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Abstract. The ability to recognize many tags simultaneously is crucial for 
many advanced RFID-based applications. The tag anti-collision algorithm of an 
RFID system, which arbitrates collisions on the air interface among tags in the 
same reading range of a reader, makes a great influence on the speed and the 
reliability in multiple tag recognition. This paper presents a new memoryless 
tag anti-collision algorithm, QT-CBP (Query Tree with Collision Bit 
Positioning), which is designed based on QT (Query Tree) algorithm. QT-CBP 
is likely to make more concise tree traversal than QT by extracting and making 
use of detailed information on a collision condition, such as the number of 
collision bits and their positions. Basically QT-CBP is an enhanced algorithm 
for readers running QT, so no change is required at tags. Simulation study 
shows that QT-CBP outperforms QT, especially on the condition where tags 
have similar tag IDs by having the same company or product ID prefixes.  

1   Introduction 

Radio Frequency IDentification (RFID) is an automatic identification technology that 
a reader recognizes objects through wireless communications with tags attached to the 
objects. RFID systems have recently begun to find greater use in industrial 
automation and in supply chain management. The ability to recognize many tags 
simultaneously is crucial for many advanced RFID-based applications in these 
domains. However, multiple tags in the same reading range of a reader may interfere 
with each other, which make the reader hard to recognize the tags. RFID tag anti-
collision algorithms are developed to cope with this problem and the performance of 
multiple tag recognition is greatly influenced by the algorithm applied [1-8].  

RFID tag anti-collision algorithms can be categorized into tree-based algorithms 
and aloha-based algorithms. While aloha-based algorithms can be faster in 
identification than tree-based ones, they have a serious problem that a tag may not be 
identified for a long time so called tag starvation. A tree-based algorithm can be 
categorized into either “memoryless” or “memoryful” whether it requires memory at 
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tag. As memoryless tag is relatively cheap and easy to implement, memoryless 
algorithms are widely used in building cost effective RFID systems [8].  

This paper presents a new memoryless tree-based tag anti-collision algorithm, QT-
CBP (Query Tree with Collision Bit Positioning). QT-CBP is designed based on QT 
(Query Tree), a representative memoryless tree-based tag anti-collision algorithm 
developed at MIT’s Auto-ID Center [1]. When a collision occurs, QT interprets it as a 
simple boolean condition, but QT-CBP extracts more information about the collision, 
such as the number of collision bits and their positions. By making use of this 
information, QT-CBP can resolve collisions with fewer queries and fewer collisions 
than QT.  

The improvement gets clear if tags under interrogation have similar tag codes. Note 
that most of RFID code schemes, including the Electronic Product Code™ (EPC™) 
standard from the EPCglobal, adopt hierarchical structure [9]. Multiple tags to be 
identified simultaneously in the real world are likely to have similar tag codes, 
because they are likely to have the same prefix for its company and product IDs, 
which increases the efficiency of QT-CBP. Another good point of QT-CBP is that it 
does not require any change at tags, as it is basically an enhanced algorithm for 
readers running QT. The performance of QT-CBP is evaluated through simulation 
and the results show that QT-CBP reduces overall identification delay and the number 
of collisions than QT.  

The rest of this paper is organized as follows. In Section 2, we briefly introduce the 
existing tag anti-collision algorithms by categorizing them and make a detail review 
on the QT algorithm. Section 3 presents our QT-CBP algorithm in detail. The 
performance of QT-CBP is evaluated through simulation and analysis and addressed 
in Section 4. The conclusion of the paper is drawn in Section 5.  

2   Related Studies 

2.1   Classification of Anti-Collision Algorithms 

An RFID tag anti-collision algorithm can be categorized into either an aloha-based 
algorithm or a tree-based algorithm. Aloha-based algorithms reduce the probability of 
tag collision by making tags randomly select their response time. Though aloha-based 
algorithms may be faster than tree-based algorithms, their performances are stochastic 
and they cannot perfectly prevent collisions which bring about a serious problem 
called tag starvation that a tag may not be identified for a long time. Aloha-based 
algorithms can be further classified into either Bit-slot type [5] or ID-slot type [6][7]. 
While ID-slot type transfers whole tagID, Bit-slot type transfers only a bit during the 
response time.  

A tree-based algorithm makes a binary tree by splitting the group of colliding tags 
into two subgroups and traverse the tree until the reader recognize the IDs of tags 
without collision. Though tree-based algorithms have relatively long identification 
delay, they do not cause tag starvation. A tree-based algorithm can be further 
classified into either “memoryless” or “memoryful” whether it requires memory at 



tag. In memoryless algorithms [1][2], the responses from tags are decided based only 
on the current query from the reader. However, in memoryful algorithms [3][4], tags 
are able to store their current status of tree traversal and respond to a reader’s query 
based on not only the query but also their status stored in memory. Though, more 
efficient tree traversal can be accomplished by making use of memory at tag, 
memoryful algorithm requires more complex tags which are difficult to implement 
and hard to be cost effective. The classification of RFID tag anti-collision algorithms 
is summarized at Table 1.  

