
Computing the Diameter of 17-pancake Graph
using a PC Cluster

Shogo Asai1, Yuusuke Kounoike1, Yuji Shinano1, and Keiichi Kaneko1

Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan,
asai@al.cs.tuat.ac.jp,{kounoike,yshinano,k1kaneko}@cc.tuat.ac.jp.

WWW home page: http://opt.cs.tuat.ac.jp/

Abstract. An n-pancake graph is a graph whose vertices are the per-
mutations of n symbols and each pair of vertices are connected with an
edge if and only if the corresponding permutations can be transitive by
a prefix reversal. Since the n-pancake graph has n! vertices, it is known
to be a hard problem to compute its diameter by using an algorithm
with the polynomial order of the number of vertices. Fundamental ap-
proaches of the diameter computation have been proposed. However, the
computation of the diameter of 15-pancake graph has been the limit in
practice. In order to compute the diameters of the larger pancake graphs,
it is indispensable to establish a sustainable parallel system with enough
scalability. Therefore, in this study, we have proposed an improved algo-
rithm to compute the diameter and have developed a sustainable parallel
system with the Condor/MW framework, and computed the diameters
of 16- and 17-pancake graphs by using PC clusters.

1 Introduction

In this paper, let us consider a problem in which a stack of pancakes whose sizes
are completely different is rearranged so that the pancakes form a pile where
the sizes of pancakes increase from the top to the bottom. As operations of rear-
rangement, reversing several pancakes from the top of the stack is possible. The
problem to obtain the largest number of operations to rearrange the worst-case
stack of n pancakes as a function of n is called the pancake sorting problem[1].
This problem is also called the prefix reversal problem.

A pancake graph is a graph whose vertices are the permutations of n symbols
from 1 to n and its edges are given between permutations transitive by prefix
reversals. Since the graph topology is dependent on n, it is called an n-pancake
graph. An n-pancake graph is a regular graph that has n! vertices and its degree
is n−1. The pancake sorting problem and the problem to obtain the diameter of
the pancake graph is equivalent. Since the pancake graphs have many merits such
as the symmetric and recursive structures, and the small degrees and diameters
against the sizes, much attention is paid to them as a model of interconnection
networks for parallel computers[2–4]. When we regard the pancake graphs as the
model of the interconnection networks, the diameter of the graph is a measure
that represents the delay of communication[5, 6].

Table 1. The diameters of n-pancake graphs

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Diameters 0 1 3 4 5 7 8 9 10 11 13 14 15 16 17

To obtain the diameter of an n-pancake graph, it is sufficient to obtain the
shortest distances from one vertex to all the vertices. However, the algorithms
that depend on the numbers of vertices and/or edges cannot solve the problem
practically because the computational time and the memory space increase expo-
nentially. Hence, Kounoike et al.[7] proposed a method that restricts the number
of vertices for which the shortest distances must be obtained by taking advan-
tage of the recursive structure of the pancake graphs. This method is based on
the method by Heydari et al.[8] to obtain the diameter of the 13-pancake graph
and is extended not to execute the unnecessary search. Kounoike has applied the
method to give the diameters of 14- and 15-pancake graphs that were unknown
so far. Table 1 shows the known diameters of the pancake graphs. Some atten-
tions are paid to the sequence of diameters mathematically, and the sequence
up to n = 13 is listed in the ‘On-Line Encyclopedia of Integer Sequences’[9]
as ‘Sorting by prefix reversal.’ However, no sequence for n ≥ 14 is listed there.
Hence, obtaining the diameters of the larger pancake graphs also contributes the
study of the sequences.

In this study, we have improved the method by Kounoike et al. when they
obtained the diameter of 15-pancake graph so that it computes the diameters of
the larger pancake graphs and implemented it as a parallel computing system.
In addition, we made use of the implemented system to obtain the diameters of
16- and 17-pancake graphs that have been unknown.

2 Definitions of Terminology and Symbols

In this section, we define the terminology and symbols used in this paper. Re-
fer [7] for the detailed explanations.

