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Abstract. Total Exchange is one of the most important collective com-
munication patterns for scientific applications. In this paper we propose
an algorithm called LG for the total exchange redistribution problem be-
tween two clusters. In our approach we perform communications in two
different phases, aiming to minimize the number of communication steps
through the wide-area network. Therefore, we are able to reduce the num-
ber of messages exchanged through the backbone to only 2×max(n1, n2)
against 2×n1×n2 messages with the traditional strategy (where n1 and
n2 are the number of nodes of each clusters). Experimental results show
that we reach over than 50% of performance improvement comparing to
the traditional strategies.

1 Introduction

In this paper we address the problem of efficiently perform the alltoall (or Total
Exchange) communication on two parallel clusters. Total Exchange [1] is one of
the most important collective communication patterns for scientific applications,
in which each process holds n different data items that should be distributed
among the n processes, including itself. An important example of this communi-
cation pattern is the MPI_AlltoAll operation, where all messages have the same
size m.

Although efficient alltoall algorithms have been studied for specific networks
structures like meshes, hypercubes, tori and circuit-switched butterflies [1,2,3,4],
most of the algorithms currently used rely on homogeneous network solutions.
These algorithms follow uniform communication patterns between all nodes that
prevent an efficient use of both local and distant resources.

In our case, we assume that the parallel application is executed on two dif-
ferent clusters connected by a backbone. This is the case, when for scalability
or lack of memory reasons, the application needs to be executed on more than
one cluster. In this case, as our experiments will show, standard solutions such
as the one implemented in MPI libraries are sub-optimal because they do not
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use the fact that the performance of the backbone (latency and bandwidth) is
lower than the performance of the interconnection network of the cluster.

The main contribution of this paper is to propose an efficient algorithm for
executing a Total Exchange communication pattern on two clusters where the
latency of the backbone is a performance constraint. Our strategy consists in ex-
ploiting the local-area network performance to reduce the number of inter-cluster
communication steps. We have compared this algorithm with the standard all-
toall implementation from the OpenMPI library [5], and the results show that
not only we outperform the traditional algorithm in a grid environment but also
that our algorithm is more scalable.

This paper is organized as follows: Section 2 introduces the problem of total
exchange between nodes in two different clusters. The related works are presented
in Section 3. The algorithm we propose is described in Section 4, while the
results of the experiments are given in Section 5. Finally, Section 6 presents
some conclusions and the future directions of our work.

2 Problem of Total Exchange between Two Clusters

We consider the following architecture (see Figure 1). Let there be two clusters C1

and C2 with respectively n1 nodes and n2 nodes. A network, called a backbone,
interconnects the two clusters. We assume that a cluster use the same network
card to communicate to one of its node or to a node of another cluster. Based on
that topology inter cluster communications are never faster than communication
within a cluster.

with n1 nodes

Cluster C1

with n2 nodes

Cluster C2
Backbone

Fig. 1. Architecture for the redistribution problem

Let us suppose that an application is running and using both clusters (for
example, a code coupling application). One part of the computation is performed
on cluster C1 and the other part on cluster C2. During the application, data must
be exchanged from C1 to C2 using the alltoall pattern. Alltoall (also called total
exchange) is defined in the MPI standard. It means that every node has to send
some of its data to all the other nodes. Here we assume that the data to be
transfer is different for each receiving node (if the data is the same, the routine
is called an allgather and is less general that the studied case). Moreover we
assume that the size of the data to exchange is the same for every pair of nodes
(the case where the size is different is implemented by the alltoallv routine: it is
more general than our case and will be studied in a future work). Altogether,
this means that we will have to transfer (n1 + n2)2 messages. The data of all
these messages are different but the size of the messages are the same and is
given and called m (in bytes).

The question is: how to perform the alltoall operation as fast as possible?



Several MPI libraries (OpenMPI, MPICH2, etc.) implement the allltoall rou-
tine (see Figure 2 for an example). However, these implementations assume that
all the nodes are on the same clusters, which means that all the messages have
the same importance. However, in our case, some messages are transferred within
a cluster (from a node of C1 to a node of C1 or form C2 to C2) or between the two
clusters. In the first case, bandwidth and latency are faster than in the second
case. Therefore, there is room for optimizing the transfer time.

inbuffer = (void*) calloc (sendcount*size,sizeof(int));
outbuffer = (void*) calloc (recvcount*size,sizeof(int));
(...)
retval = MPI_Alltoall(outbuffer,sendcount,MPI_INT,inbuffer,recvcount,

MPI_INT,MPI_COMM_WORLD);
(...)

