COPRA - A COmmunication PRocessing
Architecture for Wireless Sensor Networks

Reinhardt Karnapke, Joerg Nolte
{karnapke, jon}@informatik.tu-cottbus.de

BTU Cottbus

Abstract. Typical sensor nodes are composed of cheap hardware be-
cause they have to be affordable in great numbers. This means that
memory and communication bandwidth are small, CPUs are slow and
energy is limited. It also means that all unnecessary software components
must be omitted. Thus it is necessary to use application specific commu-
nication protocols. As it is cumbersome to write these from scratch every
time a configurable framework is needed. COPRA provides such an archi-
tectural framework that allows the construction of application specific
communication protocol stacks from prefabricated components.

1 Introduction

Sensor networks are collections of small sensor nodes with wireless neigh-
bourhood broadcast facilities. Since sensor networks shall be deployed in
large scales (possibly thousands of nodes [2, 1]), the overall cost dictates
the use of cheap but simple radio transceivers for communication. The
latter lack most of the common capabilities of WLAN or bluetooth net-
works. Even typical tasks like medium access control or the addressing
of individual nodes in the direct radio neighbourhood are entirely left
to software layers [5]. To make things worse the scarce CPU/memory
resources of the sensor nodes do not allow to waste much space and pro-
cessing power to process complex communication protocols [9]. Thus the
designer of the communication software is stuck between a hard place
and a rock: the simplicity of the radio requires much more work to be
done by the CPU while the processing resources that are needed for this
job are scarce. Consequently, communication protocols must be designed
as close as possible to their intended use and the processing of the proto-
col stack must be dedicated to a specific user profile. However, designing
application specific protocol stacks from scratch is always cumbersome
and error prone.

This paper introduces COPRA', an architectural framework for the con-
struction of application specific communication protocols in wireless net-
works. In COPRA often recurring protocol processing tasks are encap-
sulated in reusable components (so-called Protocol Processing Stages,
PPSs) that can be composed to application specific protocol processing

1 CopRra is part of the Cocos Project which is supported by the German Research
Foundation (DFQG) in the SPP 1140.

II

engines (PPEs). Thus application specific protocols do not need to be de-
signed from scratch but can be composed from prefabricated elements.
The following sections are structured as follows: section two looks into
COPRA’s structure, section three shows implementation details and sec-
tion four briefly outlines other attempts in this area. We finish with a
look at current status and future work in section five and the conclusion
in section six.

2 The CoOPRA framework

COPRA is a library of protocol processing stages (PPSs) and a few already
defined protocol processing engines (PPEs). A PPS is a special task in
communication such as medium access, a PPE is a concatenated set of
PPSs. By concatenating only the needed PPSs into a special PPE a lot
of memory is saved. Each PPE can again be a part of a larger PPE. In
figures one to three you will see examples of PPEs. The PPE seen on
Figure 1 includes transceiving, medium access control and error checking,
which normally is done by hardware. In case of sensor networks this
part must also be managed by COPRA because the cheap radios do not
supply such functionality. The example on Figure 2 uses the broadcast
PPE from Figure 1 as basis and adds address management. Note that
the type of address is entirely configurable. It can be a number or a
geographic location or even some property on the node, e.g. the value
of the last temperature sampling. The third example on Figure 3 adds
multi hop functionality to the PPE.

error checking access control transceiving
‘ ‘1 — i
: encoding 3 : MAC 3 : TX 3
> | stage L stage Lo stage |
| o o |
! error - } ! }
RX= ‘ detection — ! RX !
: Stage | : | : Sage |
L R . |
broadcast PPE

Fig. 1. A single hop broadcast PPE.

