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Abstract. Modern multiprocessor architectures such as CC-NUMA ma-
chines or CMPs have nonuniform communication architectures that ren-
der programs sensitive to memory access locality. A recent paper by
Radovi¢ and Hagersten shows that performance gains can be obtained
by developing general-purpose mutual-exclusion locks that encourage
threads with high mutual memory locality to acquire the lock consec-
utively, thus reducing the overall cost due to cache misses. Radovi¢ and
Hagersten present the first such hierarchical locks. Unfortunately, their
locks are backoff locks, which are known to incur higher cache miss rates
than queue-based locks, suffer from various fundamental fairness issues,
and are hard to tune so as to maximize locality of lock accesses.
Extending queue-locking algorithms to be hierarchical requires that re-
quests from threads with high mutual memory locality be consecutive in
the queue. Until now, it was not clear that one could design such locks
because collecting requests locally and moving them into a global queue
seemingly requires a level of coordination whose cost would defeat the
very purpose of hierarchical locking.

This paper presents a hierarchical version of the Craig, Landin, and
Hagersten CLH queue lock, which we call the HCLH queue lock. In this
algorithm, threads build implicit local queues of waiting threads, splicing
them into a global queue at the cost of only a single CAS operation.

In a set of microbenchmarks run on a large scale multiprocessor machine
and a state-of-the-art multi-threaded multi-core chip, the HLCH algo-
rithm exhibits better performance and significantly better fairness than
the hierarchical backoff locks of Radovi¢ and Hagersten.

1 Introduction

It is well accepted that on small scale multiprocessor machines, queue locks [1-
4] minimize overall invalidation traffic by allowing threads to spin on separate
memory locations while waiting until they are at the head of the queue. Their
advantage over backoff locks [5] is not only in performance, but also in the high
level of fairness they provide in accessing a lock.

Large scale modern multiprocessor architectures such as cache-coherent non-
uniform memory-access (CC-NUMA) machines, have nonuniform communica-
tion architectures that render programs sensitive to memory-access locality. Such
architectures include clusters of processors with shared local memory, commu-
nicating with each other via a slower communication medium. Access by a pro-
cessor to the local memory of its cluster can be two or more times faster than



access to the remote memory in another cluster [6]. Such machines also have
large per-cluster caches, further reducing the cost of communication between
processors on the same cluster. A recent paper by Radovi¢ and Hagersten [6]
shows that performance gains can be obtained by developing hierarchical locks:
general-purpose mutual-exclusion locks that encourage threads with high mu-
tual memory locality to acquire the lock consecutively, thus reducing the overall
level of cache misses when executing instructions in the critical section.

Radovi¢ and Hagersten’s locks are simple backoff locks: test-and-test-and-
set locks, augmented with a backoff scheme to reduce contention on the lock
variable. Their hierarchical backoff mechanism allows the backoff delay to be
tuned dynamically so that when a thread notices that another thread from its
own local cluster owns the lock, it can reduce its delay and increase its chances
of acquiring the lock. The dynamic shortening of backoff times in Radovi¢ and
Hagersten’s lock introduces significant fairness issues: it becomes likely that two
or more threads from the same cluster will repeatedly acquire a lock while threads
from other clusters starve. Moreover, because the locks are test-and-test-and-set
locks, they incur invalidation traffic on every modification of the shared lock
variable, which is especially costly on CC-NUMA machines, where the cost of
updating remote caches is higher.

We therefore set out to design a hierarchical algorithm based on the more
advantageous queue-locking paradigm. A queue lock uses a FIFO queue to reduce
contention on the lock variable and provide fairness: if the lock is held by some
thread when another thread attempts to acquire it, the second thread adds itself
to the queue, and does not attempt to acquire the lock again until it is at the
head of the queue (threads remove themselves from the queue when they execute
their critical section). Thus, once a thread has added itself to the queue, another
thread cannot acquire the lock twice before the first thread acquires it. Several
researchers have devised queue locks [1-4] that minimize overall invalidation
traffic by allowing threads to spin on separate memory locations while waiting
to check whether they are at the head of the queue. However, making a queue-
lock hierarchical implies that requests from threads with high mutual memory
locality be consecutive in the queue. To do so one would have to somehow collect
local requests within a cluster, integrating each cluster’s requests into a global
queue, a process which naively would require a high level of synchronization
and coordination among remote clusters. The cost of this coordination would
seemingly defeat the very purpose of hierarchical locking.

