
UML based Evaluation of Reconfigurable Shape
Adaptive DCT for Embedded Stream Processing

Xianhui HE1, Yongxin ZHU1, Zhenxin SUN2, and Yuzhuo FU1

1 School of Microelectronics
Shanghai Jiao Tong University

{hexianhui, zhuyongxin, fuyuzhuo}@ic.sjtu.edu.cn
2 School of Computing

National University of Singapore
sunzhenx@comp.nus.edu.sg

Abstract. Multimedia stream standards evolve rapidly as stream applications
prosper in embedded systems. A key component of standards, discrete cosine
transform is being replaced by SA-DCT, whose complexity results in a large de-
sign space. The paper describes a UML 2.0 based design approach to quick evalu-
ation of SA-DCT implementations containing both hardware and software, which
are hard to describe and verify in C, Verilog and VHDL. Using the approach, we
manage to study the partitioning, reconfigurability as well as performance and
hardware cost. The design specifications in UML can be translated into SystemC
models consisting of simulators and synthesizable code under proper style con-
straints. The paper demonstrates the feasibility of quick specifications, verifica-
tion, evaluation and generation of embedded system designs.

1 Introduction

Since the new millennium, multimedia applications have been gaining their popularity
as well as complexity. The complexity is represented by growing computation demands.
Due to the busty nature, video stream processing tops the multimedia applications in
terms of complexity. A lot of efforts in standards and implementations therefore are
dedicated to handling challenges incurred by the complexity.

Video coding standards evolve in the same pace as multimedia applications. To
cope with the computation demands of the applications, MPEG-4 was developed and
adopted widely after its precedents MPEG1 and MPEG2. One of major features that
identifies MPEG-4 from MPEG series standards is the Shape-Adaptive Discrete Co-
sine Transform (SA-DCT) proposed by Sikora and Makai in [13]. SA-DCT is able to
code irregular video regions, compared to traditional block-based DCT which is used
in earlier releases of MPEG standards, MPEG-1 and MPEG-2 as well as MPEG’s sister
standards, H.261 and H.263. The irregular video regions are boundaries between a sta-
tionary background and moving forward objects. MPEG-4 relies on SA-DCT to achieve
object-based texture encoding, and operations on the objects.

SA-DCT implementations differ significantly due to many concerns, among which
adaptability, reconfigurability, functional completeness, and efficiency are considered
as major ones. Tseng et al. in [17] consider the SA-DCT implementation [11] proposed

by Le et al. is incomplete functionally. It is also unclear whose reconfigurability is better
between the design by Chen et al. [6] and the strategy by Gause et al. [7]. As such, it is
hard to quickly evaluate various SA-DCT architectures.

An approach to taming the complexity of evaluation is to raise the level of abstrac-
tion to that of system-level designs. This approach incurs the needs to specify abstract
systems. The Unified Modelling Language (UML) is considered fit to play this role.

Another important issue in specifying SA-DCT architectures is that the specifica-
tions must be reconfigured easily. To fit the shape of video object, SA-DCT calculations
are reconfigurable and flexible in nature. Due to the arbitrary boundary of the video ob-
ject, the hardware required by SA-DCT depends on the number of pixels occupied by
the object within the 8× 8 block involved in SA-DCT calculation.

To study the reconfigurability of SA-DCT architectures in UML, embedded system
designers need to describe the architectures clearly with less efforts using UML than
text-based specifications. Interestingly, specifications of SA-DCT architectures in UML
are intuitive to reconfigure graphically so long as the designers are knowledgable about
object-oriented programming, which is the common sense for engineers since 1990s.
Our Scope of Work and Related Work: In the domain of UML for system designs,
a large body of work has been reported. Some UML extensions from UML 1.x are
proposed in [10]. Two instances of UML extension and translation are [2, 18]. A pre-
vious effort [16] focused on hardware generation from UML models without explicit
UML specifications of stream processing. Another earlier work [12] mainly studied the
model driven architecture approach via SystemC using UML 1.x. A recent work [14]
addressed the clocking issues involved in clocked circuit design in UML. A more re-
cent work [19] explored the suitability of UML 2.0 for designs of stream processing,
and established a design workflow that takes SystemC as an intermediate language.

