
Simultaneous Operation Scheduling and Operation
Delay Selection To Minimize Cycle-by-Cycle Power

Differential

Wei-Ting Yen, Shih-Hsu Huang, and Chun-Hua Cheng

Department of Electronic Engineering,
Chung Yuan Christian University, Chung Li, Taiwan, R.O.C.

{shhuang}@cycu.edu.tw

Abstract. The cycle-by-cycle power differential determines the noise
introduced due to inductive ground bounce. However, very few attentions are
paid to minimize the cycle-by-cycle power differential in high-level synthesis
stage. In this paper, we investigate the simultaneous application of operation
scheduling and operation delay selection for minimizing the cycle-by-cycle
power differential. An integer linear programming (ILP) approach is proposed
to formally formulate this problem. Benchmark data consistently show that our
approach can minimize the cycle-by-cycle power differential within an
acceptable run time. Compared with previous work, the relative improvement
of our approach achieves 44.8%.

Keywords: Integer Linear Programming, High-Level Synthesis, Data-Path
Synthesis, Low Power, Operation Scheduling, Cycle-by-cycle Power
Differential.

1 Introduction

In low-power designs for battery driven portable applications, average power,
peak power, and cycle-by-cycle peak power differential are all equally important
considerations. However, most previous high-level synthesis approaches [1-6] focus
on the minimization of average power and/or peak power. To the best of our
knowledge, [7] was the only high-level synthesis approach to the minimization of
cycle-by-cycle power differential. In fact, the cycle-by-cycle power differential
determines the noise introduced due to inductive ground bounce. Therefore, the
minimization of cycle-by-cycle power differential is crucial in designing efficient and
reliable integrated circuits.

In high-level synthesis stage [8], a behavior description is translated into a control-
data flow graph (CDFG), where each node corresponds to an operation, and each
directed edge corresponds to data dependency or control relation. Under specified
design constraints (timing and resource), operation scheduling [7-10] is to assign each
operation in the CDFG to a specific control step to start its execution. It has been
recognized that operation scheduling greatly influences all quality aspects of the final

implementation. Therefore, according to Gajski [8], operation scheduling is “perhaps
the most important task in high-level synthesis”. In [7], an integer linear programming
(ILP) approach is proposed to formulate the problem of operation scheduling for the
minimization of cycle-by-cycle power differential. In fact, up to now, [7] was the only
attempt to reduce the cycle-by-cycle power differential via operation scheduling.

Different from previous work [7], in this paper, we combine operation scheduling
and operation delay selection to minimize the cycle-by-cycle power differential. We
find that, by slowing down non-critical operations, the cycle-by-cycle power
differential can be further minimized. Therefore, based on that observation, we
propose an ILP approach to formally formulate the simultaneous application of
operation scheduling and operation delay selection. Compared with previous work [7],
experimental results demonstrate that our approach can reduce the cycle-by-cycle
power differential up to 44.8%.

The organization of this paper is as below. Section 2 gives the problem description.
Section 3 describes our approach, and presents the ILP formulation. Section 4
demonstrates the experimental results. Finally, some concluding remarks are given in
Section 5.

2 Motivation

Kindly assure that the Contact Volume Editor is given the name and email address of
the contact author for your paper. The Contact Volume Editor uses these details to
compile a list for our production department at SPS in India. Once the files have been
worked upon, SPS sends a copy of the final pdf of each paper to its contact author.
The contact author is asked to check through the final pdf to make sure that no errors
have crept in during the transfer or preparation of the files. This should not be seen as
an opportunity to update or copyedit the papers, which is not possible due to time
constraints. Only errors introduced during the preparation of the files will be corrected.

This round of checking takes place about two weeks after the files have been sent
to the Editorial by the Contact Volume Editor, i.e., roughly seven weeks before the
start of the conference for conference proceedings, or seven weeks before the volume
leaves the printer’s, for post-proceedings. If SPS does not receive a reply from a
particular contact author, within the timeframe given, then it is presumed that the
author has found no errors in the paper. The tight publication schedule of LNCS does
not allow SPS to send reminders or search for alternative email addresses on the
Internet.

