
QT-CBP: A New RFID Tag Anti-Collision Algorithm
using Collision Bit Positioning★

Hyunji Lee1, Jongdeok Kim2

Dept. of Computer Science and Engineering, Pusan National University.
1eastleap@pusan.ac.kr, 2kimjd@pusan.ac.kr

Abstract. The ability to recognize many tags simultaneously is crucial for
many advanced RFID-based applications. The tag anti-collision algorithm of an
RFID system, which arbitrates collisions on the air interface among tags in the
same reading range of a reader, makes a great influence on the speed and the
reliability in multiple tag recognition. This paper presents a new memoryless
tag anti-collision algorithm, QT-CBP (Query Tree with Collision Bit
Positioning), which is designed based on QT (Query Tree) algorithm. QT-CBP
is likely to make more concise tree traversal than QT by extracting and making
use of detailed information on a collision condition, such as the number of
collision bits and their positions. Basically QT-CBP is an enhanced algorithm
for readers running QT, so no change is required at tags. Simulation study
shows that QT-CBP outperforms QT, especially on the condition where tags
have similar tag IDs by having the same company or product ID prefixes.

1 Introduction

Radio Frequency IDentification (RFID) is an automatic identification technology that
a reader recognizes objects through wireless communications with tags attached to the
objects. RFID systems have recently begun to find greater use in industrial
automation and in supply chain management. The ability to recognize many tags
simultaneously is crucial for many advanced RFID-based applications in these
domains. However, multiple tags in the same reading range of a reader may interfere
with each other, which make the reader hard to recognize the tags. RFID tag anti-
collision algorithms are developed to cope with this problem and the performance of
multiple tag recognition is greatly influenced by the algorithm applied [1-8].

RFID tag anti-collision algorithms can be categorized into tree-based algorithms
and aloha-based algorithms. While aloha-based algorithms can be faster in
identification than tree-based ones, they have a serious problem that a tag may not be
identified for a long time so called tag starvation. A tree-based algorithm can be
categorized into either “memoryless” or “memoryful” whether it requires memory at

★ This work was supported by the Regional Research Centers Program (Research Center for

Logistics Information Technology), granted by the Korean Ministry of Education & Human
Resources Development.

tag. As memoryless tag is relatively cheap and easy to implement, memoryless
algorithms are widely used in building cost effective RFID systems [8].

This paper presents a new memoryless tree-based tag anti-collision algorithm, QT-
CBP (Query Tree with Collision Bit Positioning). QT-CBP is designed based on QT
(Query Tree), a representative memoryless tree-based tag anti-collision algorithm
developed at MIT’s Auto-ID Center [1]. When a collision occurs, QT interprets it as a
simple boolean condition, but QT-CBP extracts more information about the collision,
such as the number of collision bits and their positions. By making use of this
information, QT-CBP can resolve collisions with fewer queries and fewer collisions
than QT.

The improvement gets clear if tags under interrogation have similar tag codes. Note
that most of RFID code schemes, including the Electronic Product Code™ (EPC™)
standard from the EPCglobal, adopt hierarchical structure [9]. Multiple tags to be
identified simultaneously in the real world are likely to have similar tag codes,
because they are likely to have the same prefix for its company and product IDs,
which increases the efficiency of QT-CBP. Another good point of QT-CBP is that it
does not require any change at tags, as it is basically an enhanced algorithm for
readers running QT. The performance of QT-CBP is evaluated through simulation
and the results show that QT-CBP reduces overall identification delay and the number
of collisions than QT.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
existing tag anti-collision algorithms by categorizing them and make a detail review
on the QT algorithm. Section 3 presents our QT-CBP algorithm in detail. The
performance of QT-CBP is evaluated through simulation and analysis and addressed
in Section 4. The conclusion of the paper is drawn in Section 5.

