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Abstract We consider building a Grid Operating System in order to re-
lieve users and programmers from the burden of dealing with the highly
distributed and volatile resources of computational grids. To tolerate the
volatility of the nodes, the system should be self-healing, that is continu-
ously adapt to additions, removals, and failures of nodes. We present the
self-healing architecture of the Vigne Grid Operating System through
three of its services: system membership, application management, and
volatile data management. The experimental results obtained show that
our approach is feasible.

1 Introduction

Grids gather large sets of services over a large set of resources provided by many
independent organizations. The nodes of such distributed systems are in essence
volatile: organizations may unilaterally decide to add or remove nodes at any
time, and the failure rate increases with the number of nodes.

We consider building a Grid Operating System (GOS) in order to relieve
users and programmers from the burden of dealing with such highly distributed
and volatile resources. To achieve this goal, a GOS should provide users and
programmers with simple abstractions of physically highly distributed resources,
and transparently handle additions, removals, and failures of nodes.

We consider building self-healing systems. The self-healing property is a vari-
ant of fault-tolerance in which the system proactively maintains its degree of
fault-tolerance. The mechanisms of the system must continuously adapt to ad-
ditions, removals, and failures of nodes. This is an important property since
assuming that human interventions quickly restore failed resources can not scale
to large numbers of nodes. Moreover, no service of the system should depend
on the stability of any set of nodes during the whole system’s lifetime. How-
ever, current approaches like Globus [1] still rely on static hierarchies, defined
by system administrators, and that prevent the system from being self-healing.

In this paper we present the self-healing architecture of the Vigne GOS,
through the design of three of its services. One of the main contributions of
this architecture is the application management service which decentralizes ap-
plication control and provides applications with generic and transparent fault-
tolerance policies. We implemented most of these three services and present in



this paper experimental results obtained by simulations, which show the feasi-
bility of our approach.

The paper is organized as follows. We precise our model of distributed sys-
tem in Sect. 2 and give an overview of Vigne in Sect. 3. Then we present three
self-healing services of Vigne, namely system membership in Sect. 4, application
management in Sect. 5, and volatile data management in Sect. 6. We present an
experimental evaluation of the self-healing properties of volatile data manage-
ment in Sect. 7, and discuss related work in Sect. 8. Finally, Sect. 9 concludes.

2 System Model

The nodes of the system belong to many independent organizations. For this
reason we consider a (large scale) distributed system composed of nodes which
can fail, recover (or be added), and be gracefully removed (the last two events are
called reconfigurations in the paper). Nodes fail in a fail-stop manner. Failures
can be detected using (unreliable) failure detectors. We do not consider byzantine
failures, as they are relevant to security. We focus our work on the scalability
and self-healing aspects, and expect security issues to be tackled in future work.

Users run distributed as well as sequential applications on this system. Many
users may run many applications simultaneously, using the system as a compu-
tational power provider.

3 Overview of Vigne

We consider building a Grid Operating System (GOS). As any operating system,
a GOS virtualizes the physical resources to provide users and programmers with
simple abstractions. A set of services is depicted in Fig. 1. In this paper we focus
on the self-healing aspect of a GOS.

Figure 1. Services of a Grid Operating System

The application management service (AMS) is the top-level service of the
system. This service controls applications executions, and is the main service
with which users interact. The AMS runs each application under the control of a
dedicated self-healing agent called application manager. An application manager



acts on behalf of the user to run efficiently the application and to ensure that it
terminates correctly, despite node removals and failures.

The persistent data management service stores data in logical files that
have location-independent names. The lifetime of these files is independent from
the lifetime of applications. Conversely, the volatile data management service
(VDMS) manages volatile data that is private to applications. The VDMS of-
fers abstractions of shared data to build distributed applications communicating
through the shared-memory paradigm. Since data managed by the VDMS is
volatile and private to a single application, the VDMS can apply fault-tolerance
mechanisms that are less costly in resources and performance than the mecha-
nisms needed for persistent data. The VDMS is based on fault-tolerant consis-
tency protocols allowing to replicate shared data to improve performance [2].