In some cases, it is the Contact Volume Editor that checks all the pdfs. In such
cases, the authors are not involved in the checking phase.

We use the data flow graph shown in Figure 1 to illustrate our motivation. The
notation > denotes the control operations, the notation + denotes the addition
operations, the notation - denotes the subtraction operations, and the notation *
denotes the multiplication operations.

Assume that the power consumptions of control operation, addition operation,
subtraction operation, and multiplication operation are 3mW, 3mW, 3mW, and
20mW, respectively. Figure 1(a) shows a scheduled DFG under the constraint of 1

multiplier, 1 adder, and 3 control steps. The peak power consumptions at control steps
1, 2, and 3 are 3 mW, 23 mW, and 20 mW, respectively. Analysis of the Figure 1(a)
reveals that largest cycle-by-cycle is 20 mW.

For each operation, we assume that the power consumption is uniformly
distributed to each control step when it executes. Suppose that the power consumption
of a multiplication operation is 20mW. Then, the power consumption of each control
step is 20 mW if the multiplication operation is executed within one control step; the
power consumption of each control step is 10 mW if the multiplication operation is
executed within two control steps; the power consumption of each control step is 20/3
mW if the multiplication operation is executed within three control step; and so on.
Based on that observation, if we can slow down non-critical operations, the cycle-by-
cycle power differential can be further minimized. For example, in Figure 1(a),
operation o4 is a non-critical operation. Therefore, we can slow down operation o4.
As a result, we obtain another scheduled DFG as shown in Figure 1(b). The peak
power consumptions at control steps 1, 2, and 3 are 13 mW, 13 mW, and 20 mW,
respectively. Analysis of the Figure 1(b) reveals that largest cycle-by-cycle power
differential is only 7 mW.

(a) (b)

Fig. 1. A motivational example.

3 The Formulations

In our ILP formulations, we use the notation xi,j,s to denote a binary variable (i.e.,
an 0-1 integer variable). Binary variable xi,j,s = 1, if and only if operation oi is
scheduled into control step j and the slack of operation oi is exactly s clock cycles;
otherwise, binary variable xi,j,s = 0. Clearly, we have 1 ≤ i ≤ n, 1 ≤ j ≤ t and 0 ≤ s ≤ t-1,
where n is the number of operations in the data flow graph and t is the total number of
control steps. Thus, intuitively, the total number of binary variables is n·t2. However,
in fact, from the ASAP (as soon as possible) and ALAP (as late as possible) schedules,
we can find that a lot of binary variables are redundant since their values are
definitely 0. Therefore, we can prune these redundant binary variables without
sacrificing the accuracy of the solution.

The constants used in our ILP formulations are as below.
The value wi denotes the power consumption of operation oi.
The value s denotes delay time steps of each operation.

The value t denotes the total number of control steps.
The value n denotes the number of operations in the data flow graph.
The delay of each operation oi corresponds to Di clock cycles.
The value Ei denotes the earliest possible control step of operation oi. Note that we

can use the ASAP calculation to determine the value Ei for each operation oi.
The value Li denotes the latest possible control step of operation oi. Note that,

given the total number of control steps, we can use the ALAP calculation to determine
the value Li for each operation oi.

We use FUp to denote functional unit of type p, and we say i po FU∈ if and only if
operation oi and ok can be executed by FUp.

The value Mp is the number of functional units of type p.
The cycle-by-cycle power differential minimization problem can be formulated as

below.
Minimize power_differential (Formula 1)
Subject to
For each control step c and each operation oi,, ok and 1 ≤ i, k ≤ n , 1 ≤ c ≤ t-1

, ,
(1)

_
1

i

i i

L jc
i

i j s
j E s c j D

wpower differential X
s

−

= = − + −

− ≤ −
+∑ ∑

1

, ,
1 (1)

_
1

k

k i

L jc
k

k j s
j E s c j D

w X power differential
s

−+

= = + − + −

≤
+∑ ∑ (Formula 2)

For each operation oi and 1 ≤ i ≤ n

, ,
0

1
i i

i

L L j

i j s
j E s

X
−

= =

=∑ ∑ (Formula 3)