2 Related Studies

2.1 Classification of Anti-Collision Algorithms

An RFID tag anti-collision algorithm can be categorized into either an aloha-based
algorithm or a tree-based algorithm. Aloha-based algorithms reduce the probability of
tag collision by making tags randomly select their response time. Though aloha-based
algorithms may be faster than tree-based algorithms, their performances are stochastic
and they cannot perfectly prevent collisions which bring about a serious problem
called tag starvation that a tag may not be identified for a long time. Aloha-based
algorithms can be further classified into either Bit-slot type [5] or ID-slot type [6][7].
While ID-slot type transfers whole tagID, Bit-slot type transfers only a bit during the
response time.

A tree-based algorithm makes a binary tree by splitting the group of colliding tags
into two subgroups and traverse the tree until the reader recognize the IDs of tags
without collision. Though tree-based algorithms have relatively long identification
delay, they do not cause tag starvation. A tree-based algorithm can be further
classified into either “memoryless” or “memoryful” whether it requires memory at

tag. In memoryless algorithms [1][2], the responses from tags are decided based only
on the current query from the reader. However, in memoryful algorithms [3][4], tags
are able to store their current status of tree traversal and respond to a reader’s query
based on not only the query but also their status stored in memory. Though, more
efficient tree traversal can be accomplished by making use of memory at tag,
memoryful algorithm requires more complex tags which are difficult to implement
and hard to be cost effective. The classification of RFID tag anti-collision algorithms
is summarized at Table 1.

Table 1. Classification of tag anti-collision algorithms

Anti-Collision Algorithm

Memoryless Query Tree [1]
Tree Walking [2] Tree-based

Algorithm
Memoryful Splitting tree [3]

Bit-arbitration [4]

Bit-Slot Bit-Slot [5] Aloha-
based
Algorithm ID-Slot I-Code [6]

STAC [7]

2.2 Query Tree Algorithm

The QT algorithm is a representative memoryless tree-based tag anti-collision
algorithm developed at MIT’s Auto-ID Center. The QT algorithm consists of rounds.
In each round, a reader transmits a query to tags, and then tags respond it with their
IDs. The reader makes its query by popping a query stored in the query queue. Each
query contains k-bits long prefix string which each tag compares with the prefix of its
tagID. If it matches, the tag sends its whole tagID as a response or simply ignores the
query and makes no response otherwise. When the query queue is empty, the reader
makes a special query including the empty prefix string <ε>. Any tag receiving the
query including the empty prefix string <ε> should response.

If there is only one response for a query, the reader can successfully recognize the
tag. However, if there are more than one responses, responses collide and the reader
cannot recognizes the tag. In this collision case, the reader creates two queries by
appending ‘0’ (zero) and ‘1’ (one) to the previous query and stores them into the
query queue. In case of no tags matches the prefix, there is no tag response. And the
reader does noting and begins the next round. The algorithm repeats the above
procedure until all queries in the queue are popped (i.e., empty).

Fig. 1 illustrates the process of QT algorithm with four tags which have IDs of 000,
001, 101 and 110. Each column represents a round. The first row ‘Reader’ shows the
queries sent from the reader, the second row ‘response’ shows the aggregated
responses from the tags, from the third to the sixth rows show the responses of each
tags, the seventh row ‘Q’ shows stored queries in the query queue, and the eighth row
‘M’ shows identified tags and their IDs.

001000
001

11
000
001

10
11
000
001

01
10
11
000
001

00
01
10
11

1
00
01

0
1

Q={ε}

101
110
000
001

101
110
000

101
110

101

Memory M

110

101

Collision

1

110110Tag4 (110)

101101Tag3 (101)

001001001001Tag1 (001)

000000000000Tag1 (000)

001000110101No
Response

CollisionCollisionCollision
response

001000111001000εReader

001000
001

11
000
001

10
11
000
001

01
10
11
000
001

00
01
10
11

1
00
01

0
1

Q={ε}

101
110
000
001

101
110
000

101
110

101

Memory M

110

101

Collision

1

110110Tag4 (110)

101101Tag3 (101)

001001001001Tag1 (001)

000000000000Tag1 (000)

001000110101No
Response

CollisionCollisionCollision
response

001000111001000εReader

Fig. 1. Process illustration of QT algorithm for 4 tags with 3 bits long tag IDs, 000, 001, 101
and 110