In the following sections we take a closer look at the two important parts
of PPS and PPE.

addressing unit

I
. | e m
|] |
| labeli : | |
I abeling ! | |
T } stage | ’} |
| ! | :
i 3 i single hop !
[! i broadcast PPE |
RX — ! filter ‘ [|
| stage | | !
! C ‘
I I : I
I ! P
I I
L !
unicast PPE

Fig. 2. A single hop unicast PPE

routing unit

I I
| o
- ! labeling } | |
! stage ! . .
| | | |
! ! | unicast PPE |
| | ! !
|] 1 1
| d i— | | |
I I
RX i plexer i ! !
! ! Lo |

routing PPE

Fig. 3. A routing PPE

2.1 A protocol processing stage (PPS)

Most of CorPrA’s PPSs have a predecessor and a successor, with the
exception of the end pieces of a PPE which have only one of them. PPSs
normally consist of two parts which represent the direction the data flows:
From the upper layers to the lower ones which is the transmitting (Tx)
path and the opposing, receiving (Rx) path. To take this into account
we provide the classes RxStage and TxStage from which a PPS has to
be derived. An example for an end piece is the radio which does not
have a successor because it transmits the data via hardware drivers.
The data is represented as the data structure stack with the well known
methods a stack supplies, the type of the stack is configurable as template
parameter.

v

2.2 The protocol processing engine (PPE)

A protocol processing engine consists of a number of PPSs or other PPEs
which are linked together. These links represent the transmitting and
receiving chains which were already mentioned. Note that the layout is
freely configurable. The end pieces of a PPE connect to the application
on one side and the hardware drivers on the other. The Radio stage does
not have a successor in the TxChain but uses the interfaces provided
by the hardware drivers to transmit the data packets to another node.
On the other node the Radio stage is the beginning of the RxChain and
fills a stack with the data it receives from the hardware. The radio then
forwards the stack along the RxChain.

List:

Sequence number,
Stack...
e ——
— - \
— - \
— ~
-
e Stack * Stack stack
Ld . . ac
TxTransport Dest. address,| Tx Routing Offset T
explicit ACK T T re-route I
Retransmission
Stack i o Stack Stack
RxTransport = Rx Routing I
skip(Stack)
Stack . |Stack Stack Stack
""" —»Tx Compression » TxCRC ——» TxMAC [——» —
Radio
Stack . |Stack Stack Stack
""" -<«—RxCompression+ Rx CRC = Rx MAC |« -

Fig. 4. A complex PPE which is used in our project

Figure 4 shows the largest PPE we have constructed yet. You might
notice that the lower half of the picture which contains physical (ra-
dio), mac, error correction (crc) and compression follows the scheme
mentioned before, where only rxForward and txForward are used. The
upper half splits with the general concept as cross-layer issues arise.
The Retransmission stage for example shares a data structure with the
Transport stage. This is necessary because they use the same sequence
numbers. The cross-layer issue between the Retransmission stage and

the Routing stage arises from the fact, that retransmissions may fail re-
peatedly. Then, the Routing stage is informed that it has to find new
routes. Because of all these issues we tend to see the upper half of the
picture as a single entity.

3 Applying the CoPRA framework

When we want to use COPRA we configure it for a specific application.
Lets assume that for this application we need to create a new PPE as
none of the existing PPEs fits. Lets also assume that there is one partic-
ular PPS we need that does not exist either. For this reason we will now
take a look at how a PPS is build.

3.1 Implementing a PPS

As example for a PPS the FilterStage is discussed here. Its job is only
to forward incoming data packets on the RxChain if they are addressed
to this node (including broadcast). Note that we are using reference
counting to determine if the memory can be reused so we only decrement
the reference count if the stack is unwanted. Please note also that the
address is configurable as template parameter. This way it is up to the
user to decide whether to use numbers, geographical identities ore even
sensor values for addressing. As the FilterStage is a member of the
RxChain it has to be derived from RxStage. In the accept () method the
address of the destination is taken from the stack and compared to this
node’s id and the broadcast address. Only if one of these matches the
stack is forwarded along the RxChain.

template<typename Address>
class FilterStage : public RxStage<Stack> {

// called by previous stage in the RzChain
virtual void accept(Stack* stack)
{
Address id;
// get destination address
stack->pop(id);

// test 4f the packet %s addressed to this mnode or the
broadcast address

if ((id == myID) || (id == broadcastID))
rxForward(stack); // send stack to the mnexzt stage
else
stack->downRef (); // free memory
}
}

In this example it is easy to see what a user has to do to construct a
PPS. To build a member of the Rx-/TxChain the PPS has to be derived
from Rx-/TxStage. The method in which all the work is done is called

VI

accept () in the RxChain and deliver() in the TxChain. This is the only
method the designer of the PPS has to fill. When all work is done the
method rx-/txForward() has to be called, which delivers the stack to
the next stage by calling accept() (deliver()) on it. The forwarding
methods are inherited so there is no need for the designer to touch these.
They hide the identity of the succeeding stage.