Fig. 2. MPI Code extract with an alltoall call

3 Related Works

A number of efficient algorithms have been developed for homogeneous clusters
with specific network architectures [1,2,3,4]. Generic solutions however rely on
direct connections among all nodes, differing only in the communication schedule
they use. Indeed, OpenMPI uses a single algorithm that posts all communications
and then waits their completion. This algorithm scatters the order of sources and
destinations among the processes, so that all processes do not try to send/recv
to/from the same process at the same time. At the other hand, MPICH-2 [6]
relies on four different algorithms according to the message size and the number
of nodes involved in the operation. Indeed, it is worthy of note that the use of
the store-and-forward algorithm from Bruck et al. [7] for small messages (m <
256 bytes), which behaves well on situations where the latency dominates the
bandwidth [8].

Faraj et al.[9], on the other side, propose a scheduling algorithm for switched
Ethernet clusters. Their approach consists on scheduling communications to
maximize simultaneous connections while avoiding collisions at the network bot-
tlenecks. One drawback of this approach, however, is that it supposes uniform
communication steps, which does not hold in the case of heterogeneous networks.
A similar approach was presented by Sanders et al. [10], who proposed a hierar-
chical factor algorithm to schedule communications in a cluster of multiprocessor
machines where each node can only participate in one communication operation
with another node at a time.

Another possibility resides on generating communication schedules according
to the communication time between each pair of nodes. Different works propose
scheduling heuristics for heterogeneous networks [11,12,13], while Goldman et
al. [8] studies similar heuristics in the context of homogeneous networks with



irregular messages (alltoallv). While these techniques may provide efficient com-
munication schedules, they suffer from two major drawbacks: first, the complex-
ity of the proposed scheduling heuristics - at least O(n3) - induces an important
extra cost to the operation; second, these heuristics require a relatively high
heterogeneity among the communications to improve the performance of the all-
toall operation. Once the bandwidth dominates the latency (as in the case of
large messages), the heterogeneity levels are too small to contribute with the
scheduling algorithm.

It is important to note that MagPIe [14] does not implement a grid-aware
alltoall, preferring the standard approach from MPI. Several reasons contribute
to this decision, the first one being that the alltoall operation does not fit well
MagPIe’s hierarchical structure. Indeed, as each process should receive a different
set of messages, it becomes too expensive to relay these messages through a single
cluster coordinator, a problem similar to that of Bruck’s algorithm [7].

Hence, to the best of our knowledge, there is no heuristics that efficiently
tackles the problem of the Total Exchange on two clusters.

4 Algorithm

4.1 Design principles

In order to construct our alltoall algorithm we considered the following design
principles:

Multi-level collective algorithms are better suited for grids: The recent efforts
for grids divide the set of nodes in different clusters organized in a hierarchical
structure, following different communication strategies according to the hierar-
chical level [15]. Indeed, the local area network is usually faster than the wide-
area network, and a careful design allow the algorithms to avoid transmitting
data through the slow link connecting two clusters. For instance, a hierarchical
approach is essential for ensuring wide area optimality for the collective com-
munication algorithms while performing efficiently on the local network [16].

Wide-area links support simultaneous transfers without performance degrada-
tion: Popular algorithms for collective communications on grids (such as the
ones implemented in PACX MPI [17] and MagPIe [16]) define a single coordina-
tor in every cluster, which participates in the inter-cluster data transfers across
the wide-area backbone. However, this approach is neither optimal concerning
the usage of the wide-area bandwidth, nor well adapted to the alltoall problem
(gathering data from an entire cluster and sending it through the coordina-
tor becomes too expensive [7] and represents a bottleneck in communications).
Actually, simultaneous transfers on these links can help in effectively use the
WAN bandwidth [18] while reducing the number of communication steps over
the slower link. Moreover as experimentally shown in [19], avoiding contention
very seldom improves the transfer time.



Avoiding centralization ensures scalability: If we want to target very large
scale environment we have to avoid as much as possible the centralization of
information such as message size, schedule pattern, etc. That’s why we decided
to design a fully distributed algorithm that uses only local information and does
not synchronize with other nodes.