3 QT-CBP Protocol

When a collision occurs, QT interprets it as a simple boolean condition. The QT
might be designed based on an assumption that a reader can not extract any valid
information but collision itself when a collision occurs. However, we assert that more
detailed information about the collision can be extracted. For example, in 900MHz
EPC Class 0 RFID systems, one of most widely used RFID systems, each tag
response is defined by two sub-carrier frequencies, one for binary 0, and the other for
binary 1. As 0 and 1 are responded through different frequencies, a reader can identify
them at the same time [10]. Though a reader cannot differentiate one 0 (from a single
tag) from multiple 0s (from multiple tags), it does not matter for QT-CBP.

From the above observation, we assume that a reader can extract more detailed
information about the collision, such as the number of collision bits and the positions
of colliding bits. Based on this assumption, we designed a new memoryless tree-based
tag anti-collision algorithm, QT-CBP. Without changing tag operation, a QT-CBP
reader makes use of information on collision bits and their positions to remove
redundant queries which just make another useless collision. As a result, the QT-CBP
can reduce overall identification delay and the number of collisions than QT. Figure 2
illustrates the pseudo codes of QT-CBP.

The QT-CBP Protocol
Reader has a query stack S and a TagId memory M.
Let ωk be the k’th bits of a bit string
Reader
Begin
 Initially S = < ε >, M = < >
 while(stack is not empty)
 Pop a query q from S;
 Broadcast q;

 Switch (response result)
 Case “only one response”:
 Save the responded tagID r in M
 Break;
 Case “more than one response”:
 Get the aggregated response R

R = ω1ω2ω3...ωk-1X...; X -> collision bit
 count the collision(X) bits -> Nc
 resolve the position of the first colliding bit -> k

If (Nc = 1)
 Get two new tagIDs r1, r2 from R

r1=ω1ω2ω3...ωk-10..., r2=ω1ω2ω3...ωi-11...
save r1, r2 in M

else
Push two new queries q1, q2 to S
 q1=ω1ω2ω3...ωk-10, q2=ω1ω2ω3...ωi-11

 Break;
 Case “no response”: // Do nothing
 Break;
 end while
 end
Tag
 Has a TagID r = ω1ω2ω3...ω|tagID Length|
 begin

Wait (query q from the reader)
 if(q=ε or q=ω1ω2ω3...ω|q|)
 send r to the reader
end

Fig. 2. A pseudo code illustration of QT-CBP

Figure 3 illustrates the process of QT-CBP for the same configuration of Figure 1.

Note that while QT uses a queue to store the next queries, QT-CBP uses a stack.
While QT requires four queries, which are 0, 00, 000 and 001, to resolve two tags,
000, 001, QT-CBP requires just one query, 0, to resolve them. The overall number of
rounds required to resolve all tags reduced from nine to five.

00
1 0

0
1 0
1 1

0
1S = {ε }

1 1 0
1 0 1
0 0 0
0 0 1

1 10
1 01

1 1 0

M e m o ry M

1 1 0

1 1 0

1 1

1 101 1 0T a g 4 (1 1 0)

1 011 011 0 1T a g 3 (1 0 1)

0 0 10 0 1T a g 2 (0 0 1)

0 0 00 0 0T a g 1 (0 0 0)

(0 0 X)
0 00 0 0 1

1 01
C o ll is io n

(1 X X)
C o l lis io n

(X X X)
R e sp o n s e

01 01εR e a d e r

00
1 0

0
1 0
1 1

0
1S = {ε }

1 1 0
1 0 1
0 0 0
0 0 1

1 10
1 01

1 1 0

M e m o ry M

1 1 0

1 1 0

1 1

1 101 1 0T a g 4 (1 1 0)

1 011 011 0 1T a g 3 (1 0 1)

0 0 10 0 1T a g 2 (0 0 1)

0 0 00 0 0T a g 1 (0 0 0)

(0 0 X)
0 00 0 0 1

1 01
C o ll is io n

(1 X X)
C o l lis io n

(X X X)
R e sp o n s e

01 01εR e a d e r

Fig. 3. Process illustration of QT-CBP algorithm for 4 tags with 3 bits long tag IDs, 000, 001,

