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Abstract. This paper develops a simple algorithm for having robust optimal
computer control in decentralized stochastic singularly-perturbed systems by
poles assignment. This type of noise-disturbed system can be often seen in
computer controlled large-scale systems such as electric power systems,
communication networks, and aerospace systems. Due to that this computer
controlled system possesses the fast response characteristics of the subsystems,
the system analysis can be simplified by singularly perturbation methodology
and the aggregation matrix is also applied to obtain faster calculation. Finally,
the aggregation matrix is found out that will be an important intermediary to
easily achieve the robust sub-optimal poles assignment. In the end, three steps
are proposed to complete the robust sub-optimal pole assignment.
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1 Introduction

Pole placement of large-scale systems has been a difficult task due to the high
dimension of the systems. How to simplify the process of placing optimal poles is the
goal of this research. In this paper, the system is concerned with decentralized
stochastic singularly-perturbed computer controlled systems. Such systems are two-
time scale systems. Practically, computer controlled systems are this type of systems.

There are some similar researches related to this field. G. Enea, J. Duplaix, and M.
Franceschi [1] use a recursive method to achieve optimal control with aggregative
pole assignment in the discrete MIMO systems. A. R. Arar and M.E. Sawan [2]
propose a design method for optimal control with eigenvalue placement in a specified
region; in 1997, they present the work about the relation between pole-placement and
linear quadratic regulator for discrete time systems [3]. In [4], Yao studied
computer control of decentralized singularly-perturbed systems, but the noise
disturbing factors, fast algorithms and robustness are not concerned.

Among all system performance requirements, robust stability is a paramount
condition for designs of system control. Especially in [5]-[7], numerous approaches



have been proposed and these systems concerned are singularly-perturbed systems.
Yahli Narkis [8] developed a relation for direct calculation of the cost function for an
optimally controller linear system with quadratic criteria, disturbed by a colored noise
of any given spectral density distribution. Jianguo Wang; Guangyi Cao; Jin Zhou [9]
study how the optimization methods can be used to deal with plant uncertainty. A
weighed sensitivity error function is presented for an optimal robust controller design
in a class of stochastic model errors. As observed by the previous work that has been
done for the stability, enhancing performance, and cost minimization of decentralized
stochastic systems, none had focus on the robust optimal pole assignment of
decentralized stochastic singularly-perturbed computer controlled systems.

In this paper, the optimal poles found are based on a reduced-order system model.
The optimal pole region of the close-loop system can be realized by adjusting the
state weighting matrix and the input weighting matrix. After collecting and saving all
the information of the relationship among the weighting matrices and the aggregation
matrix, the optimal feedback gain of the system can be understood.

2 System Prescription

The mathematical model of the n-order decentralized stochastic singularly- perturbed
system is shown as:
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where i=1~m. The system is a linear time-invariant decentralized stochastic
singularly-perturbed computer controlled system which has n-order and m
independent inputs or m sub-systems. SRx and FRz are the slow and the fast
state variables respectively; each sub-system

iz has its own order. in
i Ru 1 and

in
i Ry 2 are the input vector of the i-th subsystem and the output vector of the i-th

subsystem respectively.
00A ,

iA0
,

0iA ,
iiA ,

iC , and
iG are constant matrices with



appropriate dimensions with i=1~m. S
i Rw  ;

iw and
iv are disturbing noises of

inputs and outputs.

3 Main Results

Finding a easy algorithm of robust sub-optimal control is the goal of this study. A
system performances based on system uncertainties is necessarily investigated and
tested. Uncertainties of systems are caused by the inevitable errors in system
modeling due to inexact and incomplete data, simplifying approximations, neglected
high frequency dynamics, and unpredicted disturbances from the environment. In this
research, robust control is defined that if the desired performance still exists after
using the reduced-order controllers in the full-order systems.

In this type of particular system the major uncertainty would be the fast state
variables of the subsystems. Because the overall system is a decentralized computer
controlled system, the responses of computer-based subsystems are a lot faster than
the main plant. The responses of the fast state variables will die out pretty fast in the
very initial time period. Therefore, the overall structure is potentially a singularly
perturbed system. When the system reaches Quasi-steady state, the parameter can be
assumed as zero. Due to this phenomenon, the fast state variables can be ignored and
the order of the system can be reduced. This also rises the idea that the state model of
the system can be approximated.