This paper presents a hierarchical version of what is considered the most
efficient queue lock for cache-coherent machines: the CLH queue lock of Craig,
Landin, and Hagersten [2,4]. Our new hierarchical CLH queue lock (HCLH) has
many of the desirable performance properties of CLH locks and overcomes the
fairness issues of backoff-based locks. Though it does not provide global FIFO
ordering as in CLH locks—that is, FIFO among the requests of all threads—it
does provide what we call localized FIFO ordering: lock-acquisitions of threads
from any given cluster are FIFO ordered with respect to each other, but globally,



there is a preference to letting threads from the same cluster follow one another
(at the expense of global FIFO ordering) in order to enhance locality.

The key algorithmic breakthrough in our work is a novel way for threads to
build implicit local queues of waiting threads, and splice them to form a global
queue at the cost of only a single compare-and-swap (CAS) operation.

In a bit more detail, our algorithm maintains a local queue for each cluster,
and a single global queue. A thread can enter its critical section when it is at
the head of the global queue. When a thread wants to acquire the lock, it adds
itself to the local queue of its cluster. Thus, threads are spinning on their local
predecessors. At some point, the thread at the head of the local queue attempts
to splice the entire local queue onto the global queue, so that several threads from
the same cluster appear consecutively in the global queue, improving memory-
access locality. This splicing into the global queue requires only a single CAS
operation, and happens without the spliced threads knowing they have been
added to the global queue (except, of course, for the thread doing the splicing):
they continue spinning on their local predecessors. The structure of our lock
maintains other desirable properties of the original CLH queue lock: It avoids
extra pointer manipulations by maintaining only an implicit list; each thread
points to its predecessor through a thread-local variable. It also uses a CLH-like
recycling scheme that allows the reuse of lock records so that, as in the original
CLH algorithm, L locks accessed by N threads require only O(N + L) memory.

We evaluated the performance of our new HCLH algorithm on two nonuni-
form multiprocessors: a large-scale Sun Fire™ E25K[7] SMP (E25K) and a Sun
Fire™ T2000, which contains a UltraSPARC® T1[8] 32-thread 8-core multi-
threaded multiprocessor (72000). In a set of microbenchmarks, including one
devised by Radovié¢ and Hagersten [6] to expose the effects of locality, the new
HCLH algorithm shows various performance benefits: it has improved through-
put, better locality, and significantly improved fairness.

In Section 2, we describe our algorithm in detail, in Section 3, we present
and discuss the experimental results and we conclude and touch on future work
in Section 4.

2 The HCLH Algorithm

In this section, we explain our new queue-lock algorithm in detail. We assume
that the system is organized into clusters of processors, each of which has a
large cache that is shared among the processors local to that cluster, so that in-
tercluster communication is significantly more expensive than intracluster com-
munication. We also assume that each cluster has a unique cluster id, and that
every thread knows the cluster_id of the cluster on which it is running (threads
do not migrate to different clusters). An HCLH lock consists of a collection of
local_queues, one per cluster, and a single global_queue.

As in the original CLH queue lock [2,4], our algorithm represents a queue
by an implicit linked list of elements of type gnode, as follows: A queue is
represented by a pointer to a qnode, which is the tail of the queue (unless the



queue is empty—see below for how to determine whether the queue is empty).
Each thread has two local variables, my_gnode and my_pred, which are both
pointers to qnodes. We say that a thread owns the qnode pointed to by its
my_gnode variable, and we maintain the invariant that at any time, all but one
gnode is owned by exactly one thread; we say that one gnode is owned by
the lock. For any gnode in a queue (other than the head of the queue), its
predecessor in the queue is the qnode pointed to by the my_pred variable of
its owner. This is well-defined because we also maintain the invariant that the
qnode owned by the lock is either not in any queue (while some thread is in
the critical section) or is at the head of the global queue. A gnode consists
of a single word containing three fields: the cluster_id of the processor on
which its current owner (or most recent owner, if it is owned by the lock) is
running, and two boolean fields, successor must_wait and tail _when_spliced.
The successor must_wait field is the same as in the original CLH algorithm:
it is set to true before being enqueued, and it is set to false by the gnode’s
owner upon exit from the critical section, signaling the successor (if any) that
the lock is available. Thus, if a thread is waiting to acquire the lock, it may do
so when the successor must_wait field of the predecessor of its qnode is false.
We explain the interpretation of tail when_spliced below.

