
Topic 9
Parallel Programming: Models, Methods and

Languages

José C. Cunha, Sergei Gorlatch, Daniel Quinlan, and Peter H. Welch

Topic Chairs

This topic provides a forum for the presentation of research results and practical
experience in the development of parallel programs. Advances in algorithmic
and programming models, design methods, languages, and interfaces are needed
to produce correct, portable parallel software with predictable performance on
di↵erent parallel and distributed architectures.

The topic emphasizes results that improve the process of developing high-
performance programs, including high-integrity programs that are scalable with
both problem size and complexity. Of particular interest are novel techniques
by which parallel software can be assembled from reusable parallel components
without compromising e�ciency. Related to this is the need for parallel software
to adapt, both to available resources and to the problem being solved.

This year, 13 papers were submitted to this topic. Each paper was reviewed by
four reviewers and, finally, we were able to select 7 papers. Globally, the accepted
papers discuss methods and programming language constructs to promote the
development of correct and e�cient parallel programs.

The approaches based on higher-order skeletons are discussed in two papers,
for computations on two-dimensional arrays, and for dynamic task farming. Data
parallel programming is discussed in another paper concerning the automatic
parallelisation of ”for-each” loops for grid and tree algorithms. Shared mem-
ory parallel programming is discussed in two papers that propose extensions to
OpenMP, for handling irregular parallel algorithms, and for improved control
and synchronisation of multiple threads. Improved support for multithreading
models is also discussed in another paper that proposes a methodology towards
more e�cient memory management for threading libraries that are based on non-
preemptive models. Distributed termination detection is discussed in a paper
that proposes the concept of ”partial quiescence” as a construct of a distributed
programming language.

We would like to thank all the authors who submitted papers to this topic,
and the external referees, for their contribution to the success of this conference.


