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Abstract. The cycle-by-cycle power differential determines the noise 
introduced due to inductive ground bounce. However, very few attentions are 
paid to minimize the cycle-by-cycle power differential in high-level synthesis 
stage. In this paper, we investigate the simultaneous application of operation 
scheduling and operation delay selection for minimizing the cycle-by-cycle 
power differential. An integer linear programming (ILP) approach is proposed 
to formally formulate this problem. Benchmark data consistently show that our 
approach can minimize the cycle-by-cycle power differential within an 
acceptable run time. Compared with previous work, the relative improvement 
of our approach achieves 44.8%.  
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1   Introduction 

In low-power designs for battery driven portable applications, average power, 
peak power, and cycle-by-cycle peak power differential are all equally important 
considerations. However, most previous high-level synthesis approaches [1-6] focus 
on the minimization of average power and/or peak power. To the best of our 
knowledge, [7] was the only high-level synthesis approach to the minimization of 
cycle-by-cycle power differential. In fact, the cycle-by-cycle power differential 
determines the noise introduced due to inductive ground bounce. Therefore, the 
minimization of cycle-by-cycle power differential is crucial in designing efficient and 
reliable integrated circuits. 

In high-level synthesis stage [8], a behavior description is translated into a control-
data flow graph (CDFG), where each node corresponds to an operation, and each 
directed edge corresponds to data dependency or control relation. Under specified 
design constraints (timing and resource), operation scheduling [7-10] is to assign each 
operation in the CDFG to a specific control step to start its execution. It has been 
recognized that operation scheduling greatly influences all quality aspects of the final 



implementation. Therefore, according to Gajski [8], operation scheduling is “perhaps 
the most important task in high-level synthesis”. In [7], an integer linear programming 
(ILP) approach is proposed to formulate the problem of operation scheduling for the 
minimization of cycle-by-cycle power differential. In fact, up to now, [7] was the only 
attempt to reduce the cycle-by-cycle power differential via operation scheduling. 

Different from previous work [7], in this paper, we combine operation scheduling 
and operation delay selection to minimize the cycle-by-cycle power differential. We 
find that, by slowing down non-critical operations, the cycle-by-cycle power 
differential can be further minimized. Therefore, based on that observation, we 
propose an ILP approach to formally formulate the simultaneous application of 
operation scheduling and operation delay selection. Compared with previous work [7], 
experimental results demonstrate that our approach can reduce the cycle-by-cycle 
power differential up to 44.8%. 

The organization of this paper is as below. Section 2 gives the problem description. 
Section 3 describes our approach, and presents the ILP formulation. Section 4 
demonstrates the experimental results. Finally, some concluding remarks are given in 
Section 5. 

2   Motivation 

Kindly assure that the Contact Volume Editor is given the name and email address of 
the contact author for your paper.  The Contact Volume Editor uses these details to 
compile a list for our production department at SPS in India. Once the files have been 
worked upon, SPS sends a copy of the final pdf of each paper to its contact author. 
The contact author is asked to check through the final pdf to make sure that no errors 
have crept in during the transfer or preparation of the files. This should not be seen as 
an opportunity to update or copyedit the papers, which is not possible due to time 
constraints. Only errors introduced during the preparation of the files will be corrected. 

This round of checking takes place about two weeks after the files have been sent 
to the Editorial by the Contact Volume Editor, i.e., roughly seven weeks before the 
start of the conference for conference proceedings, or seven weeks before the volume 
leaves the printer’s, for post-proceedings. If SPS does not receive a reply from a 
particular contact author, within the timeframe given, then it is presumed that the 
author has found no errors in the paper. The tight publication schedule of LNCS does 
not allow SPS to send reminders or search for alternative email addresses on the 
Internet.  

In some cases, it is the Contact Volume Editor that checks all the pdfs. In such 
cases, the authors are not involved in the checking phase. 

We use the data flow graph shown in Figure 1 to illustrate our motivation. The 
notation > denotes the control operations, the notation + denotes the addition 
operations, the notation - denotes the subtraction operations, and the notation * 
denotes the multiplication operations.  