Table 1. Classification of tag anti-collision algorithms 

Anti-Collision Algorithm 

Memoryless Query Tree [1] 
Tree Walking [2] Tree-based 

Algorithm 
Memoryful Splitting tree [3] 

Bit-arbitration [4] 

Bit-Slot Bit-Slot [5] Aloha-
based 
Algorithm ID-Slot I-Code [6] 

STAC [7] 

2.2   Query Tree Algorithm 

The QT algorithm is a representative memoryless tree-based tag anti-collision 
algorithm developed at MIT’s Auto-ID Center. The QT algorithm consists of rounds. 
In each round, a reader transmits a query to tags, and then tags respond it with their 
IDs. The reader makes its query by popping a query stored in the query queue. Each 
query contains k-bits long prefix string which each tag compares with the prefix of its 
tagID. If it matches, the tag sends its whole tagID as a response or simply ignores the 
query and makes no response otherwise. When the query queue is empty, the reader 
makes a special query including the empty prefix string <ε>. Any tag receiving the 
query including the empty prefix string <ε> should response. 

If there is only one response for a query, the reader can successfully recognize the 
tag. However, if there are more than one responses, responses collide and the reader 
cannot recognizes the tag. In this collision case, the reader creates two queries by 
appending ‘0’ (zero) and ‘1’ (one) to the previous query and stores them into the 
query queue. In case of no tags matches the prefix, there is no tag response. And the 
reader does noting and begins the next round. The algorithm repeats the above 
procedure until all queries in the queue are popped (i.e., empty). 

Fig. 1 illustrates the process of QT algorithm with four tags which have IDs of 000, 
001, 101 and 110. Each column represents a round. The first row ‘Reader’ shows the 
queries sent from the reader, the second row ‘response’ shows the aggregated 
responses from the tags, from the third to the sixth rows show the responses of each 
tags, the seventh row ‘Q’ shows stored queries in the query queue, and the eighth row 
‘M’ shows identified tags and their IDs. 
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Fig. 1. Process illustration of QT algorithm for 4 tags with 3 bits long tag IDs, 000, 001, 101 
and 110 

3   QT-CBP Protocol 

When a collision occurs, QT interprets it as a simple boolean condition. The QT 
might be designed based on an assumption that a reader can not extract any valid 
information but collision itself when a collision occurs. However, we assert that more 
detailed information about the collision can be extracted. For example, in 900MHz 
EPC Class 0 RFID systems, one of most widely used RFID systems, each tag 
response is defined by two sub-carrier frequencies, one for binary 0, and the other for 
binary 1. As 0 and 1 are responded through different frequencies, a reader can identify 
them at the same time [10]. Though a reader cannot differentiate one 0 (from a single 
tag) from multiple 0s (from multiple tags), it does not matter for QT-CBP.  

From the above observation, we assume that a reader can extract more detailed 
information about the collision, such as the number of collision bits and the positions 
of colliding bits. Based on this assumption, we designed a new memoryless tree-based 
tag anti-collision algorithm, QT-CBP. Without changing tag operation, a QT-CBP 
reader makes use of information on collision bits and their positions to remove 
redundant queries which just make another useless collision. As a result, the QT-CBP 
can reduce overall identification delay and the number of collisions than QT. Figure 2 
illustrates the pseudo codes of QT-CBP.  

 
The QT-CBP Protocol 
Reader has a query stack S and a TagId memory M. 
Let ωk be the k’th bits of a bit string 
Reader 
Begin 
   Initially S = < ε >, M = <  > 
   while(stack is not empty) 
     Pop a query q from S; 
     Broadcast q; 



     Switch (response result) 
       Case “only one response”: 
           Save the responded tagID r in M 
           Break; 
       Case “more than one response”: 
           Get the aggregated response R  

R = ω1ω2ω3...ωk-1X...; X -> collision bit 
         count the collision(X) bits -> Nc 
         resolve the position of the first colliding bit -> k 

If (Nc = 1) 
             Get two new tagIDs r1, r2 from R  

r1=ω1ω2ω3...ωk-10..., r2=ω1ω2ω3...ωi-11... 
save r1, r2 in M 

else 
Push two new queries q1, q2 to S  
 q1=ω1ω2ω3...ωk-10, q2=ω1ω2ω3...ωi-11 

           Break; 
       Case “no response”: // Do nothing 
           Break; 
   end while 
 end 
Tag 
 Has a TagID r = ω1ω2ω3...ω|tagID Length| 
 begin 

Wait (query q from the reader) 
     if(q=ε or q=ω1ω2ω3...ω|q|) 
       send r to the reader 
end 

Fig. 2.  A pseudo code illustration of QT-CBP 

 
Figure 3 illustrates the process of QT-CBP for the same configuration of Figure 1. 

