions to distiguish
between the three vectors are: row(index) = 0 for C, row(index) = 1 for T ,
and row(index) = 2 for Temp. The GCA algorithm (Fig. 4) consists of 8 states
which correspond to the 6 steps of the original algorithm as shown in Table 1.

State 0. The first step of the reference algorithm requires the data of the
cell vector C to be set to the corresponding index (C(i)← i). So the data of the
vector C is initialized with the column number of each cell.

State 1. In order to prepare the field for the calculation of the minimum in
the next state the vector Temp is set to ∞. Thereby it is possible to identify
whether a minimum will have been found in state 2 or not.

State 2. In this state all the minj functions of the Hirschberg algorithm are
computed in parallel. If the condition A(i, j) = 1 AND C(j) �= C(i) is fulfilled
and Temp(i) is less than C(i), Temp(i) is set to C(i), otherwise Temp(i) remains
unchanged. Thus the data of the vector Temp(i) is the minimum of C(j) after
n iterations.

In the corresponding GCA algorithm (Fig. 4) each cell is operating on its own
and the operations specified in the graph tell each cell what it has to do. In state
2 only the last row (Temp) of the cell array with row(index) = 2 is activated.
Each cell T (I) computes the minimium of the cell C(I) compared to all cells
C(J). The pointer p0 is used to access C(I) and the pointer p1 is successively
incremented (using the subgeneration counter) in order to access all J cells (see
access pattern Fig. 3).

State 3. After the calculation of the minimum minj the value of C(i) is
written back in case none of the conditions of generation 2 was true. For this

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

(0) (1) (2) (3)

State 0 State 2State 1

0 1 2 3

4 5 6 7

8 9 10 11

State 3,5

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

(0) (1) (2) (3)

(0) (1) (2) (3)

State 6State 4

0 1 2 3

8 9 10 11

4 5 6 7

0 1 2 3

8 9 10 11

4 5 6 7

State 7 State 8

Fig. 3. Access Patterns for n = 4. Active cells are shaded.

purpose Temp(i) is substituted for the value of C(i) in case Temp(i) equals ∞.
Then the value of Temp(i) is set to ∞ in preparation of the next generation.

The cell T (I) uses its pointer p0 to access Temp(I) and its pointer p1 to access
Temp(I). If p0 = ∞ then p1 is copied to the data part d of T (i), otherwise p0
is copied.

State 4. (Similar to state 2). In contrast to State 2 the condition has changed.
If the condition C(j) = i AND T (j) �= i is fulfilled and Temp(i) is less than
T (j), Temp(i) is set to T (j), otherwise Temp(i) remains unchanged. Thus the
data of the vector Temp(i) is the minimum of T (j) after n iterations.

State 5. State 5 is identical to state 3.
State 6. Vector T is copied to vector C.
State 7. This state iterates log n times. Only the vector T (corresponding

to Hirschberg’s T (i) Vector) is modified. The pointers are data-dependent. The
cell T (i) points to the cell T (T (i)). Thus the neighbor depends on the value of
the cell and it is possible to set the value of T (i) to the value of T (T (i)) in one
parallel computation.

State 8. State 8 is similar to state 7. In both states the pointers are data
dependent. In addition to the previous state the value of C(T (i)) is compared
to the stored value of T (i). The minimum out of both values is saved as the new
value for C(i).

Time complexity. (Fig. 4, Table 1) The steps 1, 4 and 6 can be performed
in one generation. Each of the steps 2 and 3 need 1 + n + 1 respectively 1 + n
generations, because the computation of the minimum needs n sub generations.
Step 5 is repeated log n times.