Assume that the power consumptions of control operation, addition operation, 
subtraction operation, and multiplication operation are 3mW, 3mW, 3mW, and 
20mW, respectively. Figure 1(a) shows a scheduled DFG under the constraint of 1 



multiplier, 1 adder, and 3 control steps. The peak power consumptions at control steps 
1, 2, and 3 are 3 mW, 23 mW, and 20 mW, respectively. Analysis of the Figure 1(a) 
reveals that largest cycle-by-cycle is 20 mW.  

For each operation, we assume that the power consumption is uniformly 
distributed to each control step when it executes. Suppose that the power consumption 
of a multiplication operation is 20mW. Then, the power consumption of each control 
step is 20 mW if the multiplication operation is executed within one control step; the 
power consumption of each control step is 10 mW if the multiplication operation is 
executed within two control steps; the power consumption of each control step is 20/3 
mW if the multiplication operation is executed within three control step; and so on. 
Based on that observation, if we can slow down non-critical operations, the cycle-by-
cycle power differential can be further minimized. For example, in Figure 1(a), 
operation o4 is a non-critical operation. Therefore, we can slow down operation o4. 
As a result, we obtain another scheduled DFG as shown in Figure 1(b). The peak 
power consumptions at control steps 1, 2, and 3 are 13 mW, 13 mW, and 20 mW, 
respectively. Analysis of the Figure 1(b) reveals that largest cycle-by-cycle power 
differential is only 7 mW. 

 

  
(a)     (b) 

Fig. 1. A motivational example. 

3   The Formulations 

In our ILP formulations, we use the notation xi,j,s to denote a binary variable (i.e., 
an 0-1 integer variable). Binary variable xi,j,s = 1, if and only if operation oi is 
scheduled into control step j and the slack of operation oi is exactly s clock cycles; 
otherwise, binary variable xi,j,s = 0. Clearly, we have 1 ≤ i ≤ n, 1 ≤ j ≤ t and 0 ≤ s ≤ t-1, 
where n is the number of operations in the data flow graph and t is the total number of 
control steps. Thus, intuitively, the total number of binary variables is n·t2. However, 
in fact, from the ASAP (as soon as possible) and ALAP (as late as possible) schedules, 
we can find that a lot of binary variables are redundant since their values are 
definitely 0. Therefore, we can prune these redundant binary variables without 
sacrificing the accuracy of the solution. 

The constants used in our ILP formulations are as below. 
The value wi denotes the power consumption of operation oi. 
The value s denotes delay time steps of each operation. 



The value t denotes the total number of control steps. 
The value n denotes the number of operations in the data flow graph. 
The delay of each operation oi corresponds to Di clock cycles. 
The value Ei denotes the earliest possible control step of operation oi. Note that we 

can use the ASAP calculation to determine the value Ei for each operation oi. 
The value Li denotes the latest possible control step of operation oi. Note that, 

given the total number of control steps, we can use the ALAP calculation to determine 
the value Li for each operation oi. 

We use FUp to denote functional unit of type p, and we say i po FU∈ if and only if 
operation oi and ok can be executed by FUp. 

The value Mp is the number of functional units of type p.   
The cycle-by-cycle power differential minimization problem can be formulated as 

below. 
Minimize power_differential                (Formula 1) 
Subject to 
For each control step c and each operation oi,, ok and 1 ≤ i, k ≤ n , 1 ≤ c ≤ t-1 
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For each operation oi and 1 ≤ i ≤ n 
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For each data dependency relation oi→ol and 1≤ i ≤ n , 1≤ l ≤ n 
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For each control step c and each type of function unit FUp 
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Formula 1 defines the objective function. Formula 2 and Formula 3 describe peak 
power and peak power differential respectively. Formula 4 states the constraint that 
every operation must be scheduled to a control step. Formula 5 ensures that the data 
dependency relationships are preserved. Formula 6 states that the number of resources, 
type k, used in any control step should be less than or equal to the allocated resources 
Mp. 