Now that we have build the PPS lets take a look at how a PPE is
constructed.

3.2 Composing a PPE

To build a PPE we need to have PPSs. As we have already build these we
now have to connect them in the desired order. The following example is
a datagram network (DtgNet). In this example you will notice that there
are not a RxRadio and a TxRadio but only one Radio that works as both.
The rxMac is omitted, because all a receiving MAC-layer would do is
removing the MAC Header and we do not use any. This is because the
data sampled by sensor nodes is normally small and we do not want to
waste bandwidth and energy on unnecessary overhead. This PPE enables
the application to use the standard way of sending by simply giving an
address, a pointer and a length to the PPE’s send() method. It also
provides the method receive (), which allows the application to receive
messages in the standard form. To receive a message the application
supplies a buffer which should be filled with the message. After this is
done, the number of received bytes is returned.

The connecting of the PPSs is done in the constructor of the PPE. First
the receiving chain is built, then the corresponding transmitting chain
follows. The methods receive () and send () are called by the application
and offer the services mentioned above. They take care of memory ma-
nagement by selecting stacks from a pool and returning them once they
are not needed anymore.

For simplicity reasons we omitted a few details, e.g. the check whether
the buffer is big enough.

class DtgNet {

// the elements of the PPE

Pool pool; RcxRadio radio;

TxMac txMac; RxCRC rxCRC; TxCRC txCRC;
LabelingStage <Address> labeling;
FilterStage <Address> filtering;
MessageQueue msgQueue;

// Constructor.

// Here all parts of the PPE are assembled.
DtgNet ()

{

// build recetving chain
radio.rxConnect (&rxCRC) ;

rxCRC.rxConnect (&filtering);
filtering.rxConnect (this);

// build sending chain
labeling.txConnect (&txCRC) ;
txCRC.txConnect (&txMac) ;
txMac.txConnect (&radio) ;

int receive(char* buf, int size)

{

Stack* stack = msgQueue.get ()

if (!'stack) // no message in the queue
return O;

int used = stack->used(); // determine needed memory

memcpy (buf, stack->tos(), used); // copy message
stack->downRef (); // free memory
return used; // return size of message

void send(char* msg, unsigned size, Address address)
{

// try to get a mnew stack from pool

Stack* stack = new (pool) Stack();

if (stack) {

void* buf = stack->alloc(size); // allocate memory

memcpy (buf , msg, size); // copy message

labeling.deliver (stack, address); // forward stack
}
}

As you see it is very easy to construct a PPE. By calling rx-/txConnect
on a PPS we connect it with its successor on the receiving (transmitting)
chain. These methods are inherited from Rx-/TxStage so again there is
no need to care for them. Also, in this example the great benefit of
CoPRA’s modularity can be seen. Lets assume that the MAC Layer used
above uses TDMA. Now we may need a different MAC for a different
environment but all the rest should stay the same. We then replace the
txMac with txCSMAMac. Now all we have to do is connect this stage instead
of the original one and we are done. Another possibility to change this
PPE would be to remove one unit, e.g. the addressing unit as seen in
figure 2. All this is up to the user to configure. By supplying a variety of
stages for all Layers we give the users an easy way to configure individual
PPEs according to their needs.