The steps 2 to 6 are executed in log n iterations. So the total amount of
generations is 1 + log n · (5 + 2n + log n). This corresponds to a time bound
of O(n log n) using 3n cells. In a previous GCA implementation [5], n(n + 1)
cells were used in order to execute the algorithm as fast as possible. There the

05 3 2 18 7 46

p0 =
 col(index)

p1 =
 subgeneration

p0 =
 2* N

 +
 col(index)

p1 =
 col(index)

(3a)

p0 =
 subgeneration

p1 =
 N

 +
 subgeneration

p0 =
 N

 +
 col(index)

p0 =
 d * N

p0 =
 d

p1 =
 N

+col(index)

d �
index

d �
∞

((A
(subgeneration,col(index)) =

 1)
&

 (d*(p1) != d*(p0)) &

(d >
 d*(p1))) d �

d*(p1)

if (p0 =
∞

) d �
d*(p1)

else d �
d*(p0)

(3b)

d �
d*(p0)

d �
d*(p0)

if (d*(p0) <
 d*(p1)) d �

d*(p0)
else d �

d*(p1)

P
o

in
ter O

p
eratio

n
D

ata
O

p
eratio

n

log(n)n

log(n)

n

(3b)
(3a)

d �
∞

(3c)

(3c)

row
=

 0
row

=
 1

row
=

 2

if ((d*(p0) =
 col(index)) &

(d*(p1) != col(index)) &

(d*(p1) <

 d)) d �
d*(p1)

F
ig

.
4
.
G

C
A

a
lg

o
rith

m
w

ith
p
o
in

ter
o
p
era

tio
n

(a
ctu

a
l
a
ccess

p
a
ttern

)
a
n
d

d
a
ta

o
p
er-

a
tio

n

m
inim

um
function

takes
only

log
n

generations
instead

of
n

as
presented

here.
T

herefore
the

total
am

ount
of

generations
w

as
1

+
log

n
·(3

log
n

+
8).

T
his

corresponds
to

a
tim

e
bound

of
O

(log
2(n))

using
n(n

+
1)

cells.
In

order
to

distinguish
the

tw
o

algorithm
s,

the
algorithm

w
ith

3
n

cells
is

also
denoted

as
”
N

algorithm
”

and
the

algorithm
w

ith
n(n

+
1)

cells
as

”
N

2
algorithm

”.

5
F
u
lly

P
a
ra

lle
l
H

a
rd

w
a
re

Im
p
le

m
e
n
ta

tio
n

W
e

have
im

plem
ented

the
tw

o
G

C
A

algorithm
s

w
ith

3
n

cells
(F

ig.
6)

and
w

ith
n(n

+
1)

cells
in

hardw
are

(F
P

G
A

logic)
in

order
to

find
out

the
com

plexity
and

effi
ciency.

T
he

platform
w

as
the

A
LT

E
R

A
Q

uartus
synthesis

tool
and

the
Stratix

II
F
P

G
A

(E
P

2S180).
R

esults
from

the
synthesis

are
show

n
in

T
able

2
and

F
igure

6.
It

turned
out

that
the

states
7

and
8

are
the

sam
e

in
the

N
and

N
2

algorithm
.

T
herefore

the
synthesis

w
as

splitted
into

three
parts:

(1)
states

0-6
for

the
N

algorithm
,(2)

the
corresponding

states
for

the
N

2
algorithm

and
(3)

the
states

7-8
for

both
algorithm

s
(abbreviated

N
/N

2).If
w

e
assum

e
that

the
register

bits
have

relatively
low

im
plem

entation
cost

com
pared

to
the

logic
w

e
can

focus
our

com
parison

on
the

used
logic

elem
ents

(A
L
U

T
s).

For
the

problem
size

n
=

64
the

num
ber

of
A

L
U

T
s

needed
to

im
plem

ent
the

states
0-6

are
1,853

for
the

N
algorithm

,and
56,012

for
the

N
2

algorithm
w

hereas
the

calculation
tim

e
coun-

terw
ise

is
5.2

μs
(N

)
and

1.2
μs

(N
2).

M
ultiplying

the
num

ber
of

A
L
U

T
s

w
ith

0 4 8 12 16 20 24 28 32

0

20000

40000

60000

Problem size n

ALUT · Time (μs)

Fig. 5. Resources vs. n (dashed: N algorithm, solid: N2 algorithm).

the calculation time gives us a good measure which corresponds to the resource
allocation needed to perform the algorithm. We call that measure resources for
short. It can be seen from Fig. 5 that the resources of the N algorithm (states
0-6) are significantly lower compared to the N2 algorithm. Therefore the N al-
gorithm is more economic with respect to the consumption of resources whereas
the N2 algorithm can produce the result faster.