In this paper, we will discuss two categories of SA-DCT architectures, into which
hardware-favored and software-favored approaches fall before we present the specifi-
cations in UML 2.0. This discussion is to explain the existence of the tradeoff between
the high performance of customized hardware and the flexibility of low cost software.

In the rest of the paper, we will brief the UML based workflow including the transla-
tor. Then we will categorize implementations of SA-DCT in terms of software/hardware
partitions. That will be followed by details of UML specifications of two instances of
representative SA-DCT implementations. According to the UML specifications, we will
present the experimental results on performance and hardware costs. Some remarks will
be given to conclude the paper.

2 The UML 2.0 based Workflow

The workflow starts with specifications in UML 2.0 using I-Logix’s Rhapsody. The
specifications are executable within the UML tool at the UML level. Both functional
verifications and performance verifications are carried out. As such, the verifications
are performed as earlier as possible. Figure 1 shows the steps in the workflow.

After verifying the functionality and performance at UML level, we export the
design specifications into intermediate data via the Rhapsody XML Metadata Inter-
change(XMI) toolkit. These data are parsed by the jdom-based parser [8] to generate

Fig. 1. The UML 2.0 based Workflow

the abstract grammar tree. These information along with a set of translation templates
are feeded into Apache Velocity Template Engine [1] to generate the target code, design
specifications in SystemC. The SystemC code under proper coding style constraints is
acceptable to Synopsys SystemC compiler [15], which translates the SystemC code into
synthesizable RTL level netlists in Verilog or VHDL. Additional hardware specification
details can be included by the translator on top of the general mapping rules explained
above. This action is part of refining process in the design workflow.

3 SA-DCT Classifications

For blocks inside a video object plane (VOP), block-based DCT encoding behaves iden-
tically to SA-DCT encoding. SA-DCT saves computation for processing blocks outside
the VOP only. The boundary encoding process starts by packing the VOP pixels and
aligning them to the upper bound of the 8x8 block. According to [13], given the column
length N where 1 ≤ N ≤ 8, the uth DCT coefficient F (u) of an 1D N -point DCT for
each column is derived as Equ. 1.

F (u) =
√

2
N C(u)

∑N−1
x=0 f(x) cos[(2x+1)uπ

2N]. (1)

f(x) is the data vector, C(u) = 1√
2

if u = 0, 1,...,N − 1, and C(u) = 1 otherwise.
To avoid expensive multipliers in terms of power consumption and chip area, many

adder-based distributed arithmetic (DA) approaches [4] [3] are proposed as replace-
ments. Given an N -tap inner product with input sequence Xi, output sequence Yn, and
constant coefficient Ai, Equ. 2 expresses the inner production as per [5].

Yn =
∑N−1

i=0 AiXi =
∑Wc−1

k=0 (
∑N−1

i=0 Ai,kXi)2−k. (2)
Wc is the word length of Ai and Ai,k represents the kth bit of Ai. When Ai,k equals 0,
computations are saved. The only required operations are bit shifting and addition.

A hardware-favored implementation of DA is the work of Kinane et al. [9], an archi-
tecture consisting completely of hardware is proposed to optimize the usage of adders.
The architecture is illustrated in Fig. 2. To make our discussion concise, we refer the

Fig. 2. A SA-DCT architecture containing hardware only, courtesy of Kinane et al. [9]

architecture of Kinane et al. as method one (m1) in the paper. In the architecture of m1,
the multiplexed weight generation module (MWGM) has a reconfigurable adder-based
distributed arithmetic structure adjustable to the computation of the distributed weights
for N -point DCT efficient k using a 6-bit vector {k,N}. According to {k, N}, the
multiplexers select the proper values of the weights. The primary adder array consists
of 6 two-input adders. The secondary array includes no more than 5 two-input adders.
This array combines a subset of the possible primary adder sums with elements of the
selected vector.

Another software-favored example is the energy aware IP core design proposed by
Chen et al. [5]. The architecture of the design is illustrated in Fig. 3. This architecture
is a typical representative of SA-DCT architectures part of whose functions are imple-
mented in software. In this paper, we refer this work as method two (m2). The program
memory in the architecture of m2 identifies SA-DCT solutions containing both soft-
ware and hardware partitions. The program memory stores the firmware library, which
is the collection of assembly instructions to calculate DCT/IDCT in different length.

