
Context Awareness: an Experiment with
Hoarding

João Garcia, Lúıs Veiga, and Paulo Ferreira

Distributed Systems Group, INESC ID Lisboa, Portugal
http://www.gsd.inesc-id.pt/

{jog,lveiga}@gsd.inesc-id.pt, paulo.ferreira@inesc-id.pt

Abstract. Computer mobility allows people to use computers in var-
ied and changing environments. This variability forces applications to
adapt thus requiring awareness of the computational and physical en-
vironment (e.g. information about power management, network connec-
tions, synchronization opportunities, storage, computation, location-ba-
sed services, etc.).

An important application for mobility is hoarding, i.e. automatic file
replication between devices. To be accurate and not obstructive to the
user, the hoarding mechanism requires both context awareness (e.g. a-
mount of usable storage) and estimation of future environment conditions
(e.g. network connection, tasks to be performed by the user in the near
future, etc.). However, making applications context-aware is hindered
by the complexity of dealing with the large variety of different modules,
sensors and service platforms, i.e. there is no middleware supporting such
applications and their development in a uniform and integrated way.

This paper presents the architecture for an environment awareness sys-
tem (EAS) and how it applies to hoarding. EAS is a middleware compo-
nent that acts as an intermediary between applications and all mecha-
nisms that assess the surrounding environment. It lets applications query
and combine environment properties in a standardized way. Crucial for
the success of automatic file hoarding is the EAS’s capability of sup-
porting environment prediction based on simple reasoning and pattern
detection. Thus, applications may advise users accordingly or even make
decisions on their behalf.

1 Introduction

Mobile computer technology has led people to use their computers in a wide
variety of environments, e.g.: a PC at the office, a laptop at the airport, a PDA in
a taxi, etc. Users want to work continuously in this data ubiquitous world taking
advantage of available resources and not worrying about any system problem
that may occur (such as missing files).

Achieving such ubiquity is hard and depends on many applications. Auto-
matic file replication between devices, i.e. hoarding, is a solution for the fun-
damental problem of data availability in mobile environments. To be accurate



while not obstructive to the user, the hoarding mechanism requires both con-
text awareness (e.g. knowing the amount of available memory) and estimation
of future environment conditions (tasks to be performed in the future, etc.).

However, creating or adapting applications, like file hoarding systems, is en-
cumbered by the variety of different modules, sensors and service platforms.
This is due to the absence of middleware supporting such applications and their
development in a uniform and integrated way.

Furthermore, users want to take advantage of any resources as they move
around (for example cheap wireless connections). Therefore, the increasing ge-
ographical mobility of devices and the mobility of data among devices require
applications to be aware of the environment around them and its risks and op-
portunities. An optimal evaluation of the context should include not only current
conditions but also conditions that may be found in the future. For example, if
a user is leaving her office, she wants to take along on her laptop all files needed
in order to keep on working on her ongoing tasks. But, if her personal computer
knew that she is leaving for a meeting related to a specific task, it would only
transfer files related to that task.

Power management is another domain where knowing resource availability is
highly relevant: if a device were aware of how long its batteries are supposed to
last, it could adjust its energy consumption accordingly.

Fulfilling the above mentioned users expectations raises two major problems
for application development and execution:

– The heterogeneity of networks, sensors, platforms and services increases the
difficulty of building such applications, making a middleware layer support-
ing applications and their development in a uniform way clearly desirable;

– Current approaches don’t take into account users’ past habits and future
actions. Thus, developers of context-aware applications and users in general
must take a large number of decisions concerning the best usage of compu-
tational and physical resources.

Existing methods to provide applications with structured context informa-
tion[1, 2], either limit the information provided to applications to specific do-
mains (relative location, user/device identification) or require programmers to
modify their applications each time they want to query a new environment prop-
erty.

This paper presents the architecture for an environment awareness system
(EAS) and how it applies to automatic file hoarding. EAS is a middleware com-
ponent that supports the interaction between applications and any computer-
based mechanism able to provide clues regarding the surrounding environment.
It lets applications query and combine environment properties in a standardized
way by means of an API providing access to the device’s context sensors in a
uniform way. Each sensor is represented by an environment perception module
(EPM), which is a software component capable of polling and/or forecasting a
specific environmental property.

