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Abstract. With growing computational power of current supercomput-
ers, scientific computing applications can work on larger problems. The
corresponding increase in dataset size is often correlated to an increase
in needed storage for the results. Current storage area networks (sans)
balance i/o load on multiple disks using high speed networks, but are
integrated on the operating system level, demanding administrative in-
tervention if the usage topology changes. While this is practical for single
sites or fairly static grid environments, it is hard to extend to a user de-
fined per-job basis. Reconfigurable grid environments, where computing
and storage resources are coupled on a per-job basis, need a more flexible
approach for parallel i/o on remote locations.
This paper gives a detailed overview of the abilities of the transparent
remote access provided by tunnelfs, a part of the viola parallel i/o
project. We show how tunnelfs manages flexible and transparent access
to remote i/o resources in a reconfigurable grid environment, supporting
the definition of the amount and location of persistent storage services
on a per-job basis.

1 Introduction

With the enormous increase in computational power of today’s high performance
computers, scientific applications can exceed old boundaries of problem size and
complexity. With the increasing rate at which data can be produced, the question
arises as to where to store the data in an efficient way. Result data will normally
be too large to be kept in memory, while the application continues processing
different data sets. Also, memory-intensive applications often need to swap data
to disk, and reread it at a later point in time. With increasing size of the data
sets to be loaded into memory and stored on persistent storage devices, i/o
can easily become the bottleneck of modern scientific applications. To develop
efficient and portable applications, it is therefore essential for the middleware to
provide efficient i/o mechanisms for scientific application developers.

Almost 10 years after the specification of mpi-2 [1] in 1996, most currently
available mpi implementations support the api for mpi-io. romio [2] is a pub-
licly available mpi-io implementation that easily integrates into the mpich mpi



implementation [3]. romio and mpich are being developed at the Mathematics
and Computer Science Department of Argonne National Laboratory. The use
of the mpi api for i/o introduces a new layer of abstraction to a process’s i/o
accesses, increasing portability of the application. romio uses the device ab-
straction adio [4] (Abstract Device Interface for i/o) to define multiple special
purpose filesystem devices. In this way the mpi layer can call a generic adio
function to handle a specific kind of i/o operation, with the adio layer choosing
the correct device to use.

When using the mpi api for parallel i/o, it is assumed that all processes
participating in each i/o call see the same underlying filesystem. In grid envi-
ronments, where processes are interacting across inter-cluster boundaries with
other processes, this is rarely the case and a common filesystem can introduce
a high administrative overhead, like common user bases and common security
policies. In static environments, where the status of available nodes in the grid is
constant over a longer period of time, this is still feasible, as shown by the deisa
project [5], where a distributed gpfs filesystem is deployed over several super-
computing sites. In reconfigurable grids, where computing resources are added
to and revoked from the resource pool much more frequently, this approach is a
major administrative challenge.

In the viola project [6] several sites with local clusters are connected by
a 10 GBit/s dedicated network, while internally using either Gigabit Ethernet
or Myrinet networks [6]. The mpi middleware for connecting the cluster sites
is mp-mpich [7]. mp-mpich is an enhanced version of mpich, providing a pro-
cess environment for meta computing. The major advantage of mp-mpich is the
transparent use for different communication devices for inter- and intra-cluster
communication. Thus clusters can still use the usually faster special purpose in-
terconnect for intra cluster communication, instead of having to choose the least
common denominator of all of the available communication devices. While earlier
versions of mp-mpich realize the inter-cluster connection with transparent router
processes, providing a store-and-forward routing for messages between processes
of different clusters, recent prototypes provide a secondary device to each process
to handle intra- and inter-cluster communication by separate devices [8].

Within the parallel i/o subproject of viola, we develop two adio devices for
mp-mpich to support the special needs for efficient parallel i/o in grid environ-
ments [9]. In Sect. 2 we introduce the overall design of the tunnelfs client/server
architecture. Section 3 presents possible i/o distribution strategies, used with
tunnelfs. In Sect. 4 we then state some of our results with the early version
of the prototype using the viola network. Sect. 5 places our current efforts into
the context with other work, involving remote i/o for mpi. Section 6 concludes
with a brief summary and future prospects in our work.

2 Design

To support special aspects of i/o access with different filesystem, romio uses
the adio layer [4] to decouple the implementation of mpi function calls and



filesystem specifics. The mpi-io functions work on driver functions of the adio
layer that select the correct adio device to be used for a specific filesystem (e.g.,
ufs, nfs, pvfs2). To integrate transparent i/o for mpi applications, we defined
two new adio devices, tunnelfs and memfs [9]. tunnelfs provides the service
for transparent remote access (see Fig. 1, and memfs creates a multi-node shared
virtual filesystem accessible with mpi-io calls. Together they provide easy and
efficient access to i/o on distributed memory resources.