Let Sn be the set of all the permutations of n symbols from 1 to n, and let
the symbols 1 to n correspond to the smallest size of pancake to the largest one.
Then assume that a permutation π ∈ Sn which is obtained by arranging the
symbols from the top pancake to the bottom pancake represents a stack of n
pancakes. Let en be the permutation (1, 2, . . . , n) that corresponds to the sorted
stack. Let σ ∈ Sn be a permutation that is obtained by reversing the preceding
k (2 ≤ k ≤ n) symbols in π ∈ Sn. Then the transformation from the permu-
tation π to the permutation σ is called the prefix reversal of k symbols for the
permutation π, and it is denoted πk = σ. Since we use only the prefix reversals
of permutations in this paper, we mention reversals to mean the prefix ones.
The successive reversals (πx1)x2 of a permutation π are also denoted π(x1,x2).
Moreover, if x = (x1, x2, . . . , xm) then let πx represent a successive reversals
with x1, x2, . . . , xm symbols. If πx = en then x is called a sorting sequence of
π. For a given permutation π ∈ Sn, let the function f(π) = min{|x| : πx = en}
represent the smallest number of reversals to sort the permutation. In addition,
let the function f(n) = max{f(π) : π ∈ Sn} represent the largest number of

1234

32142134

3124 2314

1324

3412

1432

4132

3142

1342

4312

4231

2431

3421

4321

2341

3241

2413

1423

4123

2143

1243

4213

4-pancake graph

123

213

312

132

231

321

3-pancake graph

2112

2-pancake graph

1

1-pancake graph

1234

32142134

3124 2314

1324

3412

1432

4132

3142

1342

4312

4231

2431

3421

4321

2341

3241

2413

1423

4123

2143

1243

4213

4-pancake graph

1234

32142134

3124 2314

1324

3412

1432

4132

3142

1342

4312

4231

2431

3421

4321

2341

3241

2413

1423

4123

2143

1243

4213

1234

32142134

3124 2314

1324

3412

1432

4132

3142

1342

4312

4231

2431

3421

4321

2341

3241

2413

1423

4123

2143

1243

4213

4-pancake graph

123

213

312

132

231

321

3-pancake graph

123

213

312

132

231

321

123

213

312

132

231

321

3-pancake graph

2112

2-pancake graph

2112 2112

2-pancake graph

1

1-pancake graph

11

1-pancake graph

Fig. 1. The pancake graphs

reversals to sort the stacks of n pancakes. Conventionally, the same letter f is
used for the functions. Note that the meaning of f depends on its argument.

A pancake graph is a graph whose vertices are π ∈ Sn, and whose edges are
between vertices π and σ where σ = πk. Since pancake graphs are different de-
pending on n, each pancake graph is called n-pancake graph and denoted by Pn.
Figure 1 shows P1 to P4. In general, between two vertices in a graph, the path
that has the smallest number of edges is called the shortest path between the
two vertices, and the number of edges included in the path is called the shortest
distance. For arbitrary pair of two vertices in a graph, the longest shortest dis-
tance is called the diameter of the graph. By selecting en as one of the pair of
vertices to which we compute the shortest distance, computing the diameter of
an n-pancake graph is equivalent to computing f(n). In this paper, the shortest
distance between a vertex π ∈ Sn and the vertex en is simply mentioned the
distance of π.

3 Basic Method

We took the method by Kounoike et al.[7] by which they obtained f(15) as
the basic method to obtain the diameters. The method obtains the dependency
between vertices based on the symmetric and recursive properties of pancake
graphs and restricts the vertices whose distance computation is necessary.

First, for a permutation π = ex
n−1 ∈ Sn−1, we define a permutation σk ∈ Sn

(1 ≤ k ≤ n) by expression (1). Then, for f(σk), expression (2) holds.

σk =

((en)n)x k = 1
((en)(k,n))x 2 ≤ k ≤ n− 1
ex

n k = n
(1)

f(σk) ≤

f(π) + 1 k = 1
f(π) + 2 2 ≤ k ≤ n− 1
f(π) k = n

(2)

5
10

6
10

7
10

8
10

9
10

10
10

11
10

12
10

3
9

4
9

5
9

6
9

7
9

8
9

9
9

10
9

11
9

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8

10
8

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
7

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

0
5

1
5

2
5

3
5

4
5

5
5

6
5

0
4

1
4

2
4

3
4

4
4

5
4

0
3

1
3

2
3

3
3

0
2

1
2

SSSSSSSS

SSSSSSSSS

SSSSSSSSSS

SSSSSSSSSS

SSSSSSSS

SSSSSSS

SSSSSS

SSSS

SS

…

dependence

direct dependence

5
10

6
10

7
10

8
10

9
10

10
10

11
10

12
10

3
9

4
9

5
9

6
9

7
9

8
9

9
9

10
9

11
9

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8

10
8

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
7

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

0
5

1
5

2
5

3
5

4
5

5
5

6
5

0
4

1
4

2
4

3
4

4
4

5
4

0
3

1
3

2
3

3
3

0
2

1
2

SSSSSSSS

SSSSSSSSS

SSSSSSSSSS

SSSSSSSSSS

SSSSSSSS

SSSSSSS

SSSSSS

SSSS

SS

…

dependence

direct dependence

Fig. 2. The dependency relation between S
m
n

For π ∈ Sn−1, let Tk(π) be the transformation that obtains σk ∈ Sn, and let
Tk(S) be a set of Tk(π) for all the elements of the set S ⊆ Sn−1. In addition, let
Sm