In Eq. (2b), the sub-station station variables, z1, z2, z3  … have reached quasi-steady
state. Hence, the system order is reduced to the order of the main station which is
equal to the dimension of the slow state variable x. Eq. (2b) can be shown as:
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where i=1~m;
mmAA ~11

are nonsingular matrices. Next, recall the state equation of
the slow state variable in (2a). We can obtain new representations for the equation of
slow state variables by using Eq. (3b):
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])[( 1 TT www  where ])[( 1 TTR wwww  is pseudo right inverse of w . An n-order
multi-input decentralized stochastic singularly-perturbed computer controlled system
is reduced into an S=(n-F)-order multi-input time-invariant system. The state model
can be revised as
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data is processed by computer, the above equations will be transformed into discrete-
time model as [10]
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Now we define another non-square matrix T , which

fr xTx  (7)

where the full-order state vector
fx =










iz
x ;

fx FSR  with SRx and FRz .

By the state transformation, the non-square matrix T that is called the fast
aggregation matrix here that is used as an intermediary to have transformation
between the full order model (2) and the reduced order model (5). This non-square
matrix will help to shorten the derivation process.
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where R denotes the pseudo right inverse and  matrix has all the elements equal
to zero with appropriate size. i’s of Eq. (8) to Eq. (10) indicate the controlling
subsystem. By applying Eq. (10), Eq. (8) can be revised as
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Theoretically,  LiC is a singular matrix and this matrix will be crucial item to

find the fast aggregation matrix, T . Next, based on the reduced-order state model (6),
Eq. (6a) can be shown as
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where
1 is the first column of ;

2 is the second column of  and so on.

)(~)(1 kuku m
are the inputs of the subsystem one to the subsystem m. In the close-

loop control systems as Fig. 1, we know
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where )(1 kd and )(2 kd are additional inputs;
1rG and

2rG are disturbing signals.
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Fig. 1. The decentralized stochastic singularly-perturbed system. All the subsystems

are computer processing units and assumed to be zero-order.
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Now, if the main station is controlled from the subsystem one, we can assume the

mdd ~1
and

1rG and
2rG are all disturbing noise to the controller one. They only

affect the amplitude of system responses. The pole locations are unchanged.
Therefore; we revise (6) as
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Eq. (14) is a closed-loop state model. According to stochastic control theory [11]
and singular perturbation methodology [12], the LQ performance index of each
subsystem in the full order system:
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where
iQ is the weighting matrix with p. s. d. for each sub-system and
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is a fast state vector.

It can be presented as Eq. (16) that has the reduced order state vector, rx .
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With this constrain (16), if we have control from the subsystem one, we can have the
optimal control
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and, the P is the solution of the Riccati equation
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where P is a constant matrix. The optimalu1
not only minimizes the energy use but also

stabilizes the system. This stabilizing feedback gain stabilizes the slow state variables



of the system. There will be no control to the fast state variables; therefore, stability of
the fast state variables is required. Furthermore, in steady state, the optimal control
cost from the subsystem one can also be obtained as
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The robust sub-optimal poles are
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where
dP is the desired sub-optimal pole locations. The optimal feedback control

and the optimal costs of the subsystem two to the subsystem m can be found by the
same procedure used in the subsystem one. For a successful state feedback design,
stabilizability is a necessary condition, and controllability is a sufficient condition.

In the forgoing process, we use the reduced order state model (6) and existing
feedback gains

rmr KK ~2
to compute the sub-optimal feedback gain of the

subsystem one:
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1111 )( , if the control is performed from the

subsystem one. Now, we would like to find the sub-optimal feedback gain,
1K , for

the original full order system by using the aggregation matrix, then the input of the
subsystem one.
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where
rx denotes reduced-order state. According to the state transformation

technique, Eq. (22) can be shown as
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where fx denotes full-order state. By comparing with Eq. (23) and Eq. (24), we can

find the relationship

TKK r11  (25a)
Also, TKK r11  (25b)

where
1K is the robust sub-optimal feedback gain implementing in the original full

order system.
1rK is the robust sub-optimal feedback gain obtained from the reduced

order system. T is the fast aggregation matrix.
For the subsystem two to the subsystem m can follow the same method as the

subsystem one to find the optimal poles by the aggregation matrix.