101 and 110

4 Simulation for Performance Evaluation

The Electronic Product Code™ (EPC™) is an identification scheme for universally
identifying physical objects via Radio Frequency Identification (RFID) tags.
EPCglobal has released the Tag Data Standards (TDS) specification – recently TDS
version 1.3, which includes a General Identifier (GID) and several serialized version
of the EAN.UCC (European Article Numbering - Uniform Code Council) legacy
encoding schemes. Figure 4 shows general form of tag data structure as representative
scheme – the GID-96 encoding scheme [9].

 Header
General
Manager
Number

Object Class Serial Number

8 28 24 36
GID
- 96 00110101

(Binary value)
268,435,455

(Max. decimal Value)
16,777,215

(Max. decimal value)
68,719,467,735

(Max. decimal value)

Fig. 4. EPCGlobal’s GID-96 Tag Sturcture

The GID-96 encoding scheme is used in modeling sample tag data of our

simulation for performance evaluation. The GID-96 scheme consists of four fields,
‘Header’, ‘General Manager Number’, ‘Object Class’ and ‘Serial Number’. The
Header field defines the overall length and format of the following fields and it is
fixed to 00110101 for the GID-96 scheme. The General Manager Number identifies
an organizational entity (essentially a company, manager or other organization) that is
responsible for maintaining the numbers in subsequent fields, Object Class and Serial
Number. EPCglobal assigns the General Manager Number to an entity, and ensures
that each General Manager Number is unique. The Object Class is used by an EPC
managing entity to identify a class or “type” of thing. These object class numbers, of
course, must be unique within each General Manager Number domain. Finally, the
Serial Number code, or serial number, is unique within each object class. In other
words, the managing entity is responsible for assigning unique, non-repeating serial
numbers for every instance within each object class.

Because of the hierarchical structure of the standard encoding scheme, we assert
that multiple tags to be identified simultaneously in the real world are likely to have
similar tag IDs, as they are likely to have the same General Manager Number or even
the same Object Class number. We applied the above assertion to our simulation.
Sample tags are generated to reflect the above characteristics by sharing the same
Object class number or sequentially assigned Serial Number. We carry out
simulations for three different tag generation cases. In each case, we increase the
number of tags to be identified from 100 to 1000.

To evaluate the performance of QT and QT-CBP, we measured the total length of
queries in bits and the number of rounds required to identify all the sample tags given.

Case 1: Five Different Object Classes with Sequential Serial Codes. In this
simulation, tags for five different object classes are generated. Tags belong to the
same object class have sequentially assigned serial codes. The followings are
examples of generated sample tags. The underlined parts are Object Class number.

000011110001 , 000011110002,
000011101001 , 000011101002, ...
011100001021 , 011100001022, ...

0 200 400 600 800 1000

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

5 ty pes of Objec t Clas s , S erial Num ber s equential

The num ber of tags

QT
QT-CB P

T
h
e
 a
ve
ra
g
e
 r
o
u
n
d
s
 f
o
r
id
e
n
ti
fy
in
g
 a
ll
ta
g
s

Fig. 5. The number of rounds required – Case 1

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 105

The num ber of tags

5 Ty pes of Objec t Clas s , S erial Num ber s equent ial

T
he

 t
ot

al
 le

ng
th

 o
f

th
e

re
ad

er
 q

ue
ry

 b
its

 (
bi

t)

QT
QT-CB P

Fig. 6. The total length of queries in bits – Case 1

Case 2: The same Object Class with Random Serial Codes. In this simulation, the
generated tags are different only in the Serial Code field. The 36-bit long Serial Code
values are randomly assigned.