For each data dependency relation oi→ol and 1≤ i ≤ n , 1≤ l ≤ n

() , , , ,
0 0

1
− −

= = = =

+ + − <∑ ∑ ∑ ∑i i
i i l l

i l

L L j L L j

i j s l j s
j E s j E s

j D s X j X (Formula 4)

For each control step c and each type of function unit FUp

, ,
(1)

i

i p i i

L jc

i j s p
o FU j E s c j D

X M
−

∈ = = − + −

≤∑ ∑ ∑ (Formula 5)

Formula 1 defines the objective function. Formula 2 and Formula 3 describe peak
power and peak power differential respectively. Formula 4 states the constraint that
every operation must be scheduled to a control step. Formula 5 ensures that the data
dependency relationships are preserved. Formula 6 states that the number of resources,
type k, used in any control step should be less than or equal to the allocated resources
Mp.

We use the HAL example [9] as shown in Figure 2 to illustrate the ILP
formulations. The delay of each operation is 1 control step, i.e., Di = 1 for i = 1, 2, …,
11. The timing constraint is 5 control steps; in other words, the total number of
control steps is 5. Figure 2(a) and (b) show the ASAP and ALAP schedules of this
example. According to the ASAP and ALAP schedules, we can prune all the
redundant binary variables. Table 1 tabulates all the necessary (i.e., irredundant)
binary variables associated with each operation.

(a) (b)

Fig. 2. HAL example. (a) ASAP schedule. (b) ALAP schedule.

Table 1. The binary variables associated with each operation.

Operation Associated Binary Variables
o1 x1,1,0, x1,1,1, x1,2,0
o2 x2,1,0, x2,1,1, x2,2,0
o3 x3,2,0, x3,2,1, x3,3,0
o4 x4,3,0, x4,3,1, x4,4,0
o5 x5,4,0, x5,4,1, x5,5,0
o6 x6,1,0, x6,1,1, x6,1,2, x6,2,0, x6,2,1, x6,3,0
o7 x7,2,0, x7,2,1, x7,2,2, x7,3,0, x7,3,1, x7,4,0
o8 x8,1,0, x8,1,1, x8,1,2, x8,1,3, x8,2,0, x8,2,1,

x8,2,2, x8,3,0, x8,3,1, x8,4,0
o9 x9,2,0, x9,2,1, x9,2,2, x9,2,3, x9,3,0, x9,3,1,

x9,3,2, x9,4,0, x9,4,1, x9,5,0
o10 x10,1,0, x10,1,1, x10,1,2, x10,1,3, x10,2,0, x10,2,1,

x10,2,2, x10,3,0, x10,3,1, x10,4,0
o11 x11,2,0, x11,2,1, x11,2,2, x11,2,3, x11,3,0, x11,3,1,

x11,3,2, x11,4,0, x11,4,1, x11,5,0

Assume that there are two types of functional units: the multiplier (FU1), which

can execute the multiplication operation, and the ALU (FU2), which can execute other
operations. Now we can construct the ILP formulations as below.

Formula 2. Using an example to illustrate peak power and peak power differential

for control step 4 to control step 5. Thus, we have –power_differential ≤ (3x4,4,0 +
1.5x4,3,1 + 3x5,4,0 + 20x7,4,0 + 6.7x7,2,2 + 10x7,3,1 + 20x8,4,0 + 5x8,1,3 + 6.7x8,2,2 + 10x8,3,1 +
3x9,4,0 + 1x9,2,2 + 1.5x9,3,1 + 3x10,4,0 + 0.75x10,1,3 + 1x10,2,2 + 1.5x10,3,1 + 3x11,4,0 + 1x11,2,2 +
1.5x11,3,1 + 1.5x5,4,1 + 1x9,3,2 + 0.75x9,2,3 + 1.5x9,4,1 + 0.75x11,2,3 + 1x11,3,2 + 1.5x11,4,1) –
(3x5,5,0 + 3x9,5,0 + 3x11,5,0 + 1.5x5,4,1 + 1x9,3,2 + 0.75x9,2,3 + 1.5 x9,4,1 + 0.75x11,2,3 +

1x11,3,2 + 1.5x11,4,1) ≤ power_differential. All the constraints due to Formula 2 are
listed in the following.