n be a set of π ∈ Sn such that f(π) = m holds where Sk
n be empty for k such

that k < 0 or k > f(n). Then define the set S
m

n by expression (3).

S
m

n = T1(Sm−1
n−1) ∪ T2(Sm−2

n−1) ∪ · · · ∪ Tn−1(Sm−2
n−1) ∪ Tn(Sm

n−1) (3)

This is the set of vertices in Sn whose upper bounds are equal to m. Then, from
expression (2), f(π) ≤ m holds for π ∈ S

m

n . The following relation holds among
S

m

n , Sm
n and Sn:

Sn =
f(n−1)+2⋃

k=0

S
k

n, (4)

Sm
n ⊆

f(n−1)+2⋃

k=m

S
k

n. (5)

From expression (4), we can see that

f(n) ≤ f(n− 1) + 2. (6)

In Figure 2, a set depends on the sets that are just above or upper left of
it, and the lower left and upper right blank parts represent empty sets. We
cannot judge if the below part of a set is empty or not until its diameter is
computed. Based on the relationship, we can obtain an arbitrary S

m

n by repeating
transformation and distance computation recursively from S1 = S0

1 = {e1}. To
obtain the diameter f(n), we first obtain f(π) for all of π ∈ S

f(n−1)+2

n . Then,
depending on the existence of π that satisfies f(π) = f(n − 1) + 2, f(n) is
classified as follows:

– In case that π which satisfies f(π) = f(n− 1)+2 exists: f(n) = f(n− 1)+2
holds. We can finish computation just after such π is found (See expression
(6)).

– Otherwise: f(n) ≤ f(n − 1) + 1 holds. We can finish computation with the
result f(π) = f(n− 1) + 1 by showing π which satisfies the equation.

For searching shortest paths, we use A* algorithm. Refer [7] to see the detail of
the algorithm.

The implementation by Kounoike et al. fixes the elements of the sets in
Figure 2 from the leftmost column by performing transformation and distance
computation. The diameters are also obtained in the process. This search method
makes it possible to skip the searches of vertices that are known to be unnecessary
for diameter computation based on dependency among the sets. However, as the
size of the pancake graph increases, the number of elements in the sets becomes
very large, and we cannot manage the pancake graph only with the main memory.
Their implementation stores all the results of distance computation for later
use. The results increase exponentially, and it occupies 21GB of the disk as a
compressed file after the computation of f(14). Hence, their implementation has
the limitation for diameter computation of the larger pancake graphs.

4 Our New Implementation

In the previous implementation, it is impossible to compute the diameter of the
larger pancake graphs because of memory restriction. Hence, we changed the
searching method to decrease the number of nodes drastically during the search
process. In addition, by devising the representation of each node, we decreased
the amount of the memory used. Moreover, we proved that distance computation
is unnecessary in some cases and accelerated the search.

4.1 Depth-First Search

If we consider the process of computing diameters the tree search, the search
method in the previous implementation corresponds to the breadth-first search
inside a specific column in Figure 2. If we can replace it with the depth-first
search, much memory space can be saved. However, the simple depth-first search
will also search the vertices that have no relation to diameter computation.

Then, we used a method in which the vertices are judged if they have relation
to diameter computation or not by using the incumbent diameter value. For a
vertex π, if its upper bound value u is known, to judge if the vertex can be
discarded or not, it is necessary to know to which column the vertex belongs in
Figure 2. Then, let the number obtained by the following expression of n = |π|
and u be the column number in the figure of dependency relationship.

column = n× 2− u (7)

If the column number calculated by substituting u with the incumbent diameter
is less than or equal to the column number of the vertex which we are focusing
on, we can discard the vertex.