In addition to providing a framework for existing and future EPMs, the EAS
enables many synergies between EPMs by aggregating and/or applying logic



expressions over data from several EPMs. Most important, an EAS is able to
forecast future conditions and/or user actions by detecting patterns in the time
series of past conditions and maintains a history of past, scheduled and forecast
environment conditions. The EAS analyzes personal information manager data
and the history of past events to estimate future location, future user activities,
etc... For instance, in the case of automatic file hoarding, the EAS is designed
to compare the subject of a user’s meetings and the file access patterns during
previous meetings with the keyword on her files to determine which files need to
be replicated to a user’s laptop for the meetings on her immediate schedule.

In summary, managing personal files effortlessly is one of the major problems
raised by an environment where users have multiple mobile devices. Automati-
cally replicating files among devices, hoarding, can be greatly aided by an EAS
because it enables a comparison between users’ file accesses and specific environ-
ment conditions. Additionally, since the EAS provides an estimation of future
conditions, this can be used to decide which data will be most useful in the
predicted future.

In the rest of this paper, we begin by presenting the architecture of the EAS.
Then, we list a number of EPMs that could currently be integrated into an
implementation of an EAS. We show how the EAS is applied to file hoarding
and compare our design with existing systems. Finally, we present some of our
conclusions and future work.

2 Architecture

The environment awareness system (EAS) is a middleware component, which
provides applications with a simple and structured mechanism to query a device’s
computational and physical environment.

Applications can perform queries on the current situation or request callbacks
when certain conditions are met. Queries return an indication of whether an
environment property is within a certain range of values.

An EAS event is a timestamped set of property-value pairs representing a
change in environment properties. Each property, such as ”AbsoluteLocation”
or ”NetworkConnectivity”, is detected by a particular sensor. Each attribute
has a domain describing the values it can assume, e.g. ”NetworkConnectivity”
can be ”None”, ”Poor”, ”Medium” or ”Good”. A value describes the status of a
property such as ”443.23N 217.98W” (a possible value for ”AbsoluteLocation”)
or ”45 min” (a ”BatteryTime” value). Queries and callbacks can be directed to
the local device or to a remote device.

Additionally, the EAS lets programmers specify that certain conditions are
to be associated with a particular label: for example, assigning GPS positions
to known locations (”home”, ”office”, etc.) or particular circumstances to spe-
cific activities (being in room 13 on Monday morning means the person is in a
”Staff Meeting”). Users can submit these labeled situations, which are stored by
the system and can be referred to in subsequent queries. The hierarchical orga-
nization of environment properties and events combines on one hand a simple



way of manipulating information about the hardware and, on the other hand,
an expressive mechanism to describe situations to which applications want to
respond.

The EAS (Fig. 1) is composed of:

– An API layer accessible to applications,
– A callback registry,
– A schedule of EPM probe actions,
– A repository of past, scheduled and forecast events,
– A forecasting model for calculating probable future conditions,
– Several environment perception modules (EPMs),
– A remote invocation interface.

Fig. 1. A file hoarding application on top of the EAS (dark gray boxes were imple-
mented in the prototype of Sec. 3).

Callbacks Callbacks allow applications to be notified of future conditions. They
are associated to changes in the values of one or more environment properties.
Callbacks are stored in a data structure indexed by environmental property
and remain active until they expire. Whenever a change occurs in an environ-
ment property, e.g. ”PowerSupply”, all callbacks that refer to that property are
reviewed to check whether all necessary conditions have been met and the ap-
plication, which submitted them should be notified.

Probe Scheduler The EAS periodically probes the physical devices that pro-
vide environment property values. Many environment properties are machine
characteristics that don’t change frequently, if at all. Therefore, they can be



stored in the EAS and only be recalculated when the local hardware is reconfig-
ured. There is a schedule of the next moment when each of the available devices
must be probed in order to update the properties it detects. Probe actions may
be disabled during periods for which there are no registered callbacks.

Event Repository The event repository stores all changes in environment
properties that are detected by the EAS. Observed events are the result of actual
probes of EPMs (see Sec. 2.1) whereas forecast events are calculated by the
forecasting model. Scheduled events are explicitly inscribed in personal organizer
information.

Forecasting Model A forecasting model was included in order to be able to
forecast future situations and to allow applications to perform proactive ac-
tions regarding future environment conditions. Many future conditions can be
deducted from personal organizer schedules but frequently that leaves a signifi-
cant amount of time with unknown occupation. This can be complemented with
future events forecast based on past recurring conditions. This is performed by
an ARIMA[3] forecasting model for discrete variables, which periodically ana-
lyzes the event log and tries to detect temporal patterns for each of the detected
environment variables and stored labeled situations and inserts new events, ad-
equately tagged as ”forecast” into the event repository.

