
Optimization of Dense Matrix Multiplication on
IBM Cyclops-64: Challenges and Experiences

Ziang Hu Juan del Cuvillo Weirong Zhu Guang R. Gao

Department of Electrical and Computer Engineering
University of Delaware

Newark, Delaware 19716, U.S.A
{hu,jcuvillo,weirong,ggao}@capsl.udel.edu

Abstract. This paper presents a study of performance optimization of dense ma-
trix multiplication on IBM Cyclops-64(C64) chip architecture. Although much
has been published on how to optimize dense matrix applications on shared mem-
ory architecture with multi-level caches, little has been reported on the applicabil-
ity of the existing methods to the new generation of multi-core architectures like
C64. For such architectures a more economical use of on-chip storage resources
appears to discourage the use of caches, while providing tremendous on-chip
memory bandwidth per storage area.
This paper presents an in-depth case study of a collection of well known opti-
mization methods and tries to re-engineer them to address the new challenges
and opportunities provided by this emerging class of multi-core chip architec-
tures. Our study demonstrates that efficiently exploiting the memory hierarchy is
the key to achieving good performance. The main contributions of this paper in-
clude: (a) identifying a set of key optimizations for C64-like architectures, and (b)
exploring a practical order of the optimizations, which yields good performance
for applications like matrix multiplication.

1 Introduction

Cyclops-64 (C64) [1, 2] is a petaflop supercomputer project under development at IBM.
As shown in Figure 1(a), a C64 system is built from thousands of C64 chips that employ
a unique multiprocessor-on-a-chip design. Each chip consists of 160 thread units and
the same number of SRAM memory banks connected by an on-chip crossbar network
(see Figure 1(b)). C64 chip architecture features massive intra-chip parallelism and on-
chip memory bandwidth (320GB/s). Given such a novel architecture, the challenge is
how to use these two features to obtain high sustained performance for scientific and
engineering applications.

During the past two decades, there has been a considerable amount of work on how
to optimize dense matrix applications on shared memory architectures with multi-level
caches. However, it is not clear whether the existing methods are applicable to the new
generation of multi-core architectures, such as C64.

This paper presents an in-depth case study of how a collection of well known opti-
mization methods can be applied to address the new challenges and opportunities that
the emerging class of multi-core chip architectures may present. Thephase ordering
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Fig. 1. Cyclops-64 Architecture

of different optimizations has long been challenging but interesting research problem
that still remains open [3]. Furthermore, previous work [4], which has established the
optimization order for cache-based architectures, may or may not be applicable to a
cacheless architecture like C64. In this work, we apply specific optimizations following
the order dictated by our experience and knowledge of the problem at hand. However,
we do not in any way claim that this order is optimal. Our goal is to demonstrate that
overall, for a given dense matrix operation, it is possible to derive a good order of op-
timization. We hope that the experience reported in this paper will prove to be useful
for developers, in designing compilers and runtime systemsfor C64-like multi-core
architectures.

2 Cyclops64 chip architecture

The work described in this paper focuses on a single C64 chip [1, 2], the main compo-
nent of a C64 node (see Figure 1(b)). Within a C64 chip there are 80 processors, each
consisting of two thread units, a floating-point unit, and two SRAM memory banks of
32KB each. Hence, the total on-chip memory is approximately5MB. A 32KB instruc-
tion cache, not shown in the figure, is shared among five processors.

At boot time, SRAM banks are partitioned into two segments. One segment con-
tributes to the globally shared interleaved on-chip memory. Processors and interleaved
memory are logically arranged in a dancehall configuration with processors and mem-
ory banks on opposite sides connected by a one-level crossbar switch. The other seg-
ment, called scratchpad memory (SPM), is regarded as local memory since the corre-
sponding thread unit has fast access to its own SPM. The C64 architecture also provides
four DRAM controllers. Each one is attached to a 256MB bank, hence a C64 node fea-
tures 1GB off-chip DRAM. As a summary, Figure 2(a) reflects the current size, latency
(when there is no contention) and bandwidth of each level of the memory hierarchy. The
C64 instruction set architecture incorporates efficient support for thread level execution,
hardware barriers, and atomic in-memory operations.
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3 The Problem and Experimental Method