6 Conclusion

We have presented a GCA algorithm with 3n cells for Hirschberg’s algorithm to
compute the connected components of a directed graph. The algorithm consists
of 8 states in which the appropriate operations on the pointer and the data parts
of the cells are performed in parallel. The time complexity is O(n log n). A former
GCA algorithm with n(n+1) cells can compute the required minimum function,
which is the most time consuming part of the whole algorithm in log n time.
Thereby the time complexity can be reduced to O(log2(n)). Both algorithms
were implemented in hardware (FPGA logic) and evaluated. If the allocated
resources which have to be allocated over time (in terms of logic elements ×
computation time) are used as a metric then the algorithm with 3n cells has
showed a 5 to 11 times better performance for n = 4 . . . 32 than the algorithm
with n(n + 1) cells.

References

1. Hoffmann, R., Völkmann, K.P., Waldschmidt, S.: Global Cellular Automata GCA:
An Universal Extension of the CA Model. In: Worsch, Thomas (Editor): ACRI 2000
Conference. (2000)

2. Hoffmann, R., Völkmann, K.P., Waldschmidt, S., Heenes, W.: GCA: Global Cellular
Automata. A Flexible Parallel Model. In: PaCT ’01: Proceedings of the 6th Inter-
national Conference on Parallel Computing Technologies, London, UK, Springer-
Verlag (2001) 66–73

reg. 0

reg. 1

reg. 2

cell-ID

generation

A

cellcontent

neighbor cellcontent

generated
static

interconnections

…

…

calculation
m

odul

(a
)

M
o
d
u
le

fo
r

sta
te

0
-6

reg. 0

reg. 1

reg. 2

T
i…

…

generation

d‘

M
IN

(b
)

M
o
d
u
le

fo
r

sta
te

7
,8

F
ig

.
6
.
H

a
rd

w
a
re

m
o
d
u
les.

c
a
se

p
r
o
b
l
e
m

c
e
l
l
s

l
o
g
ic

e
l
e
m
e
n
t
s

f
m

a
x

r
e
g
ist

e
r
s

#
c
l
o
c
k

c
a
l
c
u
l
a
t
io

n
size

(A
L
U

T
)

(M
H

z
)

c
y
c
l
e
s

t
im

e
(n

s)

N

4
1
2

1
5
2

1
2
6

4
8

2
5

1
9
7

8
2
4

3
7
2

8
8

1
2
0

6
1

6
9
2

1
6

4
8

7
2
2

8
4

2
8
8

1
4
5

1
7
1
9

3
2

9
6

1
8
5
3

6
5

6
7
2

3
4
1

5
1
7
6

N
2

4
2
0

5
7
5

8
2

8
0

2
3

2
7
9

8
7
2

2
5
7
0

7
5

3
6
0

4
0

5
2
8

1
6

2
7
2

1
2
3
2
8

5
1

1
6
3
2

6
1

1
1
9
4

3
2

1
0
5
6

5
6
0
1
2

7
1

7
3
9
2

8
6

1
1
9
5

N
/
N

2

4
4

1
8

4
0
0

8
6

1
5

8
8

1
7
2

1
3
8

3
2

1
2

8
6

1
6

1
6

6
5
3

1
1
2

8
0

2
0

1
7
7

3
2

3
2

4
8
8
8

5
7

1
9
2

3
0

5
2
3

T
a
b
le

2
.
S
y
n
th

esis
resu

lts,
ca

se
N

a
n
d

N
2

sta
n
d

fo
r

sta
te

0
-4

,
N

/N
2

sta
n
d
s

fo
r

sta
te

5
a
n
d

6
a
n
d

is
n
eed

ed
fo

r
b
o
th

a
lg

o
rith

m
s

3
.

v
o
n

N
eu

m
a
n
n
,

J
.:

T
h
eo

ry
o
f

S
elf-R

ep
ro

d
u
cin

g
A

u
to

m
a
ta

.
U

n
iv

ersity
o
f

Illin
o
is

P
ress,

U
rb

a
n
a

a
n
d

L
o
n
d
o
n

(1
9
6
6
)

4
.