If we perform the depth-first search by using this method, while the incum-
bent diameter is smaller than the true diameter, our implementation may search
some vertices that are not searched by the previous implementation. However,

once the incumbent diameter becomes equal to the true diameter, this situation
never occurs. Empirically, we can easily find the vertices that attains f(n−1)+1
during f(n) computation. Hence, this method is efficient enough.

4.2 Elimination of Unnecessary Distance Computations

Up to now, we have computed the distance of the transformation even if it
does not increase the upper bound, that is, σn = Tn(π) for π = ex

n−1. This
transformation generates a permutation obtained by just adding n at the final
position of the permutation π = ex

n−1. However, it looks impossible to sort
this kind of permutations with less operations than f(π). Then, we guessed that
f(π) = f(σn) and proved it. Hence, there is no need to compute the diameter for
f(σn). By using this, we can improve A* search. By applying this improvement,
we could accelerate the program by 5 to 8%.

Proof of f(π) = f(σn) Let π = ex
n−1 and σn = Tn(π), respectively. In

general, to sort the permutation σn, it is necessary to execute multiple prefix
reversals. Here, we abstract the operation sequence necessary to sort and denote
it with an operation sequence X.

First, we assume that there exists an operation sequence X for which |X|<f(π)
holds. Then, let Y = (y1, y2, ..., ym) be the operation sequence where yi obtained
by transforming each element xi in X = (x1, x2, ..., xm) as follows:

yi =
{

xi xi < npos

xi − 1 xi ≥ npos
(8)

where npos represents the position of n when the operations just before xi are
applied to σn.

Each yi that is constructed by this transformation has the following features:

– In case that n is at the final position, it is just a reversal of no more than
n− 1 symbols.

– Order of the symbols except for n is same as that of the result of operation
before transformation.

σn has n at the final position in the initial status. Therefore if we use Y
instead of X, we can sort π without performing the reversal of n symbols. In
this case, the number of operations is |Y | = |X|. That is, if σn can be sorted by
|X| operations, f(π) can be also sorted by no more than |X| operations. This
leads to contradiction. Hence, there does not exist X that satisfies |X| < f(π).
From this, we can say f(π) = f(σn).

Improvement of A* Search In the part of the diameter computation by
A* search, one vertex which attains the least estimated distance is taken from
enumerated elements, and the estimated distances for all of its neighbor vertices
are computed. However, if the permutation corresponding to the vertex has

n in its final position, then from the proof above, we can see that the shortest
distance is obtained without checking the vertex generated by the prefix reversal
of n symbols. That is, we can see that there is a shortest path which does not
include the vertex. Hence, in case that the final position has n, we can lessen
the paths to be searched by ignoring the vertices obtained by the prefix reversal
of n symbols. In addition, generalizing this idea, in case that the final part of
the permutation is sorted, we can lessen more vertices to be searched by not
operating them.

5 Parallelization

We have implemented the proposed system as a parallel system that works based
on the Master-Worker method by using the MW framework[10]. By using MW,
the number of Workers can be coped with automatically because Condor[11]
performs the resource management. In addition, according to the function of
MW, in case that some failures on the Worker side are detected, the executed
tasks are migrated into normal Workers automatically.

Master fulfills the distribution of child problems and the collection of results,
and Workers compute the given child problems. There is a variance among the
sizes of child problems (the number of vertices for which distance computations
are necessary) and the size of each child problem cannot be expected in advance.
Therefore, if a Worker simply solves all of the child problems and returns the
result, then it would be inefficient because the Worker that has finished its com-
putation earlier must wait until the completion of computation of other Workers.
Hence, we introduced a mechanism in which a Worker will suspend computa-
tion after a constant time and divide the suspended situation into multiple child
problems. From this, we can maintain a constant number of tasks on the Master
side all the time, and the Worker that has completed its computation can start
its next computation immediately.

In addition, in parallel execution, we conducted a benchmark task in the
initialization process of each Worker to measure the power of the machine on
which the Worker runs. As the benchmark task, we selected the computation
of f(15). After a minute has passed, computation of the benchmark task on the
Worker is stopped and we regard the number of vertices searched per second as
the benchmark value of the Worker. Based on this value, we can estimate the
execution time when we use other machines.