Note that while QT uses a queue to store the next queries, QT-CBP uses a stack. 
While QT requires four queries, which are 0, 00, 000 and 001, to resolve two tags, 
000, 001, QT-CBP requires just one query, 0, to resolve them. The overall number of 
rounds required to resolve all tags reduced from nine to five.  
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Fig. 3. Process illustration of QT-CBP algorithm for 4 tags with 3 bits long tag IDs, 000, 001, 

101 and 110 

 



4   Simulation for Performance Evaluation 

The Electronic Product Code™ (EPC™) is an identification scheme for universally 
identifying physical objects via Radio Frequency Identification (RFID) tags. 
EPCglobal has released the Tag Data Standards (TDS) specification – recently TDS 
version 1.3, which includes a General Identifier (GID) and several serialized version 
of the EAN.UCC (European Article Numbering - Uniform Code Council) legacy 
encoding schemes. Figure 4 shows general form of tag data structure as representative 
scheme – the GID-96 encoding scheme [9]. 
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8 28 24 36 
GID 
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(Binary value) 
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16,777,215 
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68,719,467,735 

(Max. decimal value) 

Fig. 4. EPCGlobal’s GID-96 Tag Sturcture 

 
The GID-96 encoding scheme is used in modeling sample tag data of our 

simulation for performance evaluation. The GID-96 scheme consists of four fields, 
‘Header’, ‘General Manager Number’, ‘Object Class’ and ‘Serial Number’. The 
Header field defines the overall length and format of the following fields and it is 
fixed to 00110101 for the GID-96 scheme. The General Manager Number identifies 
an organizational entity (essentially a company, manager or other organization) that is 
responsible for maintaining the numbers in subsequent fields, Object Class and Serial 
Number. EPCglobal assigns the General Manager Number to an entity, and ensures 
that each General Manager Number is unique. The Object Class is used by an EPC 
managing entity to identify a class or “type” of thing. These object class numbers, of 
course, must be unique within each General Manager Number domain. Finally, the 
Serial Number code, or serial number, is unique within each object class. In other 
words, the managing entity is responsible for assigning unique, non-repeating serial 
numbers for every instance within each object class. 

Because of the hierarchical structure of the standard encoding scheme, we assert 
that multiple tags to be identified simultaneously in the real world are likely to have 
similar tag IDs, as they are likely to have the same General Manager Number or even 
the same Object Class number. We applied the above assertion to our simulation. 
Sample tags are generated to reflect the above characteristics by sharing the same 
Object class number or sequentially assigned Serial Number. We carry out 
simulations for three different tag generation cases. In each case, we increase the 
number of tags to be identified from 100 to 1000.  

To evaluate the performance of QT and QT-CBP, we measured the total length of 
queries in bits and the number of rounds required to identify all the sample tags given. 

 



Case 1: Five Different Object Classes with Sequential Serial Codes. In this 
simulation, tags for five different object classes are generated. Tags belong to the 
same object class have sequentially assigned serial codes. The followings are 
examples of generated sample tags. The underlined parts are Object Class number. 
 

000011110001 , 000011110002,  ....  
000011101001 , 000011101002,  ... 
011100001021 , 011100001022,  ... 
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Fig. 5. The number of rounds required – Case 1 
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Fig. 6. The total length of queries in bits – Case 1 

 



Case 2: The same Object Class with Random Serial Codes. In this simulation, the 
generated tags are different only in the Serial Code field. The 36-bit long Serial Code 
values are randomly assigned.  
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Fig. 7. The number of rounds required –Case 2 
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Fig. 8. The total length of queries in bits – Case 2 

 
 
 



Case 3: The same Object Class with Sequential Serial Codes. In this simulation, 
the generated tags are different only in the Serial Code field and their Serial Codes are 
sequentially assigned.  
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Fig. 9. The number of rounds required – Case 3 
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Fig. 10. The total length of queries in bits – Case 3 

 
 

The previous simulation results show that QT-CBP is more efficient than QT. Note 
that the performance gap between QT and QT-CBP gets wider as the number of tags 
increases, and the most noticeable gap among the three cases is found in the case 3. 
This is because QT-CBP becomes more efficient as more tags have similar IDs. 



5   Conclusions 

In this paper, we suggest a new memoryless tree-based RFID tag anti-collision 
algorithm, QT-CBP, based on the QT algorithm developed at MIT’s Auto-ID center. 
When a collision is detected, QT-CBP analyzes the number of collision bits and their 
positions to make more efficient tree traversal. Without changing tag operation, the 
QT-CBP identifies multiple tags with fewer reader queries and fewer collisions than 
QT, which makes faster identification possible. The performance of QT-CBP is 
evaluated through simulation and the results show that QT-CBP outperforms QT, 
especially on the condition where tags have similar tag IDs by having the same 
company or product ID prefixes. 
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