Threads call the procedure acquire HCLH_lock () when they wish to acquire
the lock. Briefly, this procedure first adds the thread’s qnode to the local queue,
and then waits until either the thread can enter the critical section or its qnode
is at the head of the local queue. In the latter case, we say the thread is the
cluster master, and it is responsible for splicing the local queue onto the global
queue. We describe the algorithm in more detail below. Pseudocode appears in
Figure 1.

A thread wishing to acquire the lock first initializes its qnode (i.e., the gnode
it owns), setting successor must_wait to true, tail when spliced to false,
and the cluster_id field appropriately. The thread then adds its qnode to the
end (tail) of its local cluster’s queue by using CAS to change the tail to point
to its qnode. Upon success, the thread sets its my_pred variable to point to the
gnode it replaced as the tail. We call this qnode the predecessor gnode, or simply
the predecessor.

Then wait_for_grant or_cluster master() (not shown) is called, which
causes the thread to spin until one of the following conditions is true:

1. the predecessor is from the same cluster, the boolean flag tail when_spliced
is false, and the boolean flag successor must_wait is false, or

2. the predecessor is not from the same cluster or the predecessor’s boolean
flag tail when_spliced is true.

In the first case, the thread’s qnode is at the head of the global queue, signifying
that it owns the lock and can therfore enter the critical section. In the second
case, as we argue below, the thread’s qnode is at the head of the local queue, so
the thread is the cluster master, making it responsible for splicing the local queue
onto the global queue. (If there is no predecessor—that is, if the local queue’s tail
pointer is null—then the thread becomes the cluster master immediately.) This



qnode* acquire_HCLH_lock(local_g* lq, global_g* gq, qnode* my_gnode)
{
// Splice my_gnode into local queue.
do {
my_pred = *1q;
} while (!CAS(1lq, my_pred, my_gnode));
if (my_pred !'= NULL) {
bool i_own_lock = wait_for_grant_or_cluster_master(my_pred);
if (i_own_lock) {
// I have the lock. Return gnode just released by previous owner.
return my_pred;
}
}

// At this point, I’m cluster master. Give others time to show up.
combining_delay();

// Splice local queue into global queue.
do {

my_pred = *gq;
local_tail = *l1q;
} while (!CAS(gq, my_pred, local_tail));

// Inform successor that it is new master.
local_tail->tail_when_spliced = true;

// Wait for predecessor to release lock.
while (my_pred->successor_must_wait);

// I have the lock. Return gnode just released by previous owner.
return my_pred;

}

void release_HCLH_lock(qnode* my_gnode)
{

my_gnode->successor_must_wait = false;

Fig.1. Procedures for acquiring and releasing a hierarchical CLH lock. The
acquire HCLH lock() procedure returns a gqnode to be used for next lock acquisition
attempt.

spinning is mostly in cache and hence incurs almost no communication cost. The
procedure wait_for_grant_or_cluster master () (not shown) returns a boolean
indicating whether the running thread now owns the lock (if not, the thread is the
cluster master). It is at this point that our algorithm departs from the original
CLH algorithm, whose nodes do not have cluster_id or tail when_spliced
fields, in which only the first case is possible because there is only one queue.
The chief difficulty in our algorithm is in moving qnodes from a local queue to
the global queue in such a way that maintains the desirable properties of CLH
queue locks. The key to achieving this is the tail _when _spliced flag, which is
raised (i.e., set to true) by the cluster master on the last qnode it splices onto
the global queue (i.e., the qnode that the cluster master sets the tail pointer of
the global queue to point to).

If the thread’s gqnode is at the head of the global queue, then, as in the
original CLH algorithm, the thread owns the lock and can enter the critical
section. Upon exiting the critical section, the thread releases the lock by call-



ing release HCLH lock (), which sets successor must_wait to false, passing
ownership of the lock to the next thread, allowing it to enter the critical section.
The thread also swaps its qnode for its predecessor (which was owned by the
lock) by setting its my_gnode variable.