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

T
he

 a
ve

ra
ge

 r
ou

nd
s

fo
r

id
en

tif
yi

ng
 a

ll
ta

gs

QT
QT-CBP

The num ber of tags

Serial Number random

Fig. 7. The number of rounds required –Case 2

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

5

The num ber of tags

S erial Num ber random

T
he

 t
ot

al
 le

ng
th

 o
f

re
ad

er
 q

ue
ry

 (
bi

t)

QT
QT-CBP

Fig. 8. The total length of queries in bits – Case 2

Case 3: The same Object Class with Sequential Serial Codes. In this simulation,
the generated tags are different only in the Serial Code field and their Serial Codes are
sequentially assigned.

T
h
e
 a
ve
ra
g
e
 r
o
u
n
d
s
 f
o
r
id
e
n
ti
fy
in
g
 a
ll
ta
g
s

0 200 400 600 800 1000
200

400

600

800

1000

1200

1400

1600

1800

2000

2200
S erial Num ber sequent ial

The num ber of tags

Q T
Q T-CB P

Fig. 9. The number of rounds required – Case 3

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

The num ber of tags

S erial Num ber sequential

T
he

 t
ot

al
 le

ng
th

 o
f

re
ad

er
 q

ue
ry

(b
it)

Q T
Q T-CB P

Fig. 10. The total length of queries in bits – Case 3

The previous simulation results show that QT-CBP is more efficient than QT. Note
that the performance gap between QT and QT-CBP gets wider as the number of tags
increases, and the most noticeable gap among the three cases is found in the case 3.
This is because QT-CBP becomes more efficient as more tags have similar IDs.

5 Conclusions

In this paper, we suggest a new memoryless tree-based RFID tag anti-collision
algorithm, QT-CBP, based on the QT algorithm developed at MIT’s Auto-ID center.
When a collision is detected, QT-CBP analyzes the number of collision bits and their
positions to make more efficient tree traversal. Without changing tag operation, the
QT-CBP identifies multiple tags with fewer reader queries and fewer collisions than
QT, which makes faster identification possible. The performance of QT-CBP is
evaluated through simulation and the results show that QT-CBP outperforms QT,
especially on the condition where tags have similar tag IDs by having the same
company or product ID prefixes.

References

1. Ching Law, Kayi Lee, and Kai-Yeung Sju, "Efficient Momoryless Protocol for Tag
Identification", Proceedings of the 4th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communication, pp. 75-84, Boston, MA, August 2000.

2. A. Juels, R. Rivest, and M. Szydlo, “The Blocker Tag: Selective Tag Blocking of RFID Tags
for Consumer Pri-vacy”, Proceedings of the 10th ACM Conference on Com-puter and
Communication Security, pp. 103~111, 2003.

3. Don R. Hush and Cliff Wood, “Analysis of Tree Algo-rithm for RFID Arbitration”,
Proceedings of IEEE Interna-tional Symposium on Information Theory, pp. 107~116, 1998.

4. Marcel Jacomet, Adrian Ehrsam, Urs Gehrig, “Contact-less identification device with anti-
collision algorithm”, Proceedings of IEEE Conference on Circuits, Systems, Computers and
Communications, Athens, July, 1999.

5. Changsoon Kim, Kyunglang Park, Hiecheol Kim, Shindug Kim, “An Efficient Stochastic
Anti-Collision Al-gorithm using Bit-slot Mechanism”, PDP’2004, July 2004.

6. Harald Vogt, “Efficient Object Identification with Pas-sive RFID Tags”, Proceedings of
International Conference on Pervasive Computing, Zurich, 2002.

7. Auto-ID Center, “13.56 MHz ISM Banc Class 1 Radio Frequency Identification Tag
Interface Specification, Ver-sion 1.0”, Auto-ID Center, May, 2003.

8. Jihoon Myung and Wonjun Lee, “An Adaptive Mem-oryless Tag Anti-Collision Protocol for
RFID Networks”, Proceeding of the 24th IEEE Annual Conference on Com-puter
Communications (INFOCOM 2005), Miami, Florida, March 2005.

9. Auto-ID Center, “EPCTM Tag Data Standards Version 1.3”, Auto-ID Center. September
2005.

10. Auto-ID Center, “Draft protocol specification for a 900MHz Class 0 Radio Frequency
Identification Tag”, Auto-ID Center. February 2003.