This paper is a case study of square matrix multiplication (MM), which is a widely
used computation kernel for scientifc and engineering applications. For our baseline,
we choose a straightforward implementation of the sequential algorithm. To parallelize
matrix multiplication, we partitioned the three matrices into t2 blocks and we assign
each thread unit the computation of a number of such blocks. The computation of a
Cm,n block requirest block multiplications and additions according to the following
expression:

Cm,n+ =

t−1∑

k=0

Am,k ×Bk,n (1)

To exploit spatial locality, it is best to assign the calculation of Cm,n to a single
thread, as the resultant matrix block does not need to move around.

To study matrix multiplication on the C64 architecture we used the FAST simula-
tor [5]. FAST is an functionally-accurate simulator that, among other features, models
the memory hierarchy of C64 architecture, including the latencies and bandwidth of
each memory segment.

4 Evolutionary Performance Tuning

In this paper,128×128 and256×256 matrix multiplications are simulated on up to 68
thread units. The former ensures the matrix fits into on-chipmemory, the latter forces
some blocks of the matrix to be stored in DRAM. However, the results hereby presented
can be extrapolated to larger matrices.

The study begins with the sequential version, where the codealways resides in
off-chip DRAM, and data is placed in each of the three memory segments one at a



time. We compare the performance and memory latencies of thethree cases. Then a
straightforward parallel version of the MM is introduced, with data stored in SRAM
and DRAM, respectively. In the following sections, we improve the performance of the
parallel implementation and measure the effectiveness of various optimizations.

4.1 Sequential Matrix Multiplication

We start by comparing the performance achieved by the sequential implementation,
with matrices placed in SPM, interleaved SRAM, and DRAM, respectively. SPM size
is quite limited. In addition it holds both the runtime stackand thread-private data.
Hence, the maximum size allowed for each matrix is16×16 only. The results from this
experiment are shown in Figure 2(b).

It is apparent that the performance difference comes from the latency incurred
by load operations accessing different memory segments. Wemay conclude that data
should always be loaded into SPM first before starting the computation. However, data
needs to be loaded from SRAM/DRAM into registers first and stored into SPM af-
terwards on this architecture. If data reuse rate is low, it is not worth performing this
“prefetching”. Therefore, data reuse is a key issue for achieving high performance on
C64. Matrix multiplication has the potential for high data reuse as the memory size is
O(n2) and computation is O(n3).

4.2 Matrix Multiplication Parallelization in On-chip SRAM

We implemented a straightforward parallel version, which places three128 × 128 ma-
trices into interleaved SRAM. This version will be used as the baseline version for per-
formance comparison. The matrices are partitioned into82 blocks, each with16 × 16
size. At most 64 thread units are used in this experiment, as there are 64 blocks in total.
Thus, it is natural to assign one resultant matrix block to each thread, as well as all
the computation for that block. We encapsulate the computation for one resultant block
into one task. Also notice that the resultant block can be reused 8 times while the other
blocks are used only once for each task. A task array is employed to store the tasks.
Each task consists of a pointer to the resultant block, and two arrays of pointers that
point to 8 pairs of source blocks.

Each thread tries to obtain the next available task from the task pool. When success-
ful, it performs the computations, writes the resultant block back, and attempts to get
a new task until the task pool is empty. The result is shown in Table 1. Although we
get near linear speed up, the overall performance is still low - up to 1.3GFLOPS for 64
threads - 4% of the peak performance (32GFLOPS with 64 threadunits).

Next, we will study a sequence of optimizations to improve the parallel perfor-
mance.

Using SPM The next step is to use the SPM as a high speed buffer to accelerate the
corresponding thread unit in the computation. We still perform the16× 16 matrix mul-
tiplication in SPM. The matrices are copied into SPM block byblock. The computation
is conducted and the result is stored back into SRAM. It is worth copying the resultant



Table 1. Baseline Parallel Version

Num of Threads Cycles FLOPS Speedup

1 93,435,509 22.5M 1.00
2 46,750,840 44.9M 2.00
4 23,413,382 89.6M 3.99
8 11,783,500 178.0M 7.93

16 5,942,832 352.9M 15.72
32 3,207,410 653.9M 29.13
64 1,627,767 1.3G 57.40

block into SPM as it will be used 8 times. Since the two source matrices are only used
once, they are not copied into the SPM. Implementing this yielded 1.79GFLOPS. This
represents a 38% performance improvement over the base version (See ”Using SPM”
in Table 2).