-power_differential ≤ (20x1,1,0 + 10x1,1,1 + 20x2,1,0 + 10x2,1,1 + 20x6,1,0 + 10x6,1,1 +
6.7x6,1,2 + 20x8,1,0 + 10x8,1,1 + 6.7x8,1,2 + 5x8,1,3 + 3x10,1,0 + 1.5x10,1,1 + 1x10,1,2
+0.75x10,1,3) – (10x1,1,1 + 20x1,2,0 + 10x2,1,1 + 20x2,2,0 + 20x3,2,0 + 10x3,2,1 + 10x6,1,1 +
6.7x6,1,2 + 20x6,2,0 + 10x6,2,1 + 20x7,2,0 + 10x7,2,1 + 6.7 x7,2,2 + 10x8,1,1 + 6.7x8,1,2 +
5x8,1,3 + 20x8,2,0 + 10x8,2,1 + 6.7x8,2,2 + 3x9,2,0 + 1.5x9,2,1 + 1x9,2,2 + 0.75x9,2,3 +
3x10,2,0+ 1.5x10,1,1 + 1x10,1,2 + 0.75 x10,1,3 + 1.5x10,2,1 + 1x10,2,2 + 3x11,2,0 + 1.5 x11,2,1 +
1x11,2,2 + 0.75x11,2,3) ≤ power_differential;
-power_differential ≤ (10x1,1,1 + 20x1,2,0 + 10x2,1,1 + 3x9,2,0 + 20x2,2,0 + 20x3,2,0 +
10x3,2,1 + 10x6,1,1 + 6.7x6,1,2 + 20x6,2,0 + 10x6,2,1 + 20x7,2,0 + 10 x7,2,1 + 6.7 x7,2,2 +
10x8,1,1 + 5x8,1,3 + 6.7 x8,1,2 + 20x8,2,0 + 10x8,2,1 + 6.7x8,2,2 + 1.5x9,2,1 + 1x9,2,2 +
0.75x9,2,3 + 1.5x10,1,1 + 1x10,1,2 + 0.75x10,1,3 + 3x10,2,0 + 1.5x10,2,1 + 1x10,2,2 + 3x11,2,0 +
1.5 x11,2,1 + 1x11,2,2 + x11,2,3) – (10x3,2,1 + 20x3,3,0 + 6.7x6,1,2 + 10x6,2,1 + 20x6,3,0 +
10x7,2,1 + 6.7x7,2,2 + 20x7,3,0 + 10x7,3,1 + 6.7x8,1,2 + 5x8,1,3 + 10x8,2,1 + 6.7x8,2,2 +
20x8,3,0 + 10x8,3,1 + 3x4,3,0 + 1.5x4,3,1 + 1.5x9,2,1 + 1x9,2,2 + 0.75x9,2,3 + 3x9,3,0 + 1.5x9,3,1
+ 1x9,3,2 + 1x10,1,2+ 0.75x10,1,3 + 1.5x10,2,1 + 1x10,2,2 + 3x10,3,0 + 1.5x10,3,1 + 1.5x11,2,1
+ 1x11,2,2 + 0.75x11,2,3 + 3x11,3,0 + 1.5x11,3,1 + 1x11,3,2) ≤ power_differential;
- power_differential ≤ (10x3,2,1 + 20x3,3,0+ 6.7x6,1,2 + 10x6,2,1 + 20x6,3,0 + 10x7,2,1 +
6.7x7,2,2 + 20x7,3,0 + 10x7,3,1 + 6.7x8,1,2 + 5x8,1,3 + 10x8,2,1 + 6.7x8,2,2 + 20x8,3,0 +
10x8,3,1 + 3x4,3,0 + 1.5x4,3,1 + 1.5x9,2,1 + 1x9,2,2 + 0.75x9,2,3 + 3x9,3,0 + 1.5x9,3,1 + 1x9,3,2
+ 1x10,1,2 + 0.75x10,1,3 + 1.5x10,2,1 + 1x10,2,2 +3x10,3,0 + 1.5x10,3,1 + 1.5x11,2,1 + 1x11,2,2 +
3x11,3,0 + 1x11,3,2 +0.75x11,2,3 + 1.5x11,3,1) – (20x3,3,0 + 10x3,2,1 + 3x4,3,0 + 20x6,3,0 +
6x6,1,2 + 10x6,2,1 + 20x7,3,0 + 10x7,2,1 + 20x8,3,0 + 6x8,1,2 + 10x8,2,1 + 3x9,3,0 + 1x9,2,1 +
3x10,3,0 + 1x10,1,2 + 1x10,2,1 + 3x11,3,0 + 1x11,2,1) ≤ power_differential;
–power_differential ≤ (3x4,4,0 + 1.5x4,3,1 + 3x5,4,0 + 20x7,4,0 + 6.7x7,2,2 + 10x7,3,1 +
20x8,4,0 + 5x8,1,3 + 6.7x8,2,2 + 10x8,3,1 + 3x9,4,0 + 1x9,2,2 + 1.5x9,3,1 + 3x10,4,0 + 0.75x10,1,3
+ 1x10,2,2 + 1.5x10,3,1 + 3x11,4,0 + 1x11,2,2 + 1.5x11,3,1 + 1.5x5,4,1 + 1x9,3,2 + 0.75x9,2,3 +
1.5x9,4,1 + 0.75x11,2,3 + 1x11,3,2 + 1.5x11,4,1) – (3x5,5,0 + 3x9,5,0 + 3x11,5,0+ 1.5x5,4,1 +
1x9,3,2 + 0.75x9,2,3 + 1.5 x9,4,1 + 0.75x11,2,3 + 1x11,3,2 + 1.5x11,4,1) ≤ power_differential;