Fig. 3. A SA-DCT architecture with embedded software, courtesy of Chen et al. [6]

4 UML Specifications

Our design specifications of m1 and m2 architecture are based on UML 2.0 notations
and implemented in I-Logix Rhapsdy6.1. We prefer this tool to others since it provides
enhanced supports for UML2.0 such as architectural modelling, sub-machines and con-
current state charts, and component based development.

In m1, the execution stages are Datapath Control stage (DPCtrl), Even Odd Decom-
pose stage(EOD), Primary Adder stage(AdderS1), Secondary Adder stage (AdderS2),
Weight Max Routing stage(WMR), Partition Product Summation Tree stage(PPST),
and Transpose RAM (TRAM) stage. The details are illustrated in Fig. 4.

In m2, there are three major components, i.e. Decision Kernel(DK), Program Mem-
ories(PM)(containing 4 N -DCT software kernels denoted as NxDCT), and Data Path(DP)
(containing an adder array and associated control logic). In Fig. 5, DK and DP are spec-
ified as individual objects, PM is specified as 4 instances of N -DCT software kernels.

To achieve specification in cycle-level accuracy, a Clock Control(clk ctrl) compo-
nent is created for both two designs as shown in Fig. 4 and Fig. 5. This clk ctrl compo-
nent provides global clock signals to all the rest components in the design.

Besides structure diagrams describing system compositions, we also use parallel
statecharts to depict system behaviors. As illustrated in the hierarchical statechart in
Fig. 6 shows, the clk Ctrl object broadcasts new cycle events to the rest objects. The
states 9, 11, 13, 15, 17, and 19 send out the new cycle events concurrently.

Testing input data are specified in dataPathCtrl class of m1, and decisionKernel
class of m2 respectively. We also specify our NxDCT classes for the simulation of the
program memory components of m2.

5 Experimental Results

Functional Verifications: The extremely early functionality verification in the design
process is executed by checking the logical correctness of events during the execution
of the UML specifications. Specifically, we look into the behavior of all the operating
components in UML specifications. We pay special attention to all the adders involved
in the calculation, especially those might stay idle during execution. More precisely,
the primary and secondary adders in m1 and the only adder on the datapath of m2 are
monitored carefully, on the other hand, PPST and TRAM in m1 and program memory
of m2 are of less importance that we do not pay much attention.

Message sequence charts Fig. 7 and Fig. 8 visualize the communications between
system components. They are automatically generated by Rhapsody during animated
execution. In Fig. 7, new cycle events, operandReadyforEOD events and addendsReady-
forAdder events are examples of trigger messages that clearly demonstrate the system
behavior together with their source and destination objects. In Fig. 8, N8sel event is a
message example that selects one program memory among four candidates.

According to traces of message passing in Fig. 7 and Fig. 8 and additional debug-
ging information, we verify the UML specifications function correctly as we expected.
Results on Tradeoffs: To make quantitative tradeoffs between performance and hard-
ware cost, we consider two metrics: hardware utilization and execution cycle number.

During the UML execution, we capture information for design evaluation. The num-
bers of execution cycles are counted and listed in Table 1. The performance of two
methods are compared in the line of reconfigurable size of SA-DCT. Though it is not
surprising that the hardware-based m1 performs significantly better than the hardware-
software solution m2, we would like to point out that the execution cycles for m2
increase more significantly than the counterpart for m1. The difference should be at-
tributed to the hardware function invocations initiated by the program memory for m2.

no. of points in SA-DCT 1 2 3 4 5 6 7 8
exec. cycles for method1 3 4 5 6 7 8 9 10
exec. cycles for method2 14 14 28 28 66 66 119 119

Table 1. Performance statistics.

no. of points in SA-DCT 1 2 3 4 5 6 7 8
ntot,m1 27 54 81 108 135 162 189 216
ntot,m2 10 10 20 20 49 49 100 100
nu,m1 16 32 48 68 85 117 137 178
nu,m2 10 10 20 20 49 49 100 100

utilization nu,m1/ntot,m1 59.2% 59.2% 59.2% 63.0% 63.0% 72.2% 72.5% 82.4%
utilization nu,m2/ntot,m2 100% 100% 100% 100% 100% 100% 100% 100%

Table 2. Hardware utilization statistics.