Table 2. 128x128 MMM Incremental Optimizations in SRAM

Optimizations GFLOPS Speedup Over Speedup Over Incremental
Baseline Sequential

Parallel Version Version

Baseline 1.29 1.00 40.31 0%
Using SPM 1.79 1.38 55.94 38%

Tiling+Unrolling 2.77 2.15 88.56 55%
Reg. Tiling 5.05 3.91 157.81 82%
Inst. Sched. 10.02 7.77 313.12 99%
Reg. Alloc. 11.03 8.55 344.69 10%
Sync. Opt. 13.70 10.61 428.12 24%

Loop Tiling and Unrolling Loop tiling is a very effective optimization for architec-
tures with caches. The tile size is chosen to allow all the data accessed by the inner most
tile to fit into the cache. For matrix multiplication, the16 × 16 matrix is split into two
levels of4× 4 tiles.

A simple tiling does not bring performance gain as the numberof branch instruc-
tions and code size are increased. By unrolling the next level of inner loops, 2.77GFLOPS,
which is a 55% improvement over ”Using SPM”, is achieved.

Register Tiling (Manually) For the inner most 3 loop nests, there are total4×4×3 =
48 data elements that can fit into 64 registers of C64. The data reuse rate is 4 for each
element of A and B, and 32 for C.



Because of the current limitation in the compiler, we manually did the register tiling
by allocating registers properly to the data elements of the3 matrices, as well as other
index variables. Those elements are used in the 2 inner most loop nests, with A and B
inside and C one level outside. After manually performing register tiling and allocation,
the optimized code achieved 5.05GFLOPS, which is an 82% improvement over the
simple tiling plus unrolling.

Instruction Scheduling (Manually) After register tiling, by properly scheduling the
instructions in the innermost loop, we can hide the latencies of most memory and float-
ing point operations and achieve 10.02GFLOPS - another 99% improvement over the
register tiling. By moving accesses to C outside of the innermost loop, the performance
reaches 11.03GFLOPS.

A good instruction scheduler is very important to the MM application as well as
other programs. The key issue is that the scheduler should beaware of the different
latencies when accessing different memory segments (SPM, SRAM and DRAM). Most
existing compilers assume cache latency when they do instruction scheduling. For this
architecture, there is no data cache and each load/store mayhave different latency de-
pending on the target memory segment. Explicit multi-levelmemory hierarchy aware
instruction scheduling is a key optimization for the C64 architecture. In fact, loop tiling,
register tiling and instruction scheduling have to be tightly coupled, and the aggrega-
tion of the 3 optimizations is the key to generate optimal code for even a simple matrix
multiplication.

Remove Unnecessary Synchronization In all the above experiments, mutex is used
to control the access to the task pool. When one thread is getting a task from the task
pool and updating the status of the allocated task, all otherthreads have to wait for the
release of the mutex lock.

Since MM is a regular application, an alternative approach is to statically assign
workload, i.e., each thread is assigned to a fixed number of tasks. As a result, the mutex
lock is not needed. After removing the mutex, we get 13.70GFLOPS, which is 42.8%
of the potential peak performance (32GFLOPS for 64 threads).

All of the above results are based on the assumption that 3 matrices are stored into
on-chip SRAM. The memory bandwidth (320GB/s) is enough to sustain the computa-
tion. However, when the matrices become larger and larger such that they cannot be
stored into on-chip SRAM, bandwidth of DRAM becomes a major issue. In the next
section, we are going to investigate bandwidth optimizations to bring high performance
to the algorithm assuming that data resides in off-chip DRAM.

4.3 Parallelizing Matrix Multiplication in DRAM

Off-chip DRAM is the largest memory resource of the C64 architecture. Most data and
code will be stored there for real applications. On-chip SRAM and SPM are smaller
and more expensive resources, and should be used more carefully.