H
een

es,
W

.,
H

o
ff
m

a
n
n
,

R
.,

J
en

d
rsczo

k
,

J
.:

A
m

u
ltip

ro
cesso

r
a
rch

itectu
re

fo
r

th
e

m
a
ssiv

ely
p
a
ra

llel
m

o
d
el

G
C

A
.

In
:
In

tern
a
tio

n
a
l
P
a
ra

llel
a
n
d

D
istrib

u
ted

P
ro

cess-
in

g
S
y
m

p
o
siu

m
(IP

D
P

S
),

W
o
rk

sh
o
p

o
n

S
y
stem

M
a
n
a
g
em

en
t

T
o
o
ls

fo
r

L
a
rg

e-S
ca

le
P
a
ra

llel
S
y
stem

s
(S

M
T

P
S
).

(2
0
0
6
)

5
.

J
en

d
rsczo

k
,

J
.,

H
o
ff
m

a
n
n
,

R
.,

K
eller,

J
.:

Im
p
lem

en
tin

g
H

irsch
b
erg

’s
P

R
A

M
-

A
lg

o
rith

m
fo

r
C

o
n
n
ected

C
o
m

p
o
n
en

ts
o
n

a
G

lo
b
a
l

C
ellu

la
r

A
u
to

m
a
to

n
.

In
:

In
-

tern
a
tio

n
a
l

P
a
ra

llel
&

D
istrib

u
ted

P
ro

cessin
g

S
y
m

p
o
siu

m
(IP

D
P

S
),

W
o
rk

sh
o
p

o
n

A
d
va

n
ces

in
P
a
ra

llel
a
n
d

D
istrib

u
ted

C
o
m

p
u
ta

tio
n
a
l
M

o
d
els

(A
P

D
C

M
).

(2
0
0
7
)

6
.

H
irsch

b
erg

,
D

.S
.:

P
a
ra

llel
a
lg

o
rith

m
s

fo
r

th
e

tra
n
sitiv

e
clo

su
re

a
n
d

th
e

co
n
n
ected

co
m

p
o
n
en

t
p
ro

b
lem

s.
In

:
S
T

O
C

’7
6
:
P

ro
ceed

in
g
s

o
f

th
e

eig
h
th

a
n
n
u
a
l
A

C
M

sy
m

-
p
o
siu

m
o
n

T
h
eo

ry
o
f
co

m
p
u
tin

g
,
N

ew
Y

o
rk

,
N

Y
,
U

S
A

,
A

C
M

P
ress

(1
9
7
6
)

5
5
–
5
7

7
.

B
u
ell,

D
.,

E
l-G

h
a
zaw

i,
T

.,
G

a
j,

K
.,

K
in

d
ra

ten
k
o
,
V

.:
G

u
est

ed
ito

rs’
in

tro
d
u
ctio

n
:

H
ig

h
-p

erfo
rm

a
n
ce

reco
n
fi
g
u
ra

b
le

co
m

p
u
tin

g
.

C
o
m

p
u
ter

4
0
(3

)
(2

0
0
7
)

2
3
–
2
7

8
.

G
ib

b
o
n
s,

A
.,

R
itter,

W
.:

E
ffi

cien
t

P
a
ra

llel
A

lg
o
rith

m
s.

C
a
m

b
rid

g
e

U
n
iv

ersity
P

ress,
N

ew
Y

o
rk

,
P
o
rt

C
h
ester,

M
elb

o
u
rn

e,
S
id

n
ey

(1
9
9
8
)

9
.

L
in

,
D

.,
D

y
m

o
n
d
,
P
.W

.,
D

en
g
,

X
.:

P
a
ra

llel
m

erg
e-so

rt
a
lg

o
rith

m
s

o
n

ow
n
er-w

rite
p
a
ra

llel
ra

n
d
o
m

a
ccess

m
a
ch

in
es.

In
:
E

u
ro

p
a
r

’9
7
.
(1

9
9
7
)

3
7
9
–
3
8
3