We use the HAL example [9] as shown in Figure 2 to illustrate the ILP 
formulations. The delay of each operation is 1 control step, i.e., Di = 1 for i = 1, 2, …, 
11. The timing constraint is 5 control steps; in other words, the total number of 
control steps is 5. Figure 2(a) and (b) show the ASAP and ALAP schedules of this 
example. According to the ASAP and ALAP schedules, we can prune all the 
redundant binary variables. Table 1 tabulates all the necessary (i.e., irredundant) 
binary variables associated with each operation.  



 

   
(a)     (b) 

Fig. 2. HAL example. (a) ASAP schedule. (b) ALAP schedule. 

Table 1.  The binary variables associated with each operation.  

Operation Associated Binary Variables 
o1 x1,1,0, x1,1,1, x1,2,0 
o2 x2,1,0, x2,1,1, x2,2,0 
o3 x3,2,0, x3,2,1, x3,3,0 
o4 x4,3,0, x4,3,1, x4,4,0 
o5 x5,4,0, x5,4,1, x5,5,0 
o6 x6,1,0, x6,1,1, x6,1,2, x6,2,0, x6,2,1, x6,3,0 
o7 x7,2,0, x7,2,1, x7,2,2, x7,3,0, x7,3,1, x7,4,0 
o8 x8,1,0, x8,1,1, x8,1,2, x8,1,3, x8,2,0, x8,2,1, 

x8,2,2, x8,3,0, x8,3,1, x8,4,0 
o9 x9,2,0, x9,2,1, x9,2,2, x9,2,3, x9,3,0, x9,3,1, 

x9,3,2, x9,4,0, x9,4,1, x9,5,0 
o10 x10,1,0, x10,1,1, x10,1,2, x10,1,3, x10,2,0, x10,2,1, 

x10,2,2, x10,3,0, x10,3,1, x10,4,0 
o11 x11,2,0, x11,2,1, x11,2,2, x11,2,3, x11,3,0, x11,3,1, 

x11,3,2, x11,4,0, x11,4,1, x11,5,0 
 
Assume that there are two types of functional units: the multiplier (FU1), which 

can execute the multiplication operation, and the ALU (FU2), which can execute other 
operations. Now we can construct the ILP formulations as below. 

 
Formula 2. Using an example to illustrate peak power and peak power differential 

for control step 4 to control step 5. Thus, we have –power_differential ≤ ( 3x4,4,0 + 
1.5x4,3,1 + 3x5,4,0 + 20x7,4,0 + 6.7x7,2,2 + 10x7,3,1 + 20x8,4,0 + 5x8,1,3 + 6.7x8,2,2 + 10x8,3,1 + 
3x9,4,0 + 1x9,2,2 + 1.5x9,3,1 + 3x10,4,0 + 0.75x10,1,3 + 1x10,2,2 + 1.5x10,3,1 + 3x11,4,0 + 1x11,2,2 + 
1.5x11,3,1 + 1.5x5,4,1 + 1x9,3,2 + 0.75x9,2,3 + 1.5x9,4,1 + 0.75x11,2,3 + 1x11,3,2 + 1.5x11,4,1 ) – 
( 3x5,5,0 + 3x9,5,0 + 3x11,5,0 + 1.5x5,4,1 + 1x9,3,2 + 0.75x9,2,3 + 1.5 x9,4,1 + 0.75x11,2,3 + 



1x11,3,2 + 1.5x11,4,1 ) ≤ power_differential. All the constraints due to Formula 2 are 
listed in the following. 