The system membership service (SMS) is the basis on which all other services
are implemented. The SMS connects the nodes of the system in a scalable, de-
centralized, and self-healing manner. The SMS of Vigne is based on a structured
overlay network designed in recent research in the peer-to-peer field [3].

The other services are not discussed in this paper. We briefly describe them.
The synchronization service provides applications with synchronization prim-
itives comprising distributed semaphores and barriers. The high performance
communication service provides applications as well as higher level services with
communication primitives that adapt to parallel communication links and to the
various security policies used on the nodes. The resource access control service
enforces the resource sharing policy defined by organizations for their nodes.

The main principle driving our approach is to simplify as much as possible
the job of users and programmers without restricting the field of applications.
In particular the GOS should relieve users and programmers from dealing with
failures. The next sections describe the self-healing properties of Vigne’s mem-
bership, application management, and volatile data management services.

4 System Membership

The system membership service of Vigne must achieve two goals despite continu-
ous reconfigurations and failures: maintain the nodes of the system in connection,
and deliver accurate membership information to higher level services. The sys-
tem membership service is based on a structured overlay network built using
the structure and routing algorithms of Pastry [3], and the maintenance algo-
rithms of Bamboo [4]. The basic mechanism implemented by the overlay network
is key-based routing, which allows to build self-healing distributed hash tables
(DHT). The keys of such DHTs can be used as location-independent names, as
the overlay network routes a message to a key without needing that the sender
knows which node hosts the key. DHTs are a sound basis to build self-healing
higher-level services. This is illustrated in the next sections for the application
management service and the volatile data management service.

Structured Overlay Network. Pastry connects the nodes of the system in a logical
ring. Nodes have numerical names, called ID and represented in hexadecimal,



and are placed in clockwise order on the ring. Pastry maps a key (also represented
in hexadecimal) to the node having the numerically closest ID (see Fig. 2, left
part). Pastry routes messages to keys following the logical ring and shortcut
links that allow to limit the average number of routing hops to log16 N with
only O(log N) links per node, where N is the number of nodes connected to the
system. The overlay network is made self-healing using redundant links to the
neighbors in the ring, and gossiping protocols to refill the routing tables [4].

Distributed Hash Tables. On top of this structured overlay network we have
implemented a distributed hash table (DHT) service that provides generic man-
agement of self-healing DHTs. This service allows higher level services to define
any number of DHTs. DHTs are generically made self-healing by automatically
moving and replicating keys using a per-DHT defined replication degree. The
nodes hosting the replicas of a key are the numerically closest neighbors (clock-
wise and counter clockwise) of the node to which the overlay networks maps the
key (see Fig. 2, right part). Automatic replication management of the keys can
be customized by higher level services (for instance application management).

Figure 2. Basic topology of a Pastry-based structured overlay network and mapping
from keys to nodes (left part). Replication of keys in a self-healing DHT (right part).

5 Application Management

The application management service is the main interface of the system for users.
This service controls the execution of all applications in order to minimize the
execution time and to reliably execute each application, that is to ensure that
the application correctly terminates despite failures. A discussion on minimizing
execution time is out of the scope of this paper. To reliably execute applications,
the application management service of Vigne controls the execution of each ap-
plication through a dedicated self-healing agent called application manager. In
this section we present the design of these application managers.

Application managers have three main features: control applications execu-
tion in a decentralized manner, transparently handle failures and reconfigura-
tions, and allow to flexibly define fault-tolerance policies for each application.



Decentralized Control of Applications. Decentralization is achieved by placing
application managers as keys in the application manager DHT (which is im-
plemented using the system membership service, see Sect. 4). The keys are dis-
tributed over the whole system using secure hash functions, like SHA-1, to define
the key’s numerical name. Decentralization not only allows to avoid contention
on certain nodes because of the load generated by application control, but also
allows to limit the cost of a node removal or failure to the reconfiguration of few
application managers. The cost of a node removal or failure is limited thanks to
the locality properties of DHTs: only the application managers having a replica
located on the removed (or failed) node are affected.