In Table 2, we use the utilization rate to evaluate the hardware costs. During execu-
tion, we record the number of total running adders(in one N -point DCT) as ntot, and
number of useful running adders(in one N -point DCT) as nu. Since data paths of both
designs mainly consist of adders, the hardware utilization rate can be represented by
nu/ntot. We denote ntot for m1 as ntot,m1, ntot for m2 as ntot,m1. nu for m1 and m2
is denoted as nu,m1 and nu,m2 respectively. As such, we can tell m1 which needs 27
adders takes less execution cycles, while it occupies more hardware staying idle during
execution. On the other hand, m2 containing only one adder array takes more execution
cycles, however it keeps the datapath components fully utilized during execution. The
price of the full utilization for m2 is the much higher memory cost of m2 than m1 as
m2 needs four program memories to store different N -point DCT codes.

As to reconfigurability, both m1 and m2 behave excellently adapting to the variable
number of points N in DCT. There are just enough adders and associated hardware
logic for m1 to process 1−N -points DCT. There is no stall in the pipeline processing
of the datapath. To adapt to variable number of points N in DCT, m2 only needs to
change the control signals of the multiplexer.

6 Concluding Remarks

In this paper, we described an approach to specifying embedded stream processing in
UML 2.0. Based on the approach, specifications of shape adaptive DCT in both hard-
ware and software partitions are coined. To describe both partitions is hard for C, Ver-
ilog or VHDL. It is also feasible to generate SystemC code from specifications in UML

2.0. More importantly, the execution of the specifications enables the early functionality
verifications as well as cycle accurate performance evaluation of different architectures.
Resource utilization rates are also countable after specifications execution. In our road
map, our framework will grow into a complete system specifications and verification
solution with more components of embedded multimedia systems.

References
1. Apache Jakarta Project Group. User guide to velocity template engine[online]. In

http://jakarta.apache.org/velocity/docs/user-guide.html, 2005.
2. F. Bruschi. A systemc based design flow starting from uml models. In The 6th European

SystemC users Group Meeting, 2002.
3. T. S. Chang, C. S. Kung, and C. Jen. Hardware-efficient dft designs with cyclic convolution

and subexpression sharing, Sep. 2000.
4. T. S. Chang, C. S. Kung, and C. Jen. A simple processor core design for dct/idct, 2000.
5. K.-H. Chen, J.-I. Guo, J.-S. Wang, C.-W. Yeh, and J.-W. Chen. An energy-aware ip core

design for the variable-length dct/idct targeting at mpeg4 shape-adaptive transforms, 2005.
6. K.-H. Chen, J.-I. Guo, J.-S. Wang, C.-W. Yeh, and T.-F. Chen. A power-aware ip core design

for the variable-length dct/idct targeting at mpeg4 shape-adaptive transforms. In The IEEE
ISCAS, pages 141–144, 2004.

7. J. Gause, P. Cheung, and W. Luk. Reconfigurable computing for shape-adaptive video
processing, iee proc.-comput. digit. tech., vol. 151, no. 5,, 2004.

8. JDOM Project Group. Jdom and xml parsing[online]. In
http://www.jdom.org/downloads/docs.html, 2002.

9. A. Kinane, V. Muresana, and N. OConnora. An optimal adder-based hardware architecture
for the dct/sa-dct, 2005.

10. L. Lavagno, G. Martin, and B. Selic. Uml for Real: Design of Embedded Real-Time Systems.
Kluwer Academic Publishers, 2003.

11. T. Le and M. Glesner. Flexible architectures for dct of variable-length targeting shape-
adaptive transform, ieee transactions on circuits and systems for video technology, vol.10,
no. 8, 2000.

12. K. Nguyen, Z. Sun, P. Thiagarajan, and W. Wong. Model-driven soc design via executable
uml to systemc. In The 25th IEEE Int’l Real-Time Systems Symp., pages 459–468, 2004.

13. T. Sikora and B. Makai. Shape-adaptive dct for generic coding of video, ieee transactions on
circuits and systems for video technology, vol.5, no. 1, 2002.