Otherwise, either the predecessor’s cluster_id is different from mine or the
tail when spliced flag of the predecessor is raised (i.e., true). If the prede-
cessor has a different cluster_id, then it cannot be in the local queue of this
thread’s cluster because every thread sets the cluster_id to that of its cluster
before adding its qnode to the local queue. Thus, the predecessor must have
already been moved to the global queue and recycled to a thread in a different
cluster. On the other hand, if the tail when_spliced flag of the predecessor is
raised, then the predecessor was the last node moved to the global queue, and
thus, the thread’s qnode is now at the head of the local queue. It cannot have
been moved to the global queue because only the cluster master, the thread
whose gnode is at the head of the local queue, moves qnodes onto the global
queue.

As cluster master, a thread’s role is to splice the qnodes accumulated in the
local queue onto the global queue. The threads in the local queue are all spinning,
each on its predecessor’s qnode. The cluster master reads the tail of the local
queue and then uses a CAS operation to change the tail of the global queue
to point to the qnode it saw at the tail of its local queue, and sets its my_pred
variable to point to the tail of the global queue that it replaced. It then raises
the tail when spliced flag of the last qnode it spliced onto the global queue,
signaling to the (local) successor of that qnode that it is now the head of the local
queue. This has the effect of inserting all the local nodes up to the one pointed to
by the local tail into the CLH-style global queue in the same order they were in in
the local queue.! To increase the length of the combined sequence of nodes that
is moved into the global queue, the cluster master waits a certain amount of time
for threads to show up in the local queue before splicing into the global queue.
We call this time the combining delay. With no combining delay, we achieved
little or no combining at all, since the time between becoming cluster master
and successfully splicing the local queue into the global queue was generally so
small. By adding a simple adaptive scheme (using exponential backoff) to adjust
the combining delay to current conditions, we saw combining rise to the level we
hoped for.

Once in the global queue, the cluster master acts as though it were in an or-
dinary CLH queue, entering the critical section when the successor must_wait
field of its (new) predecessor is false. The threads of the other qnodes that were

! Note that in the interval between setting the global tail pointer and raising the
tail when_spliced flag of the last spliced qnode, the qnodes spliced onto the global
queue are in both local and global queues. This is okay because the cluster master
will not enter the critical section until after it raises the tail when_spliced flag of
the last spliced qnode, and no other thread from that cluster can enter the critical
section before the cluster master, since all other threads from that cluster are ordered
after the cluster master’s in the global queue.
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Fig. 2. Lock acquisition and release in a hierarchical CLH lock

spliced in do not know they moved to the global queue, so they continue spinning
as before, and each will enter the critical section when the successor must_wait
field of its predecessor is false. And as in the case above, and in the original
CLH algorithm, a thread simply sets its qnode’s successor_must_wait field to
false when it exits the critical section.

Figure 2 illustrates a lock acquisition and release in a hierarchical CLH lock.
The successor_must_wait flag is denoted by 0 (for false) or 1 (for true) and
the raised tail_when_spliced flag by a 7. We denote the thread’s predecessor,
local or global (they can be implemented using the same variable), as my_pred.
The local queue already contains a qnode for a thread A that is the local cluster
master since its my_pred is null. In part (a), thread B inserts its qnode into the
local queue by performing a CAS operation on the local queue’s tail pointer. In
part (b), thread A splices the local queue consisting of the qnodes of threads A
and B onto the global queue, which already contains the qnodes of threads C and
D, spliced at an earlier time. It does so by reading the local queue pointer, and
using CAS to change the global queue’s tail pointer to the same gnode it read
in the local queue’s tail pointer, and then raising the tail_when_spliced flag of
this gqnode (marked by a T'). Note that in the meantime other qnodes could have
been added to the local queue but the first among them will simply be waiting
until B’s tail when spliced flag is raised (marked by T'). In part (c), thread
C releases the lock by lowering the successor must_wait flag of its qnode, and
then setting my_qnode to the predecessor qnode. Note that even though thread
D’s qnode has its tail_when_spliced flag raised, and it could be a node from
the same cluster as A, A was already spliced into the global queue and is no
longer checking this flag, only the successor must_wait flag.
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Fig. 3. Traditional microbenchmark performance, measured for each lock type. Results
for the T2000 are on the left; those for the E25K are on the right. Throughput is
measured in thousands of lock acquire/release pairs per second.