Actually, most of the complexity of the All-to-All problem resides on the need
to exchange different messages with each other process. Indeed, the traditional
approach consists in establish connections to each other process in the network
(local and distant). However, if we assume that the latency between clusters
is higher than intra-clusters ones, it might be useful to send data that has to
go from one cluster to the other in one single message. Our propose solution is
based on this idea and therefore has two phases. In the first phase only local com-
munications are performed. During this phase the total exchange is performed
on local nodes on both cluster and extra buffers are prepared for the second
(inter-cluster) phase. During the second phase data are exchanged between the
clusters. Buffers that have been prepared during the first phase are sent directly
to the corresponding nodes in order to complete the total exchange.

More precisely, our algorithm called Local Group or simply LG works as
follow. Without loss of generality, let us assume that cluster C1 has less nodes
than C2 (n1 ≤ n2).

Nodes are numbered from 0 to n1 + n2 − 1, with nodes from 0 to n1 − 1
being on C1 and nodes from n1 to n1 + n2 − 1 being on cluster C2. We call Mi,j

the message (data) that has to be send form node i to node j. The phases are
sum-up in Algorithm 1.

First phase During the first phase, we perform the local exchange: Process i
sends Mi,j to process j, if i and j are on the same cluster. Then it prepares the
buffers for the remote communications. On C1 data that have to be send to node
j on C2 is first stored to node j mod n1. Data to be sent from node i on C2 to
node j on C1 is stored on node �i/n1� × n1 + j.

Fig. 3. Example of the 2
phases of the algorithms

Second phase During the second phase only n2

inter-cluster communications occurs. This phase is
decomposed in �n2/n1� steps with at most n1 com-
munications each. Steps are numbered from 1 to
�n2/n1� During step s node i of C1 exchange data
stored in its local buffer with node j = i + n1 × s
on C2 (if j < n1 + n2). More precisely i sends Mk,j

to j where k ∈ [0, n1] and j sends Mk,i to i where
k ∈ [n1 × s, n1 × s + n1 − 1].

Example Suppose that n1 = 3 and n2 = 7. What happens to the message M7,2

(i.e the messages that goes from node 7 on cluster C2 to node 2 on C1)? This is



Algorithm 1 The LG (Local Group) algorithm when n1 ≤ n2

// Local Phase
for i = {0, ..., (n1 + n2) − 1} do in parallel

for j = {0, ..., (n1 + n2) − 1} do
if i < n1 // the sender is on C1

send Mi,j to j mod n1

else // the sender is on C2

if j ≥ n1 // the receiver is on C2

send Mi,j to j
else // the receiver is on C1

send Mi,j to �i/n1� × n1 + j
// Inter-cluster Phase
for s = {1, ..., �n2/n1�}

for i = {1, ..., n1 − 1} do in parallel
if (i + s × n1 < n1 + n2)

exchange messages between i and j = i + e × n1

illustrated in Figure 3. During the first phase it is stored on node �7/3�×3+2 = 8
on C2. Then during the second phase it is sent to node 2 during the step s = 2:
node 8 sends M6,2, M7,2 and M8,2 to node 2. During this step nodes 1 and 7
and node 0 and 6 exchange data as well, while in the previous step node 0 and
3, 4 and 1 and 5 and 2 exchange data. Finally, only 0 and 9 exchange data in
the last step.

4.2 Comparison with the standard Total Exchange algorithm

As our algorithm tries to minimize the number of inter-cluster communications
between the clusters, we need only 2 × max(n1, n2) messages in both directions
against 2 × n1 × n2 messages in the traditional algorithm. For instance, the
exchange of data between two clusters with the same number of process will
proceed in one single communication step of the second phase. At the other
hand, if n2 � n1, the total number of communication steps will be similar to
the traditional algorithm.

5 Experimental validation

To validate the algorithm we propose in this paper, this section presents our
experiments to evaluate the performance of the MPI_Alltoall operation with
two clusters connected through a backbone. These experiments were conducted
over two clusters of the Grid’5000 platform 1.
1 Experiments presented in this paper were carried out using the Grid’5000 exper-

imental testbed, an initiative from the French Ministry of Research through the
ACI GRID incentive action, INRIA, CNRS and RENATER and other contributing
partners (see https://www.grid5000.fr).



We used two clusters, one located in Nancy and one located in Rennes, ap-
proximately 1000 Km from each other. Both clusters are composed of HP Pro-
Liant DL145G2 nodes (dual Opteron 246, 2 GHz) and are connected by a private
backbone of 10 Gbps. All nodes run Linux, with kernel version 2.6.13.