All client/server communication regarding remote i/o is handled transpar-
ently by the adio device for tunnelfs. The user therefore does not need
to deal with explicit communication calls to the server. In mpi, file names-
paces are implementation depended, as it may be required to provide addi-
tional information about the file, such as the type of the underlying filesystem.
romio uses prefixes separated by a colon, to explicitly identify a filesystem
type (e.g., nfs:file.dat). tunnelfs and memfs use the same prefix scheme
for selection of the corresponding adio device (e.g., tunnelfs:file.dat or
memfs:file.dat). For tunnelfs the location of a file is not pinpointed to a
specific server but rather to a class of servers belonging to the same filesystem
domain, additionally coded in the filename. Filesystem domains and their usage
are discussed in detail in Sect. 2.4.

2.1 Client/Server Architecture

tunnelfs uses a parallel client/server architecture. As shown in Fig. 1, the user
process, being the i/o client, issues an i/o call, descending through the mpi layers
until the adio device layer is reached. Instead of calling system functions for
disk i/o on the client’s node, the tunnelfs adio device transmits the request
parameters and possible i/o data to the server, using mpi point-to-point commu-
nication. The i/o server receives the request of the client and acts upon it, using
local mpi-io calls. If the request is a read request, the server will issue the call
locally and transfer the data to the client. If the request is a write request it will
wait for the data to be sent by the client in a second message and then issue a
local write call. Communication between clients and servers as well as between
multiple servers is handled with point-to-point communication to avoid dead-
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locks and excessive blocking of server processes waiting for messages of other
servers.

To maintain portability, flexibility and efficiency, the tunnelfs i/o server
uses only mpi function calls for communication and file i/o. Request header and
data buffers are transferred in separate messages, to avoid repacking of buffers
before and after transfer. The client/server protocol defines a single master i/o
server that is derived from the middleware configuration files, common to all
processes started. All client/server and server/server communication is issued
upon an implicitly defined communicator, containing all user processes as well
as all i/o server processes. As the communication involved in i/o requests is hidden
from the user program, the user has no knowledge which server is appropriate
for a specific file. Thus, initial requests are always sent to the global master i/o
server, which either processes the request locally or delegates it to a different
server. In case of request delegation the client is informed of the i/o server now
responsible for this file.

2.2 I/O-Transfer-Staging

Though i/o calls usually handle large amounts of data, allowing arbitrary sized
blocks for tunnelfs is not feasible. The tunnelfs protocol defines a two step
data transfer for i/o calls. In a write call the buffer is transferred to the server
process first, and then written to disk. Keeping large buffer sizes will result
in a serialization of those two operations, maximizing the time needed for the
complete operation. As mpi also defines that buffers involved in ongoing mpi
operations must not be accessed until the operation involving the buffer has
completed, transfers have to be broken down into smaller parts. Therefore the
tunnelfs servers stage data transfers to and from the client with its local i/o
calls, to maximize overlapping of those operations.

For write requests, the client sends a request header, followed by a number
of messages containing the i/o data. The number of i/o data messages is coded in
the request header. After receiving the first i/o data package, the server can start
writing the data to storage, while the rest of the i/o buffer is still in transfer.
The write call is acknowledged by the server through a reply message. For read
requests, the client sends the request header and the server replies directly with
the parameters of the issued call, in particular the number of following i/o data
packages. After the client processes the server reply, it will start receiving the
messages containing the requested i/o data.

2.3 Multiple Distributed Server Support

The first prototype of the tunnelfs and memfs devices supported any number
of clients but only a single i/o server to be used with the application. This was
partly due to the router concept of earlier versions of mp-mpich, where avoidance
of bottlenecks would have meant introducing a router for every i/o server defined.
This would have implied an enormous overhead of additional processes. With
the modification of mp-mpich to support direct process to process inter-cluster



communication without interference from use of router processes [8], multiple i/o
server support becomes feasible for the mp-mpich environment. With multiple
i/o servers present in the application’s mpi environment, i/o load sharing and
i/o request delegation, as well as transparent file access becomes possible. The
tunnelfs client/server protocol was extended to support the desired flexibility
and transparency with the use of multiple i/o servers.