-power_differential ≤ ( 20x1,1,0 + 10x1,1,1 + 20x2,1,0 + 10x2,1,1 + 20x6,1,0 + 10x6,1,1 + 
6.7x6,1,2 + 20x8,1,0 + 10x8,1,1 + 6.7x8,1,2 + 5x8,1,3 + 3x10,1,0 + 1.5x10,1,1 + 1x10,1,2 
+0.75x10,1,3) – (10x1,1,1 + 20x1,2,0 + 10x2,1,1 + 20x2,2,0 + 20x3,2,0 + 10x3,2,1 + 10x6,1,1 + 
6.7x6,1,2 + 20x6,2,0 + 10x6,2,1 + 20x7,2,0 + 10x7,2,1 + 6.7 x7,2,2 + 10x8,1,1 + 6.7x8,1,2 + 
5x8,1,3 + 20x8,2,0 + 10x8,2,1 + 6.7x8,2,2 + 3x9,2,0 + 1.5x9,2,1 + 1x9,2,2 + 0.75x9,2,3 + 
3x10,2,0+ 1.5x10,1,1 + 1x10,1,2 + 0.75 x10,1,3 + 1.5x10,2,1 + 1x10,2,2 + 3x11,2,0 + 1.5 x11,2,1 + 
1x11,2,2 + 0.75x11,2,3 ) ≤ power_differential; 
-power_differential ≤ ( 10x1,1,1 + 20x1,2,0 + 10x2,1,1 + 3x9,2,0 + 20x2,2,0 + 20x3,2,0 + 
10x3,2,1 + 10x6,1,1 + 6.7x6,1,2 + 20x6,2,0 + 10x6,2,1 + 20x7,2,0 + 10 x7,2,1 + 6.7 x7,2,2 + 
10x8,1,1 + 5x8,1,3 + 6.7 x8,1,2 + 20x8,2,0 + 10x8,2,1 + 6.7x8,2,2 + 1.5x9,2,1 + 1x9,2,2 + 
0.75x9,2,3 + 1.5x10,1,1 + 1x10,1,2 + 0.75x10,1,3 + 3x10,2,0 + 1.5x10,2,1 + 1x10,2,2 + 3x11,2,0 + 
1.5 x11,2,1 + 1x11,2,2 + x11,2,3 ) – (10x3,2,1 + 20x3,3,0 + 6.7x6,1,2 + 10x6,2,1 + 20x6,3,0 + 
10x7,2,1 + 6.7x7,2,2 + 20x7,3,0 + 10x7,3,1 + 6.7x8,1,2 + 5x8,1,3 + 10x8,2,1 + 6.7x8,2,2 + 
20x8,3,0 + 10x8,3,1 + 3x4,3,0 + 1.5x4,3,1 + 1.5x9,2,1 + 1x9,2,2 + 0.75x9,2,3 + 3x9,3,0 + 1.5x9,3,1 
+ 1x9,3,2 + 1x10,1,2+  0.75x10,1,3 + 1.5x10,2,1 + 1x10,2,2 + 3x10,3,0 + 1.5x10,3,1 + 1.5x11,2,1 
+ 1x11,2,2 + 0.75x11,2,3 + 3x11,3,0 + 1.5x11,3,1 + 1x11,3,2 ) ≤ power_differential; 
- power_differential ≤ ( 10x3,2,1 + 20x3,3,0+ 6.7x6,1,2 + 10x6,2,1 + 20x6,3,0 + 10x7,2,1 + 
6.7x7,2,2 + 20x7,3,0 + 10x7,3,1 +  6.7x8,1,2 + 5x8,1,3 + 10x8,2,1 + 6.7x8,2,2 + 20x8,3,0 + 
10x8,3,1 + 3x4,3,0 + 1.5x4,3,1 + 1.5x9,2,1 + 1x9,2,2 + 0.75x9,2,3 + 3x9,3,0 + 1.5x9,3,1 + 1x9,3,2 
+ 1x10,1,2 + 0.75x10,1,3 + 1.5x10,2,1 + 1x10,2,2 +3x10,3,0 + 1.5x10,3,1 + 1.5x11,2,1 + 1x11,2,2 + 
3x11,3,0 + 1x11,3,2 +0.75x11,2,3 + 1.5x11,3,1 ) – ( 20x3,3,0 + 10x3,2,1 + 3x4,3,0 + 20x6,3,0 + 
6x6,1,2 + 10x6,2,1 + 20x7,3,0 + 10x7,2,1 + 20x8,3,0  + 6x8,1,2 + 10x8,2,1 + 3x9,3,0 + 1x9,2,1 + 
3x10,3,0 + 1x10,1,2 + 1x10,2,1 + 3x11,3,0 + 1x11,2,1 ) ≤ power_differential; 
–power_differential ≤ ( 3x4,4,0 + 1.5x4,3,1 + 3x5,4,0 + 20x7,4,0 + 6.7x7,2,2 + 10x7,3,1 + 
20x8,4,0 + 5x8,1,3 + 6.7x8,2,2 + 10x8,3,1 + 3x9,4,0 + 1x9,2,2 + 1.5x9,3,1 + 3x10,4,0 + 0.75x10,1,3 
+ 1x10,2,2 + 1.5x10,3,1 + 3x11,4,0 + 1x11,2,2 + 1.5x11,3,1 + 1.5x5,4,1 + 1x9,3,2 + 0.75x9,2,3 + 
1.5x9,4,1 + 0.75x11,2,3 + 1x11,3,2 + 1.5x11,4,1 ) – ( 3x5,5,0 + 3x9,5,0 + 3x11,5,0+ 1.5x5,4,1 + 
1x9,3,2 + 0.75x9,2,3 + 1.5 x9,4,1 + 0.75x11,2,3 + 1x11,3,2 + 1.5x11,4,1 ) ≤ power_differential; 
 