To demonstrate the optimizations, we use256× 256 matrices that need to be stored
in DRAM with 128× 128 sub-banks buffered in SRAM. Therefore, the application has



to move data between DRAM and SRAM. In this section we study the impact of DRAM
bandwidth limitation on the application’s performance andhow to tackle this problem
by hiding the communication latency between DRAM and SRAM with computation.
A nice feature of C64 is that thread units are not expensive - there are very many of
them. On-chip memory resources are more expensive. We can use a set of thread units
to do the computation and another group of thread units to move data between DRAM
and SRAM. In this case study, we use two sets of SRAM banks (double buffering). One
set for computation and another set for preloading, and switch between them during the
computation.

DRAM Bandwidth For the first version of C64 chip design, the DRAM can transfer
at most 32 bytes every cycle. Hence, the total DRAM bandwidthis 16GB/s.

To make the best utilization of the DRAM bandwidth, load multiple and store mul-
tiple (of 8 doublewords or 64 bytes) instructions should be used and the starting address
should be 64 byte aligned.

Bandwidth limitation is the major challenge here. For128 × 128 matrix multi-
plication, the total number of memory accesses is128 × 128 × 128 × 8 × (3 + 1)
bytes (3 loads, 1 store), or67, 108, 864 bytes. Then, the ideal access to memory time is
67, 108, 864/32, or2, 097, 152 cycles. Even excluding load/store conflicts and ignoring
other instructions, the peak performance can only be 1GFLOPS.

We may assume the C array is loaded and stored in the second innermost loop. The
total bytes to be accessed becomes128× 128× 128× 8× 2 + 128× 128× 8× 2, or
33,816,576 bytes. In this case, the ideal performance increases to 1.98 GFLOPS. But
we are still far from the peak performance (32GFLOPS for 64 threads).

This means that we have to use on-chip SRAM and/or SPM to buffer matrix blocks,
perform the computation in SRAM/SPM, and store the results back to off-chip DRAM.
In other words, we have to reduce the DRAM bandwidth requirements via the on-chip
data reuse.

Using LDM and STM One optimization is to use LDM and STM instructions to ag-
gregate multiple memory accesses. Four LDD (load doubleword) are combined into
one LDM and four STD are combined into one STM. Hence, DRAM requests are ef-
fectively reduced to 1/4 of its original number, and DRAM bandwidth has been better
utilized here. The best case is to combine 8 LDD into one LDM and 8 STD into one
STM. But for register tiling, 4x4 is a better choice. If we do 8x8, although we can load
sub-blocks into registers, we cannot consume them and have to store them into on-chip
memory. This is not good for matrices A and B.

Using On-chip Memory To reduce the bandwidth requirement to DRAM, we try to
move sub-blocks of matrices into SRAM, and move intermediate results back to DRAM
whenever it is necessary. We also pipeline the process by using two SRAM blocks for
each matrix: one for computation and the other for load/store.

In this study, we assume the original size of the three matrices is256×256 and they
reside in DRAM. The on-chip block size is128 × 128. Each matrix has two blocks in



SRAM and half of each is loaded into SRAM. We assumec1 andc2 for matrix C,a1 and
a2 for A, andb1 andb2 for B. While one set of SRAM blocks is used for computation,
the other set can be used to load or store . The pipeline is designed as follows:

Computation Threads                               Memory Access Threads

compute c00/a00/b00 in c1/a1/b1           load a01(to a2) b10 (to b2)
compute c00/a01/b10 in c1/a2/b2           load c01(to c2) b01 (to b1)

compute c01/a00/b01 in c2/a1/b1           load b11(to b2)
compute c01/a01/b11 in c2/a2/b2           load c11(to c1) a10 (to a1)

compute c11/a10/b01 in c1/a1/b1           load a11(to a2) 
compute c11/a11/b11 in c1/a2/b2           load c10(to c2) b00 (to b1)

compute c10/a10/b00 in c2/a1/b1           load b10(to b2)
compute c10/a11/b10 in c2/a2/b2           

                                                                 store c00

                                                                 store c01

                                                                 store c11

                                                                  store c10

                                                                 load c00 (to c1), a00(a1),b00 (b1) 

Fig. 3. Execution Steps When the Matrices are in DRAM

The total DRAM accesses:128×128×8×(4 loads of C+4 stores of C+4 loads of A+
6 loads of B) = 2, 359, 296 bytes. The ideal DRAM access time in this case is73, 728
cycles, which is equivalent to 56.9GFLOPS without considering other computations.