Formula 3. Using operation o10 as an example, there is exactly one binary variable

is true among all the six binary variables associated with operation o10. Thus, we have
x10,1,0 + x10,1,1 + x10,1,2 + x10,1,3 + x10,2,0 + x10,2,1 + x10,2,2 + x10,3,0 + x10,3,1 + x10,4,0 = 1.
All the constraints due to Formula 3 are listed in the following.

x1,1,0 + x1,1,1 + x1,2,0 = 1;
x2,1,0 + x2,1,1 + x2,2,0 = 1;
x3,2,0 + x3,2,1 + x3,3,0 = 1;
x4,3,0 + x4,3,1 + x4,4,0 = 1;
x5,4,0 + x5,4,1 + x5,5,0 = 1;
x6,1,0 + x6,1,1 + x6,1,2 + x6,2,0 + x6,2,1 + x6,3,0 = 1;
x7,2,0 + x7,2,1 + x7,2,2 + x7,3,0 + x7,3,1 + x7,4,0 = 1;
x8,1,0 + x8,1,1 + x8,1,2 + x8,1,3 + x8,2,0 + x8,2,1 + x8,2,2 + x8,3,0 + x8,3,1 + x8,4,0 = 1;
x9,2,0 + x9,2,1 + x9,2,2 + x9,2,3 + x9,3,0 + x9,3,1 + x9,3,2 + x9,4,0 + x9,4,1 + x9,5,0 = 1;
x10,1,0 + x10,1,1 + x10,1,2 + x10,1,3 + x10,2,0 + x10,2,1 + x10,2,2 + x10,3,0 + x10,3,1 + x10,4,0 = 1;
x11,2,0 + x11,2,1 + x11,2,2 + x11,2,3 + x11,3,0 + x11,3,1 + x11,3,2 + x11,4,0 + x11,4,1 + x11,5,0 = 1;

Formula 4. Using the data dependency relation of o1→o3 as an example, operation
o3 can be executed if and only if operation o1 has completed its execution. If operation
o1 is schedule into control step 1 with zero slack, operation o3 can be scheduled into
control step 2 with the slack of at most one clock cycle. If operation o1 is scheduled
into control step 1 with the slack of one clock cycle or operation o1 is scheduled into
control step 2 with zero slack, operation o3 can only be scheduled into control step 3
with zero slack. Thus, we have x1,1,0 + 2x1,1,1 + 2x1,2,0 < 2x3,2,0 + 2x3,2,1 + 3x3,3,0 . All
the constraints due to Formula 4 are listed in the following.

