
Usage-aware Search in Peer-to-Peer Systems

Irene Sygkouna and Miltiades Anagnostou

School of Electrical and Computer Engineering, National Technical University of Athens,

9, Heroon Polytechneiou Str., 15773, Zografou, Athens, Greece
{isygk, miltos}@telecom.ntua.gr

Abstract. We study solutions to a source discovery problem defined in the
framework of providing time-critical context-aware services over a Peer-to-Peer
communication paradigm. The proposed mechanisms, which take place in
ubiquitous computing environments, exploit the locality of reference properties
exhibited by context usage patterns, with efficient means provided by Active
Networks. Simulation results show that the new methods reduce network traffic
while they maintain the good search time of flood broadcasting methods.

Keywords: Ubiquitous computing, Context-aware services, Peer-to-Peer search,
Locality of reference properties, Active Networks.

1 Introduction

Ubiquitous computing paradigm offers users the opportunity to truly perform their
operations anywhere and anytime. Many practitioners envision a future empowered with
context-aware computation and communication infrastructure that allow users to access
data and receive service at any place and any time. A context-aware system can be seen
as a human assistant given user’s context to be responsible to make decisions in a
proactive fashion, anticipating user needs while not disturbing the user, except for an
emergency [1]. The exploitation of complete context-awareness in state-of-the-art
services requires taking advantage of all types of context available to them. Thus,
context-aware services (CASs) need a flow of information from and about their
environment, in order to be able to adapt to it [2]. Elaborating on the efficient
provisioning of CASs, the current work is based on a framework in which a CAS
generates context requests and addresses them to the nearest broker. Brokers act as
mediatory players between CASs and context sources. The need to support CASs that
are highly robust and can scale well with the number of nodes and information sources
points to Peer-to-Peer (P2P) architecture [3] as a more promising approach than most
centralized solutions offer. Each peer Context Broker (CB) can make information
available for distribution and depends on each other for getting information, forwarding
requests, etc.

The system faces the challenge to ensure efficient and scalable distribution of context
information. Among the most popular approaches applied to improve performance are
replication, caching, and intelligent routing. In our framework, the first two are
considered less appropriate due to the volatile nature of context information, and thus we

are concerned with routing techniques applied every time a request arises and a real-time
search has to take place. In its purest form, the P2P model uses message forwarding
mechanisms to search for information since there is no centralized server with a global
view of all the peers in the network or the information they provide. The respective
algorithms are typically implemented in the form of an application-level protocol.
However, most existing techniques result in opposite extremes of bandwidth and
response time. In this paper, we propose a set of usage-aware mechanisms that exploit
the locality of reference properties exhibited by context usage patterns. The context
demand profile is monitored by the distributed peer nodes, which exchange their
knowledge with efficient means provided by Active Networks. The results show that the
proposed mechanisms reduce the network traffic while they maintain the good search
time of flood broadcasting methods.

Section 2 presents a literature overview on decentralized search algorithms and
section 3 describes the problem we deal with. Section 4 provides first the definition of
the locality properties, and then describes the role of Active Networks in searching along
with the proposed search mechanisms. Simulation results are presented in section 5 and
section 6 concludes the paper.

2 Literature Overview

Resource Discovery constitutes a fundamental problem in large-scale distributed
systems, and even though finding resources in a network of computers is a problem
probably as old as distributed computing itself, different system requirements and
conditions of current large-scale applications have led to a flurry of different approaches
to the problem. Thus, the problem of searching for information in P2P networks can be
treated in different ways, ranging from centralized indexing schemes, such as Napster
[4], to decentralized mechanisms that navigate the underlying network without
knowledge of its global structure.

Decentralized search algorithms have been studied both for unstructured and
structured systems. In the former case, there is not any precise control over the network
topology or data placement. A client seeking information searches across scattered
collections stored at numerous member nodes by forwarding queries to one’s neighbors
until the target is found. Moreover, both search by identifier and by content is supported.
Gnutella [5] uses flood routing to broadcast queries, generating a large amount of
unnecessary traffic. There have been continuous efforts to improve the naïve search
algorithm based on flooding. The authors of [6] proposed Random Walk, which forwards
a query to a randomly chosen neighbor at each step and Expanding Ring, which
performs successive floods with increasing time-to-live (TTL), until the target is found.
It was shown through extensive experiments that a 32-walker Random Walk reduces the
amount of network traffic by two orders of magnitude at the expense of slight decrease
in search speed and generally outperforms Expanding Ring as well. Similar strategies,
including Expanding Ring and a variation of Random Walks were examined in [7, 8].