2.4 Filesystem Domains

As tunnelfs is not a filesystem itself, but an interface to different remote filesys-
tems, it has to provide a means for distinguishing those filesystems at runtime.
The tunnelfs i/o servers need information in addition to the filename, what
the location of that file in the grid is. As nodes are assigned to the user applica-
tion by the scheduling system, it is possible but not always practical, to request
specific resources of a cluster for execution. With a uniform node architecture,
i.e., no special purpose nodes available for reservation, it is not necessary to run
the i/o server on one specific node, but rather on any node which has access to
the desired filesystem. Within the grid, processes can then be assigned to spe-
cific classes, where each class has access to the same filesystem (e.g., the local
filesystem on one cluster of the grid). These classes are called filesystem domains.

mp-mpich defines so-called metahosts to classify all processes of a single clus-
ter sharing a common internal interconnect. These metahosts comprise the nodes
of the global meta computer. As nodes within one cluster usually share a global
filesystem, filesystem domains contain all processes of one or more metahosts.
The identifiers of a filesystem domain are implicitly defined by the user, as they
are derived from the grid configuration defined by the user for this specific job. If
the user defines a metahost with name “metahostA”, clients have remote access
to that filesystem via the prefix “tunnelfs:metahostA:”.

To prevent the clients from governing too much information on data loca-
tion, the logic for deciding which server is used for opening a file resides on the
global master i/o server. Thus the client itself does not process the filename any
further than the first separating colon. The tunnelfs prefix is truncated from
the filename and the rest of the filename is sent to the master i/o server for
further processing. The master i/o server then decides whether the file is to be
opened locally or the open request has to be delegated to a server of a different
filesystem domain.

2.5 Distribution Schemes

During job execution user processes and i/o server processes are distributed in
the grid. The configuration and placement of user processes can have direct
influence on efficient placement of i/o server processes. Additionally i/o server
processes have to be placed according to the required filesystem access of the
application. Each filesystem domain that needs to be accessed during execution
has to define at least one i/o server. During runtime of the application, the
server placement should then be taken into account when clients are assigned to
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Fig. 2. Different placement scenarios for tunnelfs

a specific server. As a part of the transparent access scheme, the distribution is
completely handled by the tunnelfs servers, with only minimal intervention by
the user. The user can define hints in an MPI_Info object, referenced on special
i/o calls like opening or setting a file view. The server will then use the given
information for optimal server assignment.

The servers are assigned to the clients by several different distribution
schemes. The most simple distribution scheme is single server, where all clients
use one server for a specific file. This is very close to the behavior of our first i/o
server prototype, where only a single server was allowed in a job specification.
One difference to having only one server in the system is that even though a sin-
gle file is handled by one server exclusively, other files opened can be handled by
other servers, providing a fairly balanced distribution of files over all available i/o
servers. Another simple distribution scheme is balanced global distribution, where
all defined servers are equally involved in sharing the i/o load. This scheme is
not available for all types of files yet, as it is relying on a global filesystem that
can handle multiple file handles on a single file without interfering with each
other. This distribution scheme is used mostly for the memfs virtual filesystem,
which can handle this efficiently. Figure 2(a) depicts a possible distribution of
i/o servers, where all special i/o processes are started on a single metahost which
is the only one providing i/o services to the compute grid.

A third distribution that might not result in a balanced distribution is filesys-
tem domain distribution, as shown in Fig. 2(b). This is a specialization of the
balanced global distribution, where clients are only assigned to servers of their
filesystem domain. The goal of this distribution is to have an i/o server available
via the faster local interconnect of the local cluster. Especially write operations
can then be handled more efficiently, as the data can be transferred via local
interconnect to a server, where it can be processed without further waiting time
for the client. The user can influence the default mapping of clients to servers by



providing additional information in an MPI_Info object, restricting the mapping
to servers of a specific filesystem domain.

3 Distributed I/O Strategies

The main objective in development of the tunnelfs adio device and server is
efficient support for remote filesystems. The supported filesystems are primarily
dependent on the other adio devices present in the romio library. The memfs
virtual filesystem is designed to be global over all tunnelfs servers. Addition-
ally, it supports multiple independent file handles on the same file. Colliding
accesses are handled within memfs itself, so tunnelfs can have multiple dis-
tributed handles open at the same time, without the need of collective operations
on the file among all servers. Filesystems on the operating system level usually
do not provide this service to an application, therefore the tunnelfs servers
have to use different strategies to support i/o load sharing among the servers
when working on persistent filesystems.

As stated in Sect. 2.4, the tunnelfs servers assume that every process within
a filesystem domain has equal access to the filesystems of that metahost. Clients
as well as servers are classified into these filesystem domains. Upon first regis-
tration during the initialization of mpi, the clients provide information about
their filesystem domain to the main server. The main server can then use this
information to compute an optimal distribution of clients to servers. For exam-
ple, clients can be assigned to the nearest server. Having a server in reach of
intra-cluster communication can speed up data transfer, as it is used in routed
and cached i/o with intermediary i/o servers. With this filesystem domain dis-
tribution, the tunnelfs servers support two sorts of i/o behavior, in regard to
the configured views on the file.