6 Computations of the Diameters of P16 and P17

By using the implemented system, we actually computed the diameters of 16-
and 17-pancake graphs. In both cases, we set both of the parameters in execu-
tion, the check pointing interval and the interval of the interruption of Worker
computation to be 10 minutes. We also set the number of child problems which
Master holds to be 1024. For these parameters, the optimal values are unknown.
However, the values we set are proved to provide the sufficient performance based

Table 2. PC clusters configurations
Computation Master/Worker CPU Memory No. Connection

PCs

f(16) Master Pentium2 400MHz 256MB 1 100BASE-TX
Worker Pentium3 1GHz dual 1GB 16

Pentium2 400MHz 256MB 17
f(17) Master Opteron 1.8GHz dual 2GB 1 1000BASE-T

Worker Opteron 1.8GHz dual 2GB 107

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800

n
u
m

o
f

W
o
r
k
e
r
s

t (hour)

total
pentium2
pentium3

Fig. 3. Total number of Workers (f(16))

 0

 5e+012

 1e+013

 1.5e+013

 2e+013

 2.5e+013

 0 100 200 300 400 500 600 700 800

n
u
m
b
e
r

o
f

l
e
f
t

o
v
e
r

v
e
r
t
i
c
e
s

t (hour)

Fig. 4. Number of left over vertices (f(16))

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

n
u
m

o
f

W
o
r
k
e
r
s

t (hour)

Fig. 5. Total number of Workers (f(17))

 0

 5e+013

 1e+014

 1.5e+014

 2e+014

 2.5e+014

 3e+014

 3.5e+014

 4e+014

 0 100 200 300 400 500 600 700 800 900

n
u
m
b
e
r

o
f

l
e
f
t

o
v
e
r

v
e
r
t
i
c
e
s

t (hour)

Fig. 6. Number of left over vertices (f(17))

on preliminary experiments. Table 2 shows the PC clusters configurations that
are used for the computations.

In computation of f(16), by the computation during 33 days and 19 hours
under the environment with 49 Workers at most, we have obtained the result
f(16) = 18. From expression (6), it is known that f(16) ≤ f(15) + 2 = 19.
Hence, we have checked that there is no vertex whose distance is 19. Figure
3 shows the change of the number of Workers in the process of computation.
In this figure, the number of Workers of Pentium3 decreases rapidly around
t = 80. This is because the MW framework found an ordinary user’s job and a
part of computation is automatically interrupted. In addition, around t = 170,
Pentium2 machines are all stopped because of maintenance. Figure 4 shows the
change of the number of remaining vertices in the process of the computation.
Here, the number of vertices is the number in case all the vertices are assumed to
be necessary for search. From this figure, we can see that the remaining vertices
decrease almost linearly. Hence, we could find that the remaining computation
time can be expected on the way of the computation process.

In computation of f(17), by the computation during 38 days and 19 hours
under the environment with 214 Workers at most, we have checked that there is
no vertex whose distance is no less than 20 and obtained the result f(17) = 19.
Figure 5 shows the change of the number of Workers in the process of computa-
tion. In Figure 5, the number of Workers are rapidly increasing around t = 90,
because we augmented the number of Workers assigned to the computation. The
change of the numbers of remaining vertices is shown in Figure 6. Because the
ratio of change varies around t = 90, we can see the effect of the augmentation
of the assigned Workers.

We show some of the permutations and sorting sequences that attain the
diameters in Table 3. The statistical information of the computations is shown
in Table 4 where Overall Parallel Performance is a ratio of the total time of
computation of Workers over the total working time of Workers. Though this
value is ideally equal to 1, it is usually a smaller value practically, because of
the overhead by communication and the unbalanced task granularity. However,
in our system, the values are nearly equal to 1. Therefore we can see that it
works very efficiently. We consider that this is because tasks are interrupted in
constant time, and at least a constant number of tasks are maintained on the
Master side all the time, hence all the Workers can execute the tasks all the time.
In addition, Equivalent Run Time is the total sum of the multiplication of the
execution time of each Worker and the benchmark value. This is the expected
execution time when it is executed on the machine whose benchmark value is 1.
The benchmark value of Pentium3 machine is about 1100 per one CPU. Hence, if
all the Workers work all the time, then f(16) can be computed in about 34 days
in case of executing it on Pentium3 machines only. In addition, if we compute
f(17) by using 16 Pentium3 machines, which are used for computation of f(16),
then no less than 4 years would be necessary as the computation time.