Remote Invocation Interface An EAS provides a remote service that enables
queries between different devices. This opens up the possibility of sharing infor-
mation among a group of devices so that in some cases other trusted devices can
work as extensions of a device. In general, the remote interface is used for queries
that refer to neighbouring devices and are most useful to allow applications to
take advantage of available resources around it.

2.1 Environment Perception Modules

Environment Perception Modules (EPMs) are the EAS components that inter-
act with physical devices and assess current environment properties. Building
them is the greatest challenge in implementing an EAS due to hardware and OS
heterogeneity. Each EPM has to include code to assess its properties by probing
different devices in different OSs. Currently many of the OS modules and de-
vices that provide environment properties are accessible through standard APIs,
which may simplifies the EPM code greatly.

Personal Information Manager Many computer users run personal orga-
nizer software, which can be a source of valuable information regarding the
device’s future environment. This information isn’t presently taken into account
by computing systems.



For example, Microsoft’s personal organizer, Outlook, provides automation
objects APIs, which can be used to programmatically acquire information and
store it into a future location table in the EAS. This information could also be
acquired from other similar software with a specific EPM.

Once integrated in the EAS, this information can be used to feed the fore-
casting model. A schedule can be further processed to provide applications with
hints and to determine, of those events stored in the event repository, the ones
whose corresponding callbacks should be invoked invoked. Thus applications can,
asynchronously, send results to hardware not present, assured that data will be
sent to it when it connects to the network and becomes available.

Whenever a location is provided by a personal organizer appointment, the
situation hierarchy is scanned to check whether that location has been submitted
as a situation label. If so, for each of the attributes contained in that situation,
scheduled events are inserted into the event repository. Naturally, events sched-
uled in the personal organizer override forecast events.

Location is a particularly important characteristic of the environment. There-
fore, a index of previous locations, and of the corresponding values of the en-
vironment properties, is kept in order to derive more information about future
locations which are known from scheduled events (see 3.7). Moreover, events,
which have a high probability of occurring at a scheduled events location, are
added to the event repository as probable events.

Local Computing Environment This EPM allows applications to obtain
information about the software environment in the device, such as, which ap-
plications are running, which is the current foreground application and which
files and folders are being accessed. Knowing which files and applications are
accessed by a user at each device is fundamental in order to configure devices
which will be used in the future. A good example of this form of adaptation is
the hoarding application described in Sec. 3.

Other Naturally, the EPMs that were presented above are a fraction of those
that will exist and be of interest to applications in the future. Important envi-
ronment properties we did not discuss are, for instance:

– Absolute location: This EPM would provide GPS coordinates to applications
or confirm previously provided labelled locations;

– Relative location and tagging: Currently, there are many ways to provide
relative location within a restricted space (WiFi, Bluetooth, RFID). The
EAS can uniformly inform applications of their location or of the presence
of other device or persons.

– Services: EAS can also be used to integrate and standardize existing service
location infra-structures;

– Processing power: CPUs can be benchmarked and classified for applications
using a simple description domain;



– Power supply: Time and percentage estimates of battery time are available
on most computers today. They can be easily represented as an environment
property within the EAS and be used to adjust energy consumption and/or
CPU speed.

We can envisage many situations were other environment information and
services become relevant: assessing lighting to manage solar charged batteries,
using voice processing services at nearby devices, etc. As the EAS’ implemen-
tation evolves it will incorporate such novelties as new attributes in its event
repository.

3 Context-Aware File Hoarding

We chose to use the EAS to address the problem of hoarding, i.e. automatically
select the relevant files to be replicated when a user moves from one computer
to another (as described in Sec. 1). Automatic file management is an relevant
requirement in mobile environments because more and more users have several
devices (PC, laptop, mobile phone, PDA) and the storage and bandwidth be-
tween them is not constant and unlimited.

The ability to keep a user’s files updated on her current device requires first
of all that the relevant files be present at that device. It isn’t feasible to transfer
all of a person’s files because many devices have limited storage and bandwidth is
often a bottleneck for large transfers. It is impossible to rely on transferring files
on demand because network connections aren’t constantly available. And finally,
selecting files to be replicated manually is time consuming and error prone.