4 Illustrations

The whole system is a fifth-order system with three first order subsystems and
three inputs. The state model is shown as
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where
1x and

2x are slow state vectors that are second-order.
321 ,, zzz are all fast

state vectors and first-order individually.
iw and

iv are disturbing noises of inputs

and outputs. Therefore, when the system researches quasi-steady state, 0 and the
system can be reduced to a second order system such as
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Next, we digitize this reduced-order model to discrete-time domain with the sampling
period 0.1.
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In this example, the overall state vector w is concerned with
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w . Now, if we

want to have the optimal control in the subsystem one, by assuming the existing
 112 K and  553 K , we can rewrite the model as
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If the performance index of the slow state vector from the subsystem one is
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where
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1Q ; 11 R . The optimal control of the subsystem one:

 5737.02814.31 optimalu )(kx (31)
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3957.130517.61
0517.618580.364 . The pole locations of this optimal control are 0.9820

and 0.8240; therefore, the system is stabilized by the controller, too. If the initial
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For the robust control test, this optimal reduced-order control will be placed back
to the original full-order model. If the desired performance still exist, we have a
robust control system. If 001.0 , we can have the same discrete-time model as:
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Now, we use the optimal feedback gain,  5737.02814.31 optimalK , in the full-
order system with  112 K and  553 K . The pole locations of the system are
0.9853 and 0.8006. We can see the locations are very close to the desired pole
locations; therefore, we have a robust control system.

Also, by assuming 1y  11100
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, we can have the system

responses based on the subsystem one with h=0.1 and =0.001 as follows:

Fig. 2. The open-loop zero-input response of the full-order system with
the slow state poles at 0.9915 and 0.9038.
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Fig. 3. The closed-loop zero-input response with the optimal reduced-
order controller shifting poles to 0.9820 and 0.8240.

The robustness bound of the robust control system can be found by changing the
value of . Table 1 shows how the poles shift when the value of  changes.

Table 1. The robust control test.

 Poles
5.0000e-004 0.9853, 0.8008

0.0060 0.9853, 0.7981
0.0115 0.9853, 0.7951
0.0170 0.9854, 0.7919
0.0225 0.9854, 0.7883
0.0280 0.9854, 0.7842
0.0335 0.9855, 0.7795
0.0390 0.9855, 0.7739
0.0445 0.9855, 0.7673

In this case, if we assume the system performance allows 0.03 shift at each pole
location, when  < 0.0115, we can have a robust control system. The sub-optimal,
reduced-order control that performs inside this bound is call robust, decentralized,
sub-optimal reduced-order control. In this case, the approximated optimal poles,
0.9820 and 0.8240, are used to compare with the shifting poles caused by system
uncertainties.

The robust sub-optimal control, the sub-optimal costs, and the robust control tests
of the subsystem two and the subsystem three can just follow the same procedure
used in the subsystem one.

After the reduced-order feedbacks are affirmed to be robust, for the full order
feedback gains can be found by Eq. (8) to Eq. (10). In Eq. (9)
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The aggregation matrix is solved as 










5.0667.024.32

25.0444.0207.0001.0
T and, the

full-order feedback TKK r11  =  5335.08396.17102.71803.21507.1 where

 5737.02814.31 rK found in Eq. (31). The full order feedback gains of the rest
of the subsystems can follow the same procedure as above.

5 Conclusions

The full order sub-optimal feedback of the decentralized computer control of
stochastic singularly-perturbed system can be found easily through the aggregation
matrix and couple steps; moreover, the found robust sub-optimal reduced order
feedback gain can also achieve the desired performance with decreasing cost.

By using the reduced-order state model obtained from performing the singularly
methodology, the robust reduced order feedback gain can be calculated based on the
slow LQ perform index. Next, the full-order feedback gain can be found by
multiplying the fast aggregation matrix as Eq. (25b). The effect by applying the full
order feedback and reduced order feedback will have similar performance. These two
types of feedback gains provide the demand of system to adjust the control status and



performance. The completion of this algorithm helps us to analysis the decentralized
computer control of stochastic singularly-perturbed system and fast to find the sub-
optimal feedback gain for the full-order control and reduced-order control.

Three steps of finding the robust sub-optimal poles of the system are presented as
below:
1. Find the fast aggregation matrix T from Eq. (8)-(11).
2. Find the reduced-order sub-optimal robust feedback gain of the system from Eq.

(17).
3. Find the full-order sub-optimal feedback gain of the original system from Eq.

(25b).
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