14. Z. Sun, W. Wong, Y. Zhu, and S. Pilakka. Design of clocked circuits using uml. In Design
Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific
Volume 2, pages 901–904, 2005.

15. Synopsys Inc. Cocentric systemc compiler rtl user and modeling guide. In Synopsys Incor-
poration, 2003.

16. W. H. Tan, P. S. Thiagarajan, W. F. Wong, Y. Zhu, and S. K. Pilakkat. Synthesiz-
able systemc code from uml models. In UML for Soc Design, DAC 2004 Workshop,
www.comp.nus.edu.sg/∼zhuyx/usoc04.pdf, June 2004.

17. P.-C. Tseng, C.-T. Haung, and L.-G. Chen. Reconfigurable discrete cosine transform proces-
sor for object-based video signal processing. In The IEEE ISCAS, pages 353–356, 2004.

18. Q. Zhu, A. Matsuda, and M. Shoji. An object-oriented design process for system-on-chip
using uml. In The 15th Int’l Symp. on System Synthesis, pages 249–254, 2002.

19. Y. Zhu, Z. Sun, A. Maxiaguine, and W. Wong. Using uml 2.0 for system level design of real
time soc platform for stream processing. In IEEE 11th Int’l conference on Embedded and
Real-Time Computing Systems and Applications, pages 154–159, 2005.

E
O
D
0:
E
ve

1

re
al
C
yc
le
...

ne
w
c y
cl
...

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
3

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
2

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
1

In
P
or
tC
lk

In
P
or
tD
C
TO
EO
D
0

E
O
D
1:
E
ve

1

re
al
C
yc
le
...

ne
w
cy
cl
...

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_1
3

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_1
2

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
1

In
P
or
tC
lk

In
P
or
tD
C
TO
EO
D
1

E
O
D
2:
E
v e

1

re
al
C
yc
le
...

ne
w
c y
cl
...

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
12

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_1
2

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
2

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_2
3

In
P
or
tC
lk

In
P
or
tD
C
TO
EO
D
2

E
O
D
3:
E
ve

1

re
al
C
yc
le
...

ne
w
c y
cl
...