SEER[4] has shown that hoarding files based on the history of most recently
used files is the best known heuristic. However, it should be pointed out that this
results from a small scale exploration of the parameter space of their algorithms
and from assuming that people use only one type of computing device. There are
many situations where more sophisticated information is needed. For example,
many users do different tasks depending on where they are (at home, commuting,
in the office, at a meeting, etc.) and which device they are using (PC, laptop,
mobile phone, etc.). Letting users’ habits and access patterns determine which
files will be hoarded hasn’t been tried and can be achieved using the EAS.
This would, for example, enable a user to leave her office to do a presentation
elsewhere, without worrying about her slides, because the EAS on her PC would
have detected that it was necessary to transfer them to the PDA she carries with
her.

The first step of hoarding is clustering files so that semantically related files
are moved together. Detection of file accesses is performed by the Local Com-
puting Environment (LCE) EPM. Detecting past patterns automatically by cor-
relating file access and environment properties is the job of EAS’s forecasting
model. Forecasting future actions is essential for a hoarding algorithm that is
more sophisticated than just hoarding the most recently used files.

We have implemented a file hoarding application on top of a EAS proto-
type(Fig. 1). This application monitors user activity and clusters and selects



data that should be hoarded in case a user decides to move to another device.
Users can assign folders, extensions filenames and applications to any given task.
Using that information, the hoarding applications clusters accessed files accord-
ing to the user’s preferences. Only when it is unclear which task a file belongs
to, the application then asks whether the file is to be assigned to the current
or some other task. This EAS prototype was implemented in C# on Microsoft
Windows XP. The local computing environment EPM is composed by a Win-
dows installable file system that intercepts all file system accesses and a monitor
of GUI events. So far our experience has shown that the disturbance caused by
asking the user to organize her files, quickly fades away. Currently, we log all
accesses to selected folders enabling the detection of time patterns in the history
of file (and consequently task) accesses. Additionally, personal calendar data al-
lows the EAS to compare the subject of scheduled activities with task and file
keywords, thereby improving our hoarding estimates.

4 Related Work

We have been witnessing a trend towards integrating several kinds of devices in
an increasingly network-centric manner. Research work developed to deal with
the issues raised by this shift have been divided in a number of fields. The most
relevant efforts have been made in the areas of location awareness, device/object
identification and service location.

Regarding location awareness, in [5] routing efficiency and quality of service
is maximized in ad-hoc wireless networks, i.e., networks composed of dynam-
ically repositioning mobile hosts. In this work, location awareness is used at
a lower level than in our work. It is used to improve routing algorithms and
packet forwarding. Our approach aims at providing applications broader infor-
mation about their computing environment, its host and its neighbourhood i.e.,
information about every capability their execution environment supports, and
noticing them when these capabilities are subject to temporary or permanent
changes.

In the Xerox ParcTab[6] experience, broad work about location and context-
awareness, for proximate selection and automatic reconfiguration, ranging from
hardware design, user interface customization based on context, and location in-
formation is also presented. Context information is based on information about
neighbouring hosts. A specially developed predicate language was included for
programming context-triggered actions. The system is highly dependent on out-
side information like responses to homing beacons and positioning devices.

Naturally, these notifications about the execution environment, in the case of
network centric applications running in mobile hosts, must include information
about nearby devices that may be consulted to obtain such information. This
must be implemented with some kind of distributed event processing. There
are several approaches to this issue[7–10]. Bates[7] defends a framework for a
federation of heterogeneous components connected, transparently, by distributed
events in a publisher-subscriber model. There is an event taxonomy based on



event sub-classing. There is an event composition algebra that allows some degree
of control over dependency checks between different sets of events and to enforce
certain event sequences. Events are logged for future replay or querying.

In Jini[8] the emphasis is put on resource and service discovery. There is only
one event class so it lacks expressiveness although each event may contain an
arbitrary data object.

This architecture was further refined and extended in Rio[9] with extended
event description, capabilities detection for proxy execution, operational strings
to represent resources and services and quality of service matching between de-
vice capabilities and application requirements.

The Universal Plug and Play[10] approach aims at very similar goals than
the previous two but is also centered on remote device and service detection, and
data exchanging without any sort of code download. It is supported in a series
of standards that makes it more platform independent though less flexible in
the dynamic code download aspect. It supports dynamic IP addressing, device
and service discovery; control actions are based on SOAP URL invocations and
received events are implemented in XML messages defined in GENA.