3.3 Writing an Application

Now that we have PPSs and a PPE lets take a final look at the applica-
tion. What the application does is of course up to the user but the easiest
way to use a PPE will be discussed here. There are in fact two ways for

VII

VIII

an application to use a PPE. One possible way is for the application to
be the end piece of the receiving chain or the beginning of the trans-
mitting chain. This way the application needs to inherit from RxStage
or TxStage or both. This may seem a little drawback but it enables the
application to use txForward() and work with the accept () method. It
also has another advantage which will be seen when the second way is
discussed. The second way is for the application to use a PPE with a
special end piece, which allows the usage of standard communication in-
terfaces. This end piece would offer a send () method which gets a pointer
to the message and its size. In this method it would allocate a stack, copy
the data and forward the stack. The advantage of this method is clear.
The application does not need to worry about stacks, it does not even
need to know it is using a PPE. The disadvantage lies in the end piece
of the PPE. It has to copy the message to a stack which takes time. It
also costs additional memory on the sensor nodes. An application would
use the PPE seen above like this:

DtgNet net(myID);
Message msg;

// sending
net.send (4711, &msg, sizeof (msg));

// receiving
int size = net.receive(&msg, sizeof (msg));

Please note again that while in this example the address is a number it
is entirely up to the user what type of address is being used.

Now that we have seen how the COPRA framework can be used, lets take
a look at the cost of using it.

3.4 Code Size

As mentioned above sensor nodes are limited in memory and have slow
CPUs. In this section we take a closer look at the size of our framework.
There are two figures which go into the code size. First, the size of the
code which is independent of COPRA as it would exist even if the frame-
work was not used. Second, the overhead of using the framework. This
overhead can be determined as follows:

Each stage has a pointer to its successor, the connecting method and the
forwarding one. Also a vtable is needed for the inherited functions and
the calls to the connecting methods must be made. Finally the call to
the constructor of the PPE in which the connections are made needs to
be considered.

Two things are included for every PPS, the pointer to the next stage
and the vtable. The size of these depends upon the CPU in use. In
our experiments we use Lego RCX robots [6] which include a Renesas
H8/300 processor. This is a 16 Bit processor with a clock frequency of
16 MHz. On a 16 Bit processor the size of a pointer is two bytes which

means that the overhead for one PPS includes 2 bytes for the pointer to
the next stage, 2 bytes for the pointer to the vtable and 6 bytes for the
vtable itself. Altogether this means an overhead of 10 bytes per PPS.
There are also the inlined connecting and forwarding methods and the
constructor of the PPE. As these exist only once for the framework they
are not taken into account here.

The next figure shows code sizes of two selected PPEs. The sizes were
measured on the RCX robots we used for our experiments. As these sizes
are dependent on the CPU in use they may vary on different systems.

PPE |buffer pool|radio|mac|crc|addressing|size (bytes)
broadcast X X | x |x 3400
unicast x x | x |x X 3848

4 Related Work

In sensor networks the communication cost is reduced by replacing part
of the communication with local computation. While this is a great im-
provement in battery lifetime it also means that the communication must
be done in an application specific way. The authors of [4] call for a family
of protocols for general purpose sensor nets. With COPRA such a family
exists, as the framework represents a lot of different communication pro-
tocol stacks that can be configured according to the applications needs.
COPRA is partly inspired by CORBA and .NET. The channel sink chains
in .NET are configurable, meaning that the user can insert whatever sink
he needs. These chains are reflected in COPRA’s Rx-/TxChains. An impor-
tant difference is however, that COPRA’s chains starts where .NET's sinks
end. The lowest of .NET's sinks is the TransportSink, whereas COPRA
is a communication framework. The portable interceptors in CORBA
were also an inspiration, as it is possible to insert additional interceptors
into a chain. This is reflected in CoPrRA’s PPSs which are connected in
a PPE. While CORBA has a predefined order, the PPSs in COPRA can
be inserted anywhere in a PPE.

In [3,7] the lack of an overall sensor network architecture is remarked.
The authors describe the need for a sensor network protocol which should
be located lower than the IP-Layer in the internet. While this so called
SP should provide a set of functionalitys it should still stay configurable
and be open to cross-layer issues. COPRA offers the configurability and
openness required.