Transparent Handling of Failures and Reconfigurations. To relieve users from
dealing with failures and reconfigurations, application managers transparently
handle failures and reconfigurations from the point of view of users. Indeed, from
the point of view of a user, a running application is represented by its application
manager. To achieve transparency, an application manager is reachable through
a location-independent name (its key in the application manager DHT), is self-
healing by replicating itself using a group communication system and the DHT
service, and, to handle all removals or failures of nodes that host components of
the application, applies a fault-tolerance policy.

A group communication system is used to actively replicate application man-
agers. The messages sent to an application manager are atomically multicast to
the group of replicas of the application manager. Provided that an application
manager can be defined as a deterministic input / output state machine, this
ensures that all replicas output the same sequence of messages. To ensure this
determinism, the failure detection mechanisms used by an application manager
to monitor an application interact with the application manager through the
group communication system (see Fig. 3).

The nodes hosting the replicas are automatically chosen using the DHT ser-
vice, which makes application managers self-replicating and self-healing. How-
ever, to keep the replicas synchronized, creating replicas must be done under
the control of the group communication system. To this end, the DHT service
only informs application managers of the nodes on which they should replicate.
For this reason, we chose to build a group communication system based on the
architecture defined in [5], which offers the required flexibility.

Application Fault-Tolerance Policies. To relieve users from dealing with failures,
an application manager applies a fault-tolerance policy defined for the applica-
tion. Thanks to this feature, application managers are a powerful and flexible
mechanism to provide applications with generic fault-tolerance with minimal ef-
forts from users and programmers. The fault-tolerance policy can be a generic
predefined policy, for instance based on checkpointing and restart, or a policy
specifically designed for the application, for instance make the application re-
build lost data using data from a previous computing step [6]. In each case, the
application manager enforces a fault-tolerance policy by reacting to suspicions
of nodes hosting components of the application (see Fig. 3, right part).



Figure 3. Communications between application components, failure detectors, and
the replicas of an application manager, when creating (left) or destroying (center)
components, or suspecting nodes (right).

6 Volatile Data Management

The volatile data management service (VDMS) helps programmers to build dis-
tributed applications that use the shared memory paradigm to communicate,
offering to these programmers abstractions of shared objects to which processes
can access using location-independent names. To achieve this the VDMS of Vi-
gne includes consistency protocols to provide the programmer with consistency
models on the values of the copies of a shared object.

We have studied two protocols ensuring atomic consistency. These protocols
are based on the write-invalidate scheme, in order to obtain performance (see [2]
for a discussion). Before granting write access rights to a copy, the protocols
ensure that all other copies are invalid. In our protocols, at each time one (and
only one) copy is distinguished as the master copy. Other copies become valid
by retrieving the value of the master copy.

These protocols are based on protocols designed by K. Li [7]. K. Li’s protocols
were designed for a static system having reliable FIFO communication channels.
We improved K. Li’s protocols to handle multiple and simultaneous reconfigura-
tions and failures, and to tolerate unreliable communication channels. To han-
dle reconfigurations and failures, we leverage the application management and
system membership services. We tolerate unreliable communication channels in
order to improve the scalability of memory consumption. We have proved in [8]
that in our approach the amount of memory consumed per node does not depend
on the number of nodes in the system, whereas this cost is linear in the num-
ber of nodes if communication channels are made reliable in the communication
layer.

Both protocols eventually rely on the application manager to ensure fault-
tolerance. However, we also handle reconfigurations and failures in the consis-
tency protocols in order to limit the cost of the fault-tolerance mechanisms used
by the application manager. For instance, in both protocols a copy may become
useless when the node hosting it does not run processes of the application any-
more. The removal or the failure of such nodes should not force the application
manager to react (for instance by restarting the application). However, K. Li’s
protocols and their variants in the literature have to ensure that such copies are



invalid before granting write access rights to another copy, and for this reason
they block if a copy, even useless, can not send acknowledgments. Using these
protocols without adapting them to dynamic reconfigurations and failures would
force the application manager to perform costly fault-tolerance operations (for
instance, restart the application) when no process of the application is lost.