x1,1,0 + 2x1,1,1 + 2x1,2,0 < 2x3,2,0 + 2x3,2,1 + 3x3,3,0;
x2,1,0 + 2x2,1,1 + 2x2,2,0 < 2x3,2,0 + 2x3,2,1 + 3x3,3,0;
2x3,2,0 + 3x3,2,1 + 3x3,3,0 < 3x4,3,0 + 3x4,3,1 + 4x4,4,0;
3x4,3,0 + 4x4,3,1 + 4x4,4,0 < 4x5,4,0 + 4x5,4,1 + 5x5,5,0;
x6,1,0 + 2x6,1,1 + 3x6,1,2 + 2x6,2,0 + 3x6,2,1 + 3x6,3,0 < 2x7,2,0 + 2x7,2,1 + 2x7,2,2 + 3x7,3,0 +
3x7,3,1 + 4x7,4,0;
2x7,2,0 + 3x7,2,1 + 4x7,2,2 + 3x7,3,0 + 4x7,3,1 + 4x7,4,0 < 4x5,4,0 + 4x5,4,1 + 5x5,5,0;
x8,1,0 + 2x8,1,1 + 3x8,1,2 + 4x8,1,3 + 2x8,2,0 + 3x8,2,1 + 4x8,2,2 + 3x8,3,0 + 4x8,3,1 + 4x8,4,0 <
2x9,2,0 + 2x9,2,1 + 2x9,2,2 + 2x9,2,3 + 3x9,3,0 + 3x9,3,1 + 3x9,3,2 + 4x9,4,0 + 4x9,4,1 + 5x9,5,0;
x10,1,0 + 2x10,1,1 + 3x10,1,2 + 4x10,1,3 + 2x10,2,0 + 3x10,2,1 + 4x10,2,2 + 3x10,3,0 + 4x10,3,1 +
4x10,4,0 < 2x11,2,0 + 2x11,2,1 + 2x11,2,2 + 2x11,2,3 + 3x11,3,0 + 3x11,3,1 + 3x11,3,2 + 4x11,4,0 +
4x11,4,1 + 5x11,5,0;

Formula 5. Consider that there are four multiplication operations o3, o6, o7 and o8

can be scheduled into control step 3. However, the maximum number of
multiplication operations that can be scheduled into control step 3 is constrained by
the number of multipliers (i.e., M1). Thus, we have x3,2,1 + x3,3,0 + x6,1,2 + x6,2,1 + x6,3,0
+ x7,2,1 + x7,2,2 + x7,3,0 + x7,3,1 + x8,1,2 + x8,1,3 + x8,2,1 + x8,2,2 + x8,3,0 + x8,3,1 ≤ M1.
Suppose that we are given three multipliers and three ALUs; in other words, M1 = 3
and M2 = 3. All the constraints due to Formula 5 are listed in the following.

x1,1,0 + x1,1,1 + x2,1,0 + x2,1,1 + x6,1,0 + x6,1,1 + x6,1,2 + x8,1,0 + x8,1,1 + x8,1,2 + x8,1,3 ≤ 3;
x1,1,1 + x1,2,0 + x2,1,1 + x2,2,0 + x3,2,0 + x3,2,1 + x6,1,1 + x6,1,2 + x6,2,0 + x6,2,1 + x7,2,0 +
x7,2,1 + x7,2,2 + x8,1,1 + x8,1,2 + x8,1,3 + x8,2,0 + x8,2,1 + x8,2,2 ≤ 3;
x3,2,1 + x3,3,0 + x6,1,2 + x6,2,1 + x6,3,0 + x7,2,1 + x7,2,2 + x7,3,0 + x7,3,1 + x8,1,2 + x8,1,3 +
x8,2,1 + x8,2,2 + x8,3,0 + x8,3,1 ≤ 3;
x7,2,2 + x7,3,1 + x7,4,0 + x8,1,3 + x8,2,2 + x8,3,1 + x8,4,0 ≤ 3;
x10,1,0 + x10,1,1 + x10,1,2 + x10,1,3 ≤ 3;
x9,2,0 + x9,2,1 + x9,2,2 + x9,2,3 + x10,1,1 + x10,1,2 + x10,1,3 + x10,2,0 + x10,2,1 + x10,2,2 + x11,2,0
+ x11,2,1 + x11,2,2 + x11,2,3 ≤ 3;
x4,3,0 + x4,3,1 + x9,2,1 + x9,2,2 + x9,2,3 + x9,3,0 + x9,3,1 + x9,3,2 + x10,1,2 + x10,1,3 + x10,2,1 +
x10,2,2 + x10,3,0 + x10,3,1 + x11,2,1 + x11,2,2 + x11,2,3 + x11,3,0 + x11,3,1 + x11,3,2 ≤ 3;
x4,3,1 + x4,4,0 + x5,4,0 + x5,4,1 + x9,2,2 + x9,2,3 + x9,3,1 + x9,3,2 + x9,4,0 + x9,4,1 + x10,1,3 +
x10,2,2 + x10,3,1 + x10,4,0 + x11,2,2 + x11,2,3 + x11,3,1 + x11,3,2 + x11,4,0 + x11,4,1 ≤3;
x5,4,1 + x5,5,0 + x9,2,3 + x9,3,2 + x9,4,1 + x9,5,0 + x11,2,3 + x11,3,2 + x11,4,1 + x11,5,0 ≤ 3;