All these technologies try to take advantage of some form of awareness about
the computing environment in some specific way. None of them, though, com-
prehensively attends to all the properties mentioned in this paper or aims to
standardize the representation of environment properties in an extensible man-
ner.

There have also been attempts to create generic context-awareness plat-
forms[11, 2, 1, 12–14]. Our decision to design the EAS, came from the realization
that some of these platform either were aimed at specific context properties (rel-
ative location and user/device identification as in [11, 2]), while others require
programmers write specific code for each new environment property [1] and that
none of them considered knowledge of future conditions as relevant input for
device adaptation[13, 14]. For example, Gaia[2] results in modified applications
that interact with an omni-present infra-structure whereas we would simply like
applications to become aware of encircling resources.

5 Conclusions and Future Work

This paper presents an architecture for an integrated environment awareness sys-
tem (EAS) that allows applications to assess and adapt to the computational,
network and physical environments. The system can anticipate future user be-
haviour based on past patterns in order to take full advantage of the resources
available in the future.

We also demonstrate how an EAS can aid the task of automatic file man-
agement, in particular file hoarding. Making well informed hoarding decisions
requires complex information about users’ habits and patterns and these can
be acquired and structured by an EAS. We present a prototype of a hoarding
application based on a EAS which collects information from the local comput-
ing environment in order to perform file clustering and estimates future user



file needs by comparing the keywords of accessed user tasks and the subject of
calendar scheduled activities.

As future work, we are currently obtaining performance and user experi-
ence[15] results on the EAS main features (queries, callbacks) and on the hoard-
ing prototype. We are also refining the design of the EAS architecture modules
that weren’t implemented for the prototype.

References

1. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development
of context-enabled applications. In: CHI. (1999) 434–441

2. Shankar, C., Al-Muhtadi, J., Campbell, R., Mickunas, M.: A middleware for en-
abling personal ubiquitous spaces. In: Workshop on System Support for Ubiquitous
Computing (UbiSys ’04) at the Sixth Annual Conference on Ubiquitous Computing
(UbiComp 2004), Nottingham, UK (2004)

3. Makridakis, S., Wheelwright, S., Hyndman, R.: Forecasting: methods and appli-
cations. third edn. John Wiley and Sons, New York (1998)

4. Kuenning, G., Ma, W., Reiher, P., Popek, G.: Simplifying automated hoarding
methods. In: Proceedings of the 5th ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM’02), Atlanta,
Georgia, USA, ACM (2002)

5. Tseng, Y.C., Wu, S.L., Liao, W.H., Chao, C.M.: Location awareness in ad hoc
wireless mobile networks. Computer 34(6) (2001) 46–52

6. Want, R., Schilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis,
J.R., Weiser, M.: The parctab ubiquitous computing experiment. Technical report,
Xerox Corporation Palo Alto Research Center (1995)

7. Bates, J., Bacon, J., Moody, K., Spiteri, M.: Using events for the scalable federation
of heterogeneous components. In: EW 8: Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing distributed applications, Sintra,
Portugal, ACM Press (1998) 58–65

8. Waldo, J.: The Jini Specifications. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2000)

9. Sun Microsystems: Rio Architecture Overview. (2001)
10. Microsoft Corporation: Universal Plug and Play Device Architecture. (2001)
11. Ferscha, A., Vogl, S., Beer, W.: Context sensing, aggregation, representation and

exploitation in wireless networks. Scalable Computing: Practice and Experience
6(2) (2005) 71–81

12. Verissimo, P., Cahill, V., Casimiro, A., Cheverst, K., Friday, A., Kaiser, J.: COR-
TEX: Towards Supporting Autonomous and Cooperating Sentient Entities. Pro-
ceedings of European Wireless (2002) 595–601

13. Chan, A., Chuang, S.: MobiPADS: A Reflective Middleware for Context-Aware
Mobile Computing. IEEE Transactions on Software Engineering 29(12) (2003)
1072–1085

14. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective
mIddleware System for Mobile Applications. IEEE Transactions on Software En-
gineering 29(10) (2003) 929–944

15. Garcia, J., Ferreira, P.: Operating system support for task-aware applications. In:
Conference on Mobile and Ubiquitous Systems, Guimarães, Portugal (2006)