5 Current Status and Future work

At the moment we have 14 different PPSs and 8 PPEs. While this number
may not seem very large, it is not necessary for it to become much larger.
We are experimenting with some of our PPSs and PPEs on modified RCX
robots. These Robots have been additionally equipped with an easy radio
ER400TRS radio module which we use instead of the included infrared

IX

module (IR). To enable this, a serial port has been inserted which allows
us to connect either the IR or the radio module. The IR is still needed to
boot the RCX robots but once they are booted we switch to the radios.
COPRA is independent of the operation system used, but we decided to
use our self developed miniature OS Reflex[10] as basis. Reflex supports
pre-emptive scheduling and provides hardware drivers which we use in
some of or PPSs.

In the near future we will need to implement a few more different PPSs for
each layer. Once we have these there could be more PPEs and application
examples. But it is not our focus to find new applications for sensor
networks, only to offer an easier way to build them. Also it is not our
goal to build lots of PPEs. That is not necessary as the users will build
their own ones. Right now we are using the RCXs only but we are going
to equip these with ScatterWeb|[8] sensor nodes. This is necessary because
the RCXs have only three input channels and the additional serial port,
which are connected to touch sensors and the radio. When we connect
the ScatterWeb sensor nodes with the serial port we will be able to use
their radio and have their additional sensors.

6 Conclusion

COPRA is an easy to use framework which allows a user to plug and run
communication protocols for sensor nodes without having to rewrite the
application each time a different hardware is used or the environment
is different. Developers can now focus their attention entirely on the
application. COPRA performs well in our experimentation environment
and we are positive that it will work equally well in the next experiments
using the ScatterWeb sensor nodes.

References

1. Toannis Chatzigiannakis, Sotiris Nikoletseas, and Paul Spirakis.
Smart dust protocols for local detection and propagation. In POMC
’02: Proceedings of the second ACM international workshop on Prin-
ciples of mobile computing, pages 9-16, New York, NY, USA, 2002.
ACM Press.

2. Ioannis Chatzigiannakis, Sotiris Nikoletseas, and Paul G. Spirakis.
Efficient and robust protocols for local detection and propagation in
smart dust networks. Mob. Netw. Appl., 10(1-2):133-149, 2005.

3. David Culler, Prabal Dutta, Cheng Tien Ee, Rodrigo Fonseca,
Jonathan Hui, Philip Levis, Joseph Polastre, Scott Shenker, Ion Sto-
ica, Gillman Tolle, and Jerry Zhao. Towards a sensor network archi-
tecture: Lowering the waistline.

4. John Heidemann, Fabio Silva, and Deborah Estrin. Matching data
dissemination algorithms to application requirements. In SenSys "03:
Proceedings of the 1st international conference on Embedded net-
worked sensor systems, pages 218-229, New York, NY, USA, 2003.
ACM Press.

10.

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
mobile networking for §mart dust- In MobiCom ’99: Proceedings
of the 5th annual ACM/IEEFE international conference on Mobile
computing and networking, pages 271-278, New York, NY, USA,
1999. ACM Press.

Holly Patterson-McNeill and Carol L. Binkerd. Resources for using
lego mindstorms. In Proceedings of the seventh annual consortium for
computing in small colleges central plains conference on The journal
of computing in small colleges, pages 48-55, , USA, 2001. Consortium
for Computing Sciences in Colleges.

Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David
Culler, Scott Shenker, and Ion Stoica. A unifying link abstraction for
wireless sensor networks. In SenSys ’05: Proceedings of the 3rd in-
ternational conference on Embedded networked sensor systems, pages
76-89, New York, NY, USA, 2005. ACM Press.

Jochen Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and
Thiemo Voigt. Scatterweb - low power sensor nodes and energy
aware routing. In Proceedings of the 38th Hawaii International Con-
ference on System Sciences, 2005.

K. Sohrabi, V. Ailawadhi, J. Gao, and G. Pottie. Protocols for Self
Organization of a Wireless Sensor Network. IEEE Personal Com-
munication Magazine, 7:16-27, October 2000.

Karsten Walther, Reinhard Hemmerling, and Joérg Nolte. Generic
trigger variables and event flow wrappers in reflex. In ECOOP -
Workshop on Programming Languages and Operating Systems, Jun
2004.

XI