In the first protocol, called STAT, object managers handle access requests
from copies and redirect them to the master copy. In order to avoid contention,
these object managers are distributed over a DHT. Compared to similar pro-
tocols, this allows the protocol to handle reconfigurations simply since object
managers have location-independent names and remain reachable thanks to the
self-healing management of the structured overlay network and of the DHT.

In the second protocol, called DYN, the copies organize themselves in chains
of references towards the master copy. Compared to the STAT protocol, this
avoids paying the latency of routing a message through the overlay network for
each access request from a copy. However, reconfigurations break these chains.
Therefore we added backup object managers, which are located in a DHT, and
to which the master copy periodically publishes its location. A copy sends an
access request to the backup object manager only when it suspects that its chain
towards the master copy is broken.

7 Experimental Evaluation

We have implemented the membership, application management, and volatile
data management services (VDMS) of Vigne, except advanced fault-tolerance
policies and application manager replication which will be implemented and
evaluated later. Based on this implementation, we present an evaluation of the
self-healing property of the VDMS. An evaluation of the system membership
service figures in [9].

We show the failure resilience of the consistency protocols of the volatile data
management service, using a discrete event simulator coupled to the running Vi-
gne prototype. To do this, we simulated the execution of a single writer multiple
readers application on a set of 2000 volatile nodes. Node additions and fail-
ures were injected using traces collected in the Gnutella peer-to-peer file sharing
application on the Internet [10], which represents an extreme case of volatility
compared to an industrial grid environment (see the right part of Fig. 4 for the
cumulative number of failures injected during the experiment).

Each component of the application runs 1000 loops composed of two phases.
In the first phase, the writer writes a value to a shared object, and in the second
phase all other components (the readers) read the value of the shared object.
With this access pattern, each access from a component to its copy generates an
access request. We ran experiments for 20 to 400 readers.

Upon a failure of a node hosting a component of the application, the appli-
cation was immediately restarted. Coordinated checkpoints were taken before
each iteration. In the simulator, coordinated checkpoints and restarts are done



in null time, which allows us to observe the impact of node volatility on the
other fault-tolerance mechanisms used in the protocols.

Figure 4 (left part) shows the progression of the application for both proto-
cols and sample numbers of readers. The performance of the DYN protocol is
much better than the performance of the STAT protocol. The progression of the
application with the DYN protocol is almost linear even with a high number of
readers (see Fig. 4, center part). In contrast, the performance of the STAT pro-
tocol degrades quickly when the number of readers increases. The nodes routing
tables of the overlay network are continuously damaged and repairing which crit-
ically increases the latencies of the routed messages used in each access request.
We also observe this effect with the DYN protocol each time the application is
restarted, since messages are routed to reset the protocol (see Fig. 4).

These results suggest that the DYN protocol tolerates well frequent failures.
Moreover, these results suggest that DHTs should be used with care in execution
paths which are critical for application performance. These results also suggest
that the STAT protocol is useless, but we showed in [8] that the STAT proto-
col exhibits better performance than the DYN protocol for applications having
access patterns in which many write accesses are concurrent with other accesses.
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Figure 4. Performance of STAT and DYN in a highly dynamic configuration

8 Related Work

Grid Operating Systems. Many grid infrastructures, including Globus [1], Le-
gion [11], GridOS [12], and 9grid [13], provide operating system-like services.
Globus, Legion, and GridOS are designed as middleware to ease the portability
on heterogeneous operating systems, whereas 9grid is an integrated grid operat-
ing system which design is simple partly because it enforces that all applications
run on top of the services. Between these two extreme approaches, Vigne adapts
existing operating systems to, on the one hand, keep legacy interfaces and run
legacy applications, and on the other hand, enforce resource sharing policies and
provide generic application management.