After solving these ILP formulations, we have that x1,1,0 = x2,1,0 = x3,2,1 = x4,4,0 =

x5,5,0 = x6,2,0 = x7,3,1 = x8,1,3 = x9,5,0 = x10,3,0 = x11,5,0 = 1 and the values of other binary

variables are 0. Figure 3 gives the corresponding schedule. The cycle-by-cycle power
differential is 10mW.

Fig. 3. Our result.

4 Experimental Results

We use the Extended LINGO Release 8.0 to solve the ILP formulations on a
personal computer with P4-3.3GHz CPU and 1024M Bytes RAM. Five benchmark
circuits, including EF [11], BF [12], HAL [9], AR [13], IIR [14], FIR [15], IDCT1
[16], and IDCT2 [16] are used to test the effectiveness of our approach. In our
experiments, we assume that the power consumptions of control operation, addition
operation, subtraction operation, and multiplication operation are 3mW, 3mW, 3mW,
and 20mW, respectively. Given the number of multipliers, the number of ALUs, and
the number of control steps, we can derive the ILP formulations for each benchmark
circuit. The CPU time of each benchmark circuit is only few seconds.

For the purpose of comparisons, we also implement the ILP approach proposed in
[7]. In the experiments of [7], we assume that the delay of each operation is 1 control
step. Table 2 gives our experimental results. The column Resources denotes the
resource constraints. The column Steps denotes the number of control steps. The
column [7] denotes the largest cycle-by-cycle power differential obtained by the
approach [7]. The column Ours denotes the largest cycle-by-cycle power differential
obtained by our approach. The column Imp% denotes the percentage of improvement.
The average improvement achieves 44.8%.

Table 2. Experimental results.

Constraints Cycle-by-cycle power
differential Circuit

Resources Steps [7] Ours Imp%
4 ALUs 16 17 14 17.7% EF 4 ALUs 17 17 11 35.3%

3 ALUs, 3 multipliers 9 17 14 17.7% BF 3 ALUs, 3 multipliers 10 14 7 50.0%
3 ALUs, 3 multipliers 5 14 10 28.6% HAL 3 ALUs, 3 multipliers 6 14 7 50.0%
4 ALUs, 4 multipliers 9 34 28 17.6%

AR
4 ALUs, 4 multipliers 10 28 20 28.6%
4 ALUs, 4 multipliers 5 31 26 16.1%

IIR
4 ALUs, 4 multipliers 6 19 15 21.1%
2 ALUs, 2 multipliers 8 17 5 70.6%

FIR
2 ALUs, 2 multipliers 9 17 5 70.6%
5 ALUs, 5 multipliers 13 6 1 83.3%

IDCT1
5 ALUs, 5 multipliers 14 6 1 83.3%
7 ALUs, 7 multipliers 25 6 2 66.6%

IDCT2
7 ALUs, 7 multipliers 26 5 2 60.0%

5 Conclusions

In this paper, we present an ILP formulation to model the cycle-by-cycle power
differential minimization problem via operation delay selection. To the best of our
knowledge, our paper is the first work that uses operation delay selection to reduce
the cycle-by-cycle power differential. Benchmark data consistently show that our
approach has significant cycle-by-cycle power differential reduction. Compared with
previous work, our average improvement achieves 44.8%.