Formula 3. Using operation o10 as an example, there is exactly one binary variable 

is true among all the six binary variables associated with operation o10. Thus, we have 
x10,1,0 + x10,1,1 + x10,1,2 + x10,1,3 + x10,2,0 + x10,2,1 + x10,2,2 + x10,3,0 + x10,3,1 + x10,4,0 = 1. 
All the constraints due to Formula 3 are listed in the following. 

x1,1,0 + x1,1,1 + x1,2,0 = 1; 
x2,1,0 + x2,1,1 + x2,2,0 = 1; 
x3,2,0 + x3,2,1 + x3,3,0 = 1; 
x4,3,0 + x4,3,1 + x4,4,0 = 1; 
x5,4,0 + x5,4,1 + x5,5,0 = 1; 
x6,1,0 + x6,1,1 + x6,1,2 + x6,2,0 + x6,2,1 + x6,3,0 = 1; 
x7,2,0 + x7,2,1 + x7,2,2 + x7,3,0 + x7,3,1 + x7,4,0 = 1; 
x8,1,0 + x8,1,1 + x8,1,2 + x8,1,3 + x8,2,0 + x8,2,1 + x8,2,2 + x8,3,0 + x8,3,1 + x8,4,0 = 1; 
x9,2,0 + x9,2,1 + x9,2,2 + x9,2,3 + x9,3,0 + x9,3,1 + x9,3,2 + x9,4,0 + x9,4,1 + x9,5,0 = 1; 
x10,1,0 + x10,1,1 + x10,1,2 + x10,1,3 + x10,2,0 + x10,2,1 + x10,2,2 + x10,3,0 + x10,3,1 + x10,4,0 = 1; 
x11,2,0 + x11,2,1 + x11,2,2 + x11,2,3 + x11,3,0 + x11,3,1 + x11,3,2 + x11,4,0 + x11,4,1 + x11,5,0 = 1; 
 



Formula 4. Using the data dependency relation of o1→o3 as an example, operation 
o3 can be executed if and only if operation o1 has completed its execution. If operation 
o1 is schedule into control step 1 with zero slack, operation o3 can be scheduled into 
control step 2 with the slack of at most one clock cycle. If operation o1 is scheduled 
into control step 1 with the slack of one clock cycle or operation o1 is scheduled into 
control step 2 with zero slack, operation o3 can only be scheduled into control step 3 
with zero slack. Thus, we have x1,1,0 + 2x1,1,1 + 2x1,2,0 < 2x3,2,0 + 2x3,2,1 + 3x3,3,0 . All 
the constraints due to Formula 4 are listed in the following. 