Synchronization Overhead To implement the above pipelined scheme, a barrier is
inserted at the end of each step. There are 12 barrier invocations in the implementation.
This guarantees that computation happens after loading allthe required data, and storing
follows the corresponding computation stage. C64 has hardware barrier support with
low cost. A barrier can be completed in as little as dozens of cycles.

Optimized memcpy() The standard C library features an optimized version of mem-
cpy(), which is up to 20 times faster than the initial straightforward implementation. It
takes into account possible unalignment at the source and destination, as well as differ-
ent copy lengths. It is also capable of pipelining the three basic stages: loading from the
source array, address computation and storing into the destination array.

Using More Threads for Load/Store In previous sections, only one thread handles the
work of loading and storing. To further improve the performance, we assign three more
threads, four in total. Three threads are responsible for preloading each of the three
matrices, and the main thread handles the task pool creationand stores the resulting sub
matrices back to DRAM.

The final result we achieve is1, 206, 048 cycles and 13.9 GFLOPS for a256× 256
problem size, which is 43.4% of the peak performance (we use 68 threads in this case:
64 threads for computation, 4 threads for load/store).



Table 3. Optimizations for Matrices in DRAM

Optimizations Size Cycles Mem/Delay FLOPS Speedup
No Opt 128 6,499,276 5,401,783 322.7M
No Opt 256 42,078,325 35,060,687 398.7M 1.00

LDM/STM 128 1,745,340 1,439,301 1.2G
LDM/STM 256 13,996,754 11,652,068 1.2G 3.00

All Opt 256 1,206,048 810,997 13.9G 34.86

5 Conclusions

Our results demonstrate that efficiently exploiting the multi-level memory hierarchy is
the key to achieve good performance on C64. When data fits into SRAM, tiling, loop
unrolling, register allocation, and instruction scheduling are the most important opti-
mizations. SPM can also be used to buffer frequently accessed data. When data does
not fit in SRAM, DRAM bandwidth becomes the bottleneck. To overcome this issue,
first we use SRAM to buffer blocks of DRAM data, which additionally reduces the
bandwidth requirements to DRAM. Second, we overlap DRAM accesses with compu-
tation in SRAM to dramatically improve the performance.

For compiler designers, inner most register tiling is very important. The instruction
scheduler should be aware of the latency for each memory segment. High level loop
optimization should be able to automatically choose SPM buffers for SRAM data and/or
SRAM buffers for DRAM data.

6 Related and Future Work

Locality optimizations have been studied by numerous researchers which resulted in
many publications on cache-based architectures. Loop transformations have been in-
vestigated to exploit computation parallelism and data locality for scientific applica-
tions [6–11]. Loop tiling is a well known loop transformation to increase cache locality
( see [12, 7, 9, 13, 14] and their references). We use loop tiling (and register tiling) to
map a matrix block into the register file, SPM, and SRAM. Bandwidth optimization
has also been extensively explored in [15–21] and their references. Indeed, we have
shown that an efficient utilization of the memory bandwidth is critical for C64 when
data is stored in DRAM. Phase order problem has been studied in [4, 3] and their ref-
erences. We identify a set of useful optimizations for C64-like architectures. Moreover,
we explore a practical sequence order of optimizations for the matrix multiplication that
yields 14GFLOPS.

As future work we intend to the study other representative benchmarks. The identi-
fied optimizations will be implemented in the C64 compiler. Traditional loop optimiza-
tions may be extended to support automatic storage and thread unit management by
allocating SPM and SRAM to the hot data at certain computation phases, and automat-
ically overlap memory transfer with computation.



Acknowledgments

We acknowledge support from IBM, in particular, Monty Denneau, Henry Warren, José
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