6 Acknowledgement

This work was supported in part by the National Science Council of R.O.C. under
the grant number NSC 93-2220-E-033-001.

References

1. T. L. Martin and D. P. Siewiorek, “Non-Ideal Battery Properties and Low-Power Operation
in Wearable Computing,” Proc. of International Symposium on Wearable Computers, pp.
101—106, 1999.

2. W.T. Shiue, “High Level Synthesis for Peak Power Minimization using ILP”, Proc. of IEEE
International Conference on Application-Specific Systems, Architectures, and Processors,
pp. 103—112, 2000.

3. L. Benini, G. Casterlli, A. Macii, and R. Scarsi, “Battery-Driven Dynamic Power
Management”, IEEE Design Test Computers, vol. 13, pp. 53—60, 2001.

4. C. Chen and M. Sarrafzadeh, “Power-Manageable Scheduling Technique for Control
Dominated High-Level Synthesis”, Proc. of IEEE Design, Automation, and Test in Europe
Conference and Exhibition, pp. 1016—1020, 2002.

5. S.P. Mohanty, N. Ranganathan, and S.K. Chappidi, “Peak Power Minimization through
Datapath Scheduling”, Proc. of IEEE Computer Society Annual Symposium on VLSI, pp.
121—126, 2003.

6. S.H. Huang, C.H. Cheng, C.H. Chiang, and C.M. Chang, “Peak Power Minimization through
Power Management Scheduling”, Proc. of IEEE Asia and Pacific Conference on Circuits
and Systems, pp. 868—971, 2006.

7. S. P. Mohanty, N. Ranganathan, and S. K. Chappidi, “ILP Models for Energy and Transient
Power Minimization During Behavioral Synthesis”, Proc. of intl. Conf. on VLSI Design, pp.
745—748, 2004.

8. D.D. Gajski, N.D. Dutt, and B.M. Pangrle, “Silicon Compilation (tutorial)”, Proc. of Custom
Integrated Circuits Conference, pp. 102—110, 1986.

9. C.T. Hwang, J.H. Lee and Y.C. Hsu, “A Formal Approach to the Scheduling Problem in
High Level Synthesis”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 10, no. 4, pp. 464—475, 1991.

10. P. Faraboschi, J.A. Fisher and C. Young, “Instruction Scheduling for Instruction Level
Parallel Processors”, Proc. of the IEEE, vol. 89, no. 11, pp. 1638—1659, 2001.

11. M. Balakrishnan and P. Marwedel, “Integrated Scheduling and Binding: A Synthesis
Approach for Design Space Exploration”, Proc. of IEEE/ACM Design Automation
Conference, pp. 68—74, 1989.

12. C.A. Papachristou and H. Konuk, “A Linear Program Driven Scheduling and Allocation
Method Followed by an Interconnect Optimization Algorithm”, Proc. of IEEE/ACM Design
Automation Conference, pp. 77—83, 1990.

13. J. Ramanujam, S. Deshpande, J. Hong and M. Kandemir, “A Heuristic for Clock Selection
in High-Level Synthesis”, Proc. of IEEE Asia and South Pacific Design Automation
Conference, pp. 414—419, 2002.

14. K. I. Kum and W. Sung, “Word-Length Optimization for High-Level Synthesis of Digital
Signal Processing Systems”, Proc. of IEEE Workshop on Signal Processing Systems, pp.
569—578, 1998.

15. D. Shin and K. Choi, “Low Power High Level Synthesis by Increasing Data Correlation”,
Proc. of IEEE International Symposium on Low Power Electronic Design, pp. 62—67, 1997.

16. C. Lee, M Potkonjak, and W. H. Maggione-Smith, “MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications System”, Proc. of IEEE International
Symposium on Microarchitecture, pp. 330— 335, 1997.