3.1 Routed I/O

Routed i/o is a transfer of the router concept of mp-mpich [7] from routing
processes to the i/o server processes. Clients are assigned to i/o servers in a
distributed fashion in a way that they are local to their metahost and therefore
reachable via the local, typically faster internal network. After completion of the
data transfer, the intermediary servers reply to the clients and then send the data
to the responsible i/o server for persistent storing of the data. The clients can then
continue with computation much earlier than having to wait for explicit storage
of the data on the remote i/o server. The intermediary server uses the same
file view the client would have used to write to the file, therefore no additional
offset and file view calculation has to be done, and the server simply reuses the
information. While write access is being accelerated by this strategy, read access
is degraded, because of the store-and-forward data transfer and the additional
hop of the intermediary server. Therefore this i/o strategy is not the best for all
kinds of file accesses and is currently only used if MPI_MODE_WRONLY is specified
upon opening the file. The clear benefit is the usability for arbitrary file views
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Fig. 3. Different tunnelfs i/o strategies.

in comparison to cached i/o discussed in the next section. Figure 3(a) shows i/o
message interchange between clients, intermediary servers and the responsible
file server. This i/o strategy is still reasonable for scientific applications, as often
the major i/o load is created by writing intermediary and result data.

3.2 Cached I/O

Cached i/o goes further and speeds up the read access, by keeping a local cache
file of the clients view. This will imply coherence problems, if several clients have
access to the same region in a file. To avoid complicated handling of replicated
data, cached i/o is restricted to file views with disjoint access patterns.

When a message passing library like mpi is used, the application problem
domain is often already restricted to algorithms that do not need random ac-
cess on global data, as this can be a big challenge to provide efficiently without
hardware support of some kind. Thus disjoint access to global data is an ac-
cess pattern very common in scientific applications using mpi. In Fig. 3(b) the
message exchange for cached i/o is shown. It is very similar to the routed i/o sce-
nario, but now the intermediary servers only synchronize with the responsible
file server on special i/o requests, such as MPI_File_close, MPI_File_set_view
and MPI_File_sync. This postponed synchronization, in regard to routed i/o, is
illustrated by the dotted lines between the server processes.

4 Status

As the implementation of distributed tunnelfs i/o servers has been completed
recently, we cannot state solid performance data for it yet. With multiple servers
balancing i/o load we expect to significantly exceed the already promising per-
formance data of the single server tunnelfs environment [9] presented in Fig 4.
In this single server test, we are able to deliver i/o rates that are restricted



Fig. 4. Bandwidth with 12 i/o client processes and 1 i/o server on a shared file.

by the network card of the server (1 GigE) rather than the processing on the
server. The data was obtained using an mpi benchmark program that measured 8
different mpi i/o operations (individual/shared fp, explicit offset, collective/non-
collective). Results are given as average bandwidth numbers over these opera-
tions. Two clusters were used, connected with a dedicated 100 km distance 10
GigE fibre network and 1 GigE network cards in each cluster node connected
to a cluster switch. All cluster nodes running tunnelfs i/o server processes are
4-way SMP nodes with 10.000 rpm SCSI disks accessed locally on a node by a
ufs device, and an nfs-mounted RAID-5 based shared filesystem hosted by a
cluster file server.

5 Related Work

Data access to remote locations from within mpi applications has been previously
addressed with the rio device, where the communication for i/o is directly bound
to tcp/ip socket communication. The work was continued with rfs [10], focusing
on client side caching to improve i/o performance. To the best of our knowledge,
efficient remote data distribution using mpi datatypes for optimal placement on
multiple servers has not been extensively addressed yet.

6 Conclusion and Future Work

We defined and implemented a client/server architecture for flexible, transparent
and efficient i/o in grid environments. With our approach to distributed i/o server
support, we have designed a very flexible infrastructure that can be adapted to
applications’ i/o needs on a per-job level. Users can define the number of i/o pro-
cesses supporting their application as well as their placement in the grid. This
enables substantial influence of the i/o infrastructure presented to applications
by external configuration prior to runtime. The lifetime of tunnelfs i/o server
processes is limited to the scope of an applications execution time and are inte-
grated into the application’s mpi environment by the middleware. We introduce
the term of filesystem domains to assist the user in a flexible specification for



data location. tunnelfs uses a client/server architecture, using mpi communi-
cation and i/o calls to maintain a maximum of portability and flexibility, while
allowing the use of special purpose mpi devices for inter process communication.

With completion of tunnelfs and memfs prototypes, further efforts will be
aimed at an improved performance and robustness of the implementation, while
using it with simulation applications in the viola testbed.
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