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_1
23

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
23

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
13

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_1
3

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_0
3

O
ut
Po
rt_
E
O
D
To
M
W
G
M
_2
3

In
P
or
tC
lk

In
P
or
tD
C
TO
EO
D
3

ad
dS
ta
g

1
O
ut
Po
rt_
To
M
W
G
M
_0
13

O
ut
Po
rt_
To
M
W
G
M
_0
12

O
ut
Po
rt_
To
M
W
G
M
_0
12
3

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
To
M
W
G
M
_0
23

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
To
M
W
G
M
_1
23

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

ad
dS
ta
g

1
O
ut
Po
rt_
W
M
R

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

P
P
S
T:
pa
rt
ia
lP
ro

1In
P
or
tC
lk

O
ut
P
or
tP
P
S
Tt
oT
R
A
M

In
P
or
tW
M
R
To
P
P
S
T

W
M
R
:W
ei
gh
tM
u

1In
P
or
tC
lk

In
P
or
W
M
R

O
ut
P
or
tW
M
R
To
P
P
ST

TR
A
M
:T
ra
ns
po
s

1In
P
or
tC
lk

In
P
or
tP
P
ST
to
TR
A
M

dp
C
on
tro
l:d
at
aP

1

N
:in
t

ev
en
_o
dd
:b
oo
l

f1
:d
ou
bl
e

st
ar
tD
C
T(
):v
oi
d

ne
w
_c
yc
le
()
:v
oi
d

O
ut
P
or
tD
C
To
E
O
D
0

O
ut
P
or
tD
C
To
E
O
D
3

O
ut
P
or
tD
C
To
E
O
D
2

O
ut
P
or
tD
C
To
E
O
D
1

In
P
or
tC
lk

cl
k:
cl
k_
ge
n

1

nu
m
To
ke
nS
en
d:
in
t

nu
m
To
ke
nR
ec
v:
in
t

cy
cl
e_
fin
i_
dp
c(
):v
oi
d

c y
cl
e
fin
i
EO
D
0(
):v
oi
d

O
ut
Po
rtC
lk
to
Ad
de
r0
1

O
ut
Po
rtC
lk
to
Ad
de
r1
23

O
ut
Po
rtC
lk
to
Ad
de
r0
23

O
ut
Po
rtC
lk
to
Ad
de
r0
13

O
ut
Po
rtC
lk
to
Ad
de
r0
12

O
ut
Po
rtC
lk
to
Ad
de
r0
12
3

O
ut
Po
rtC
lk
to
Ad
de
r1
3

O
ut
Po
rtC
lk
to
Ad
de
r1
2

O
ut
Po
rtC
lk
to
Ad
de
r0
3

O
ut
Po
rtC
lk
to
Ad
de
r0
2

O
ut
Po
rtC
lk
to
Ad
de
r2
3

O
ut
Po
rtC
lk
to
D
C
trl

O
ut
Po
rtC
lk
to
EO
D
0O
ut
Po
rtC
lk
to
EO
D
3

O
ut
Po
rtC
lk
to
EO
D
2

O
ut
Po
rtC
lk
to
EO
D
1

A
dd
er

A
dd
er

ad
dS
t a

1
O
ut
Po
rt_
To
M
W
G
M
_0
12
3

In
P
or
tC
lk

In
P
or
t_
A
dd
en
d2

In
P
or
t_
A
dd
en
d1

Fig. 4. The object model of the method by Kinane et al. [9]

itsDecisionKe1

new_cycle()...

InPortClk

OutPort_pSel8

OutPort_pSel6

OutPort_pSel4

OutPort_pSel2

itsN2DCT:N2DCT1

E i t

l () id

InPortClk

OutPort_PMtoDPInPort_pSel

itsN4DCT:N4DCT1

E i t

l () id

InPortClk

OutPort_PMtoDPInPort_pSel

itsN6DCT:N6DCT1

E i t

l () id

InPortClk

OutPort_PMtoDPInPort_pSel

itsN8DCT:N8DCT1

E i t

l () id

InPortClk

OutPort_PMtoDPInPort_pSel

itsDataPath:1

cycleNum:int

execCycle...

new_cycle(...

call_dp():void

InPortClk

InPort_PM8toDP

InPort_PM6toDP

InPort_PM4toDP

InPort_PM2toDP

itsClk_ctrl:clk_ctrl1

cycleTime:int

cycle fini N2DCT():void

OutPortClk_DP

OutPortClk_N8DCTOutPortClk_N6DCTOutPortClk_N4DCTOutPortClk_N2DCT

OutPortClk_DK

Fig. 5. The object model of the method by Chen et al. [5]

state_0

state_1

state_2

state_19

state_20

cycle_fini_DPcycle_fini_DP

state_9

state_10

cycle_fini_DKcycle_fini_DK

state_11

state_12

cycle_fini_N2DCTcycle_fini_N2DCT

state_15

state_16

cycle_fini_N6DCTcycle_fini_N6DCT

state_17

state_18

cycle_fini_N8DCTcycle_fini_N8DCT

state_13

state_14

cycle_fini_N4DCTcycle_fini_N4DCT

tm(cycleTime)

[numTokenSend == numTokenRecv]

cycle_fini_DPcycle_fini_DK cycle_fini_N2DCT cycle_fini_N6DCT cycle_fini_N8DCTcycle_fini_N4DCT

Fig. 6. A hierarchical statechart of the Clk Ctrl class in the design by Chen et al. [5]

Fig. 7. Animated sequence diagram of the design by Kinane [9] after zooming

itsClk_ctrl:clk
_ctrl

OMStartBehaviorEvent()

tm(10) at ROOT.state_1

tm(10) at ROOT.state_1

tm(10) at ROOT.state 1

itsDataPath:
DataPath

new_cycle()

new_cycle()

itsDecisionKe
rnel:Decision

Kernel

new_cycle()

cycle_fini_DK()

new_cycle()

cycle_fini_DK()

itsN2DCT:N2
DCT

new_cycle()

new_cycle()

itsN4DCT:N4
DCT

new_cycle()

new_cycle()

itsN6DCT:N6
DCT

new_cycle()

new_cycle()

itsN8DCT:N8
DCT

new_cycle()

N8selected()

new_cycle()

N8selected()

call_dp()

cycle_fini_N8DCT()

Fig. 8. An animation sequence diagram of the design by Chen et al. [5]