As can be seen, the structure of the HCLH algorithm favors sequences of local
threads, one waiting for the other, within the waiting list in the global queue.
As with the CLH lock, additional efficiency follows from the use of implicit
pointers which minimizes cache misses, and from the fact that threads spin on
local cached copies of their successor’s qnode state.

3 Performance

In this section, we present throughput figures using the same two microbench-
marks suggested by Radovi¢ and Hagersten[6]. For lack of space, we present
only a subset of the relevant results. A full version of the results can be found in
http://research.sun.com/scalable/pubs/hclh-main.pdf. In particular, we
omit locality data and fairness data (both of which show our algorithm in a good
light), along with uncontested-performance data (in which area our algorithm
suffers as compared to the others).

These experiments were conducted on two machines: a 144-processor Sun
Fire™ E25K[7] SMP (E25K ) with 4 processor chips per cluster (two cores per
chip), and a prototype Sun Fire™ T2000 UltraSPARC® T1[8]-based single-
chip multiprocessor (T2000) with 8 cores and 4 multiplexed threads per core.
We compared the following locking primitives:

TACAS-nb : The traditional test-and-compare-and-swap lock, without backoff.

TACAS-b : The traditional test-and-compare-and-swap lock, with exponential
backoff.

CLH : The queue-based lock of Craig, Landin, and Hagersten[2, 4].

HBO : The hierarchical backoff lock of Radovié and Hagersten[6]. The HBO
backoff mechanism allows the backoff parameters to be tuned dynamically
so that when a thread that notices that another thread from its own cluster
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Fig. 4. New microbenchmark performance, measured for each lock type. Results for
the T2000 are on the left; those for the E25K are on the right. The Y measures of
work per unit time, as given by thousands of lock acquire/release pairs per second
multiplied by critical work performed in the critical section. critical_work varies
along the x-axis. T2000 tests were run with 32 threads; E25K tests were run with 128
threads.

owns the lock, it can reduce the delay between attempts to acquire the lock,
thus increasing its chances of acquiring the lock.

HCLH : Our hierarchical CLH lock. We choose cluster sizes of 8 for the E25K
and 4 for the T2000, which make the most sense for the respective architec-
tures.

Results omitted due to lack of space show that HBO’s locality is considerably
better than random, and HCLH’s is considerably better than HBO’s for large
numbers of (hardware and software) threads. Performance results for the tradi-
tional microbenchmark are presented in Figure 3 as run on each platform. This
is a variant of the simple loop of lock acquisition and release used by Radovié¢
and Hagersten [6] and by Scott and Scherer [9]. As one might expect given its
locality advantage, HCLH outperforms all other candidates on both platforms.
On the T2000, this superiority asserts itself on tests of 12 or more threads; on
the E25K, the effect of improved locality doesn’t really assert itself until around
80 threads, and even from there on up, the separation between HCLH, HBO and
(somewhat surprisingly) CLH is minimal.

Performance results for our version of Radovi¢ and Hagersten’s new mi-
crobenchmark are presented in Figure 4. In this microbenchmark, each software
thread acquires the lock and modifies critical _work cache-line-sized blocks of
shared data. After exiting from the critical section, each thread performs a ran-
dom amount of noncritical work. On the E25K, HCLH outperforms the others
along the entire range, with HBO close behind, and CLH and TACAS-b not far
back. (In fact, CLH slightly outperforms HBO for small critical_work values.)



4 Conclusions

Hierarchical mutual-exclusion locks can encourage threads with high mutual
memory locality to acquire the lock consecutively, thus reducing the overall level
of cache misses when executing instructions in the critical section. We present
the HCLH lock—a hierarchical version of Craig, Landin, and Hagersten’s queue
lock—with that goal in mind.

We model our work after Radovi¢ and Hagersten’s hierarchical backoff lock,
which was developed with the same ends in mind. We demonstrate that HCLH
produces better locality and better overall performance on large machines than
HBO does when running two simple microbenchmarks.

Compared with the other locks tested (including HBO), the HCLH lock’s
uncontested performance leaves something to be desired. We have achieved some
preliminary success in investigating the possibility of bypassing the local queue
in low-contention situations, thus cutting this cost to be near to that of CLH,
which is only slightly worse than that of HBO and the others. This is a topic for
future work.
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