Two different scenarios have been studied. First, we evaluate the performance
of the algorithm in a fixed-size grid for different message sizes. In this approach
we are able to evaluate the trade-off between local and wide-area communica-
tions according to the amount of data to be exchanged. The second scenario
considers fixed message sizes while varying the number of processes. Therefore,
we are able to study the scalability aspects of the algorithm. Both scenarios were
implemented using Open-MPI 1.1.2 [5] in which we implemented our algorithm.

5.1 Communication between two clusters varying the message size

In the first scenario, we compare the completion time of both standard and
LG algorithms when varying the message size. We conducted experiments for
messages of size m = 2k with k ≤ 24 (16 MB) in two different environments:

In the first experiment, both clusters C1 and C2 have the same number of
processes (30 processes each). As this situation corresponds to a 1:1 mapping
between processes in both clusters, each process will perform at most one message
exchange through the backbone.

In the second experiment we consider C1 and C2 having different numbers of
processes. Hence, we consider n1 = 20 while n2 = 40. In this scenario, the inter-
cluster exchange will proceed in two steps, with processes from C1 exchanging
messages with two processes from C2.
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Fig. 4. Performance of the MPI_Alltoall operation in a grid environment

Therefore, in Figure 4 we plot the total communication time obtained for
both situations when comparing the performance of the standard MPI_Alltoall
implementation with the LG algorithm. Several observations can be made:

– We perform up to 8 times faster than the traditional algorithm according to
the message size. Even with large messages we achieve 40% to 60% reduction
of communication costs.



– The extra-cost due to message packing observed with small messages is
rapidly compensate by the gain on the inter-cluster latency. Indeed, as soon
as the traditional algorithm is forced to use more than one single datagram,
our strategy presents better results.

– In spite of the different processes distributions, the standard algorithm from
OpenMPI does perform almost identically. This evidences the fact that the
standard algorithm does not adapts to the network characteristics. At the
opposite side we observe that the LG algorithm performs differently accord-
ing to the processes distribution, adapting to both scenarios.

5.2 Fixed-size messages varying the number of nodes

While the previous experiment demonstrated that our algorithm performs better
than the traditional one due to the reduction of inter-cluster communication
steps, we are also interested in the scalability behavior of our algorithm. Indeed,
the rational usage of both local and remote links should reduce the network
contention that usually characterizes an alltoall exchange.

Therefore, this experiment compares the performance of both algorithms
when we increase the number of interconnected nodes. We evaluate the overall
execution time for two different message sizes, 64kB and 512kB under different
processes distributions. Therefore, Figure 5 represents a scenario where n1 = n2,
while Figure 6 represents the performance of the algorithms when n2 = 2 × n1.
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Fig. 5. Performance of the algorithms when varying the number of processes with
n1 = n2

In both experiments we observe that LG outperforms the standard alltoall
implemented in Open-MPI. In both graphs we see that the time to perform the
alltoall with messages of 512kB with LG is faster than the time to perform the
alltoall with messages of 64kB with OpenMPI. We see that the slopes of both
lines of the LG algorithm are lower than the slopes of the OpenMPI imple-
mentation. This means that, since the y-axis uses a logarithmic scale, the LG
algorithm is more scalable than the OpenMPI implementation.
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6 Conclusions and Future Works

In this paper we have studied and proposed an algorithm called LG for the
total exchange redistribution problem. In our approach we perform communica-
tions in two different phases, aiming to minimize the number of communication
steps through the wide-area network. Indeed, our algorithm achieves better per-
formances than traditional algorithm on grid environments as it exploits the
network heterogeneity to improve the bandwidth utilization in both local and
remote networks. Therefore, we are able to reduce the number of messages ex-
changed through the backbone to only 2 × max(n1, n2) against 2 × n1 × n2

messages in the traditional strategy. Further, experiments show a performance
improvement of over than 50% comparing to the traditional strategies.

In our future works we plan to extend the model to handle more complex
distributions. First, we would like to consider achieving efficient alltoall commu-
nications with more than two clusters. This would allow efficient communications
on general grid environments. Second, we would like to explore the problem of
total exchange redistribution when messages have different sizes. This problem,
represented by the alltoallv routine, is more general than our case and does
requires adaptive scheduling techniques.
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