x1,1,0 + 2x1,1,1 + 2x1,2,0 < 2x3,2,0 + 2x3,2,1 + 3x3,3,0; 
x2,1,0 + 2x2,1,1 + 2x2,2,0 < 2x3,2,0 + 2x3,2,1 + 3x3,3,0; 
2x3,2,0 + 3x3,2,1 + 3x3,3,0 < 3x4,3,0 + 3x4,3,1 + 4x4,4,0; 
3x4,3,0 + 4x4,3,1 + 4x4,4,0 < 4x5,4,0 + 4x5,4,1 + 5x5,5,0; 
x6,1,0 + 2x6,1,1 + 3x6,1,2 + 2x6,2,0 + 3x6,2,1 + 3x6,3,0 < 2x7,2,0 + 2x7,2,1 + 2x7,2,2 + 3x7,3,0 + 
3x7,3,1 + 4x7,4,0; 
2x7,2,0 + 3x7,2,1 + 4x7,2,2 + 3x7,3,0 + 4x7,3,1 + 4x7,4,0 < 4x5,4,0 + 4x5,4,1 + 5x5,5,0; 
x8,1,0 + 2x8,1,1 + 3x8,1,2 + 4x8,1,3 + 2x8,2,0 + 3x8,2,1 + 4x8,2,2 + 3x8,3,0 + 4x8,3,1 + 4x8,4,0 < 
2x9,2,0 + 2x9,2,1 + 2x9,2,2 + 2x9,2,3 + 3x9,3,0 + 3x9,3,1 + 3x9,3,2 + 4x9,4,0 + 4x9,4,1 + 5x9,5,0; 
x10,1,0 + 2x10,1,1 + 3x10,1,2 + 4x10,1,3 + 2x10,2,0 + 3x10,2,1 + 4x10,2,2 + 3x10,3,0 + 4x10,3,1 + 
4x10,4,0 < 2x11,2,0 + 2x11,2,1 + 2x11,2,2 + 2x11,2,3 + 3x11,3,0 + 3x11,3,1 + 3x11,3,2 + 4x11,4,0 + 
4x11,4,1 + 5x11,5,0; 
 
Formula 5. Consider that there are four multiplication operations o3, o6, o7 and o8 

can be scheduled into control step 3. However, the maximum number of 
multiplication operations that can be scheduled into control step 3 is constrained by 
the number of multipliers (i.e., M1). Thus, we have x3,2,1 + x3,3,0 + x6,1,2 + x6,2,1 + x6,3,0 
+ x7,2,1 + x7,2,2 + x7,3,0 + x7,3,1 + x8,1,2 + x8,1,3 + x8,2,1 + x8,2,2 + x8,3,0 + x8,3,1 ≤ M1. 
Suppose that we are given three multipliers and three ALUs; in other words, M1 = 3 
and M2 = 3. All the constraints due to Formula 5 are listed in the following. 

x1,1,0 + x1,1,1 + x2,1,0 + x2,1,1 + x6,1,0 + x6,1,1 + x6,1,2 + x8,1,0 + x8,1,1 + x8,1,2 + x8,1,3 ≤ 3; 
x1,1,1 + x1,2,0 + x2,1,1 + x2,2,0 + x3,2,0 + x3,2,1 + x6,1,1 + x6,1,2 + x6,2,0 + x6,2,1 + x7,2,0 + 
x7,2,1 + x7,2,2 + x8,1,1 + x8,1,2 + x8,1,3 + x8,2,0 + x8,2,1 + x8,2,2 ≤ 3; 
x3,2,1 + x3,3,0 + x6,1,2 + x6,2,1 + x6,3,0 + x7,2,1 + x7,2,2 + x7,3,0 + x7,3,1 + x8,1,2 + x8,1,3 + 
x8,2,1 + x8,2,2 + x8,3,0 + x8,3,1 ≤ 3; 
x7,2,2 + x7,3,1 + x7,4,0 + x8,1,3 + x8,2,2 + x8,3,1 + x8,4,0 ≤ 3; 
x10,1,0 + x10,1,1 + x10,1,2 + x10,1,3 ≤ 3; 
x9,2,0 + x9,2,1 + x9,2,2 + x9,2,3 + x10,1,1 + x10,1,2 + x10,1,3 + x10,2,0 + x10,2,1 + x10,2,2 + x11,2,0 
+ x11,2,1 + x11,2,2 + x11,2,3 ≤ 3; 
x4,3,0 + x4,3,1 + x9,2,1 + x9,2,2 + x9,2,3 + x9,3,0 + x9,3,1 + x9,3,2 + x10,1,2 + x10,1,3 + x10,2,1 + 
x10,2,2 + x10,3,0 + x10,3,1 + x11,2,1 + x11,2,2 + x11,2,3 + x11,3,0 + x11,3,1 + x11,3,2 ≤ 3; 
x4,3,1 + x4,4,0 + x5,4,0 + x5,4,1 + x9,2,2 + x9,2,3 + x9,3,1 + x9,3,2 + x9,4,0 + x9,4,1 + x10,1,3 + 
x10,2,2 + x10,3,1 + x10,4,0 + x11,2,2 + x11,2,3 + x11,3,1 + x11,3,2 + x11,4,0 + x11,4,1 ≤3; 
x5,4,1 + x5,5,0 + x9,2,3 + x9,3,2 + x9,4,1 + x9,5,0 + x11,2,3 + x11,3,2 + x11,4,1 + x11,5,0 ≤ 3; 
 