Table 3. Examples of the permutations that attain the diameters of P16 and P17

n Permutation Sorting Sequence

(1, 15, 9, 11, 8, 10, 12, 7, 13, 5, 2, 16, 4, 14, 6, 3) (10, 12, 16, 3, 5, 12, 3, 2, 4, 3, 5, 6, 8, 12, 3, 13, 15, 2)
16 (6, 10, 4, 14, 2, 13, 16, 12, 8, 11, 7, 9, 5, 1, 3, 15) (10, 8, 12, 5, 6, 2, 4, 14, 4, 15, 10, 2, 16, 15, 13, 2, 5, 3)

(13, 9, 15, 2, 6, 4, 7, 11, 8, 12, 10, 14, 1, 16, 5, 3) (11, 4, 3, 10, 6, 8, 9, 6, 13, 11, 14, 16, 3, 4, 2, 12, 14, 2)
(1, 4, 2, 7, 13, 3, 5, 17, 10, 15, 9, 14, 8, 12, 6, 16, 11) (17, 8, 6, 10, 3, 8, 2, 12, 14, 3, 5, 8, 17, 2, 4, 3, 12, 6, 12)

17 (7, 13, 2, 4, 1, 3, 5, 17, 10, 15, 9, 14, 8, 12, 6, 16, 11) (12, 10, 2, 17, 10, 8, 12, 3, 10, 4, 5, 8, 17, 4, 3, 2, 12, 6, 12)
(11, 15, 4, 2, 3, 1, 5, 8, 6, 17, 13, 16, 12, 14, 10, 7, 9) (14, 7, 15, 16, 2, 7, 14, 12, 13, 11, 4, 12, 17, 6, 14, 4, 3, 2, 3)

Table 4. Statistical information
n 16 17
Number of (different) workers 49 214
Wall clock time for this job (sec) 2921931.4774 3309757.6983
Overall Parallel Performance 0.9993 0.9994
Equivalent Run Time 103371746009.5473 2375697871296.6587

In this computation, we counted the number of discarded vertices as well as
the number of searched to verify the correctness of the results of computation of
the diameters. As a result, the sum of numbers of the discarded and the searched
vertices matched the number of total vertices. Hence, we can conclude that the
computation is correct. Since computation for each vertex is fulfilled in one CPU,
we can also be fully confident in the correctness of the result of computation.

7 Conclusions

In this study, we have improved the method by Kounoike et al. to obtain the
diameter of P15 so that it is applicable to compute the diameters of the larger
scales of pancake graphs and implemented as a parallel computing system. In
addition, we applied the system and obtained 16- and 17- pancake graphs by PC
clusters. By conventional implementations, it has been impossible to compute the
diameters of the larger pancake graphs because of memory restriction. However,
our improved method can complete the computation if sufficient time is supplied
and the computation time is shorten.

By using the implemented system, we have obtained the diameters of the
pancake graphs up to n = 17. We want to obtain the diameters of larger pancake
graphs. In addition, the known diameters so far satisfy f(n) = f(n− 1)+2 only
when n = 3, 6 and 11 and no n has been found for n > 11 which satisfies the
equation. We are also interested in such n’s.

8 Acknowledgements

We would like to express our thanks to Prof. Mitsunori Miki and Prof. Tomoyuki
Hiroyasu for permission to use the PC cluster on Doshisha University. A part
of this research is supported by Japan society for the promotion of sciences, the
grant-in-aid(No.16510105).

References

1. Dweighter, H. Amer. Math. Monthly 82 (1975) 1010
2. Akl, S.G., Qiu, K.: Fundamental algorithms for the star and pancake interconnec-

tion networks with applications to computational geometry. Networks 23 (1993)
215–225

3. Bass, D.W., Sudborough, I.H.: Pancake problems with restricted prefix rever-
sals and some corresponding cayley networks. Journal of Parallel and Distributed
Computing 63(3) (2003) 327–336

4. Berthomé, P., Ferreira, A., Perennes, S.: Optimal information dissemination in star
and pancake networks. IEEE Transactions on Parallel and Distributed Systems
7(12) (1996) 1292–1300

5. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms. Benjaming/Cummings (1994)

6. Quinn, M.J.: Parallel Computing: Theory and Practice, second edition. McGraw-
Hill (1994)

7. Kounoike, Y., Kaneko, K., Shinano, Y.: Computing the diameters of 14- and
15-pancake graphs. In: Proceedings of the International Symposium on Parallel
Architectures, Algorithms and Networks. (2005) 490–495

8. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J.
Algorithms 25(1) (1997) 67–94

9. AT&T: On-Line Encyclopedia of Integer Sequences
http://www.research.att.com/˜njas/sequences/.

10. MW project: MW Homepage http://www.cs.wisc.edu/condor/mw/.
11. Condor Team: Condor Project Homepage http://www.cs.wisc.edu/condor/.