In all these infrastructures, fault-tolerance is addressed for the services, but
only to a limited extent because the systems rely on static hierarchies defined
by system administrators. In contrast, Vigne’s services are designed to be fully



self-healing in order to continuously tolerate failures of any node in the system,
without needing any action from system administrators.

In current grid infrastructures, fault-tolerance is not addressed for applica-
tions, the main assumption being that this task should be left to application-
specific services. In contrast, as a true grid operating system should do, Vigne
provides generic application fault-tolerance services that should meet the needs
of most of the use cases, and helps applications to define custom mechanisms for
the other use cases.

Membership. We based our system membership service on a Pastry-like struc-
tured overlay network. Other works, including JXTA [14] and NaradaBroker-
ing [15], aim at providing infrastructures to build high level peer-to-peer ser-
vices. JXTA is built on an hybrid structured peer-to-peer network and provides
a loosely consistent DHT, which model differs from the DHTs we are using.
JXTA’s DHT only stores advertisements for resources bound to peers. In partic-
ular, this DHT does not manage the location and the replication of the objects
for which it stores advertisements.

NaradaBrokering provides a communication infrastructure including scalable
event-delivery and publish-subscribe to build high level services. NaradaBroker-
ing’s features are complementary to the features of our system membership ser-
vice. However, the brokering infrastructure’s design assumes that a set of nodes
remains relatively stable, and the volatility of the nodes is mostly considered for
the clients of the brokering services.

Application Management. Few projects include generic application management
services to execute applications reliably. Chameleon [16] and XtremWeb [17]
provide fault-tolerance mechanisms for a variety of programming models. In
particular, Chameleon provides users with generic mechanisms for various fault-
tolerance policies. In both systems, application management relies on a central-
ized entity (the main fault-tolerance manager in Chameleon, or the coordinator
in XtremWeb), which is itself made reliable by replication on a static set of
nodes. As a major contribution, our application managers decentralize applica-
tion management, which is better to avoid contention and to resist to massive
failures. Moreover application managers are replicated on dynamic sets of nodes,
which allows them to adapt to any reconfiguration in the system.

Shared Data Management. Several projects, like JuxMem [18] or Pastis [19], pro-
vide mutable shared data management in large scale distributed systems com-
posed of volatile nodes. Compared to our volatile data management service, these
systems consider persistent data, which prevents them from providing program-
mers with an integrated fault-tolerance solution taking programs and data into
account. In JuxMem, applications have to adapt to the fault-tolerance mecha-
nisms used for the data, which makes fault-tolerance not fully transparent to the
programmers. In Pastis, the replication degree of the data is maintained to keep
the data available, but no mechanism allows application fault-tolerance mecha-
nisms to synchronize with consistent versions of the data. Fault-tolerant volatile



data management has only been studied in the context Distributed Shared Mem-
ory systems [20], which only consider clusters of workstations composed of at
most a few hundreds of nodes that rarely undergo reconfigurations or failures.

9 Conclusion

In this paper we have presented the design of three self-healing services of the
Vigne Grid Operating System. The self-healing property is important to ensure
the availability of the system and to relieve users and programmers from dealing
with reconfigurations and failures. This paper brings two contributions. As the
the volatile data management service illustrates, the system membership service
and the application management service that we presented constitute a sound
basis for a grid operating system. In particular, with application managers our
application management service decentralizes application control and provides
applications with generic and transparent fault-tolerance. Thanks to application
managers, the consistency protocols of our volatile data management service are
the first ones based on the write-invalidate scheme for performance and tolerat-
ing multiple simultaneous failures. The experimental results on highly dynamic
configurations suggest that the chosen self-healing architecture is feasible.

Future work includes enhancing the volatile data management service to
enable programmers to choose between various consistency models, still without
having to handle failures. We will also implement the group communication
system described in [5]. This will complete the self-healing architecture of Vigne
and will allow us to evaluate the application management service. In particular,
we will be able to evaluate various fault-tolerance policies.
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8. Rilling, L.: Système d’exploitation à image unique pour une grille de composition
dynamique : conception et mise en œuvre de services fiables pour exécuter les
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