 
After solving these ILP formulations, we have that x1,1,0 = x2,1,0 = x3,2,1 = x4,4,0 = 

x5,5,0 = x6,2,0 = x7,3,1 = x8,1,3 = x9,5,0 = x10,3,0 = x11,5,0 = 1 and the values of other binary 



variables are 0. Figure 3 gives the corresponding schedule. The cycle-by-cycle power 
differential is 10mW.  

 

 
Fig. 3. Our result. 

 

4   Experimental Results 

We use the Extended LINGO Release 8.0 to solve the ILP formulations on a 
personal computer with P4-3.3GHz CPU and 1024M Bytes RAM. Five benchmark 
circuits, including EF [11], BF [12], HAL [9], AR [13], IIR [14], FIR [15], IDCT1 
[16], and IDCT2 [16] are used to test the effectiveness of our approach. In our 
experiments, we assume that the power consumptions of control operation, addition 
operation, subtraction operation, and multiplication operation are 3mW, 3mW, 3mW, 
and 20mW, respectively. Given the number of multipliers, the number of ALUs, and 
the number of control steps, we can derive the ILP formulations for each benchmark 
circuit. The CPU time of each benchmark circuit is only few seconds. 

For the purpose of comparisons, we also implement the ILP approach proposed in 
[7]. In the experiments of [7], we assume that the delay of each operation is 1 control 
step. Table 2 gives our experimental results. The column Resources denotes the 
resource constraints. The column Steps denotes the number of control steps. The 
column [7] denotes the largest cycle-by-cycle power differential obtained by the 
approach [7]. The column Ours denotes the largest cycle-by-cycle power differential 
obtained by our approach. The column Imp% denotes the percentage of improvement. 
The average improvement achieves 44.8%. 

 
 
 
 
 



Table 2.  Experimental results.  

Constraints Cycle-by-cycle power 
differential Circuit 

Resources Steps [7] Ours Imp% 
4 ALUs 16 17 14 17.7% EF 4 ALUs 17 17 11 35.3% 

3 ALUs, 3 multipliers 9 17 14 17.7% BF 3 ALUs, 3 multipliers 10 14 7 50.0% 
3 ALUs, 3 multipliers 5 14 10 28.6% HAL 3 ALUs, 3 multipliers 6 14 7 50.0% 
4 ALUs, 4 multipliers 9 34 28 17.6% 

AR 
4 ALUs, 4 multipliers 10 28 20 28.6% 
4 ALUs, 4 multipliers 5 31 26 16.1% 

IIR 
4 ALUs, 4 multipliers 6 19 15 21.1% 
2 ALUs, 2 multipliers 8 17 5 70.6% 

FIR 
2 ALUs, 2 multipliers 9 17 5 70.6% 
5 ALUs, 5 multipliers 13 6 1 83.3% 

IDCT1 
5 ALUs, 5 multipliers 14 6 1 83.3% 
7 ALUs, 7 multipliers 25 6 2 66.6% 

IDCT2 
7 ALUs, 7 multipliers 26 5 2 60.0% 

 
 

5   Conclusions 

In this paper, we present an ILP formulation to model the cycle-by-cycle power 
differential minimization problem via operation delay selection. To the best of our 
knowledge, our paper is the first work that uses operation delay selection to reduce 
the cycle-by-cycle power differential. Benchmark data consistently show that our 
approach has significant cycle-by-cycle power differential reduction. Compared with 
previous work, our average improvement achieves 44.8%. 
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