In [9], hybrid search schemes that combine Flooding and Random Walks were
proposed, which rectify the performance of Flooding in the case of a sparse network
with a few vertices of large degrees. Moreover, it was shown that Random Walk with

Local Flooding, which performs shallow floodings on each step of the random walk, is
more preferable than simple random walk on regular graphs since it achieves savings in
response time, while the savings are much sharper if the graph has supernodes. In [10] a
probabilistic message dissemination method was developed. By altering the probability
of routing search request messages, it varies the probability that the search is successful.
Contrary to the above works that propose alternatives to Flooding based mainly on
specific properties of the network topology, in the current paper we expect to reduce
network traffic without retarding search, by taking into account the locality of reference
properties that are likely to be exhibited by the monitored context usage patterns.

In structured systems, objects are placed not at random nodes but at specified
locations that will make subsequent queries easier to satisfy. Such systems (e.g. [11, 12,
13, 14, 15]) implement Distributed Hash Tables (DHTs), and search is performed by
looking up the DHTs. In more recent works, techniques based on DHTs have been
proposed for multiple-keyword search [16] and full-text search [17, 18]. They differ
from our approach since we are interested in finding sources that are managed by peers,
which have complete autonomy over their location.

3 Problem Description

We consider a set of Context Brokers forming an overlay network. Each Broker manages
a set of local information sources registered to it via a registration protocol and thus it
maintains the necessary interfaces for interacting with its local sources. Peers can use an
enquiry protocol to query other peers in order to discover sources. Once a Broker
receives a search request coming from either another peer or a local consumer (e.g. a
CAS), it first looks up the request in its local information. If a matching source is not
found, the Broker forwards the request to different peers until the target source is
located. Precluding dependence from central control, the aim is to design efficient
mechanisms for discovering and retrieving data. Due to the volatile nature of context, we
deal only with dynamic information sources and thus, there is no caching support for
actual data.

Each peer maintains a local directory, the Local Sources Directory (LSD), with
entries to the sources it manages. Note that sources cannot be replicated. Each peer
maintains additionally the Remote Sources Directory (RSD), which caches directory
entries for sources maintained by other peers. An entry in the RSD is a pair (source_info,
loc), where source_info provides a description of the information produced by a source
and loc is the network address of the peer that is presumed to manage the given source.

Each peer n has a local neighborhood, denoted by N(n) and defined as the set of peers
that are close (e.g., at one hop distance or within the same local area network) to that
peer. Finally, global network topology is unknown and a peer only contacts peers in its
neighborhood, as well as peers indicated in its RSD.

4 Solution

Based on the distributed computing environment provided by Active Networks, we
propose specific algorithmic solutions built on top of the P2P communication paradigm,

that aim to enhance the system’s efficiency and scalability for the provision of time-
critical CASs. The relevant algorithms avoid the inefficiency of flood broadcasting
methods, and a source exhibiting a locality of reference property can be easily located by
applying an appropriate limited flooding algorithm, according to the type of locality.

4.1 Locality of Reference Properties

We define the following notation and terminology: Given a set of nodes (Nn∈) and a
set of objects (Oo∈), we denote by)n,o(r a request (Rr∈), where o (Oo∈) is the

requested object and n (Nn∈) the node the given request originated from, henceforth
called initiatory-node of the request. Moreover, we will use the term home-node of an
object to refer to the node that hosts the source of the given object. Note that in the
following text, the words “source” and “object” are used interchangeably.

Temporal Locality. It implies that an object frequently accessed in the past, namely a
popular object, is likely to be accessed in the future [19]. We define the popularity f of
an object o as:

∑
∈

=
Nn

o
no Rf . (1)

where N is the set of nodes, and o
nR the set of requests for object o initiated from node

Nn∈ , namely: { }n'n,o'oR)'n,'o(rR o
n ==∈∀= .

Observing the context usage patterns in our real test scenarios conducted under the
IST project Context [20] we concluded that temporal locality was evident since a few
objects were most popular and thus were repeatedly requested from the majority of
peers. Such objects usually refer to some elementary types of information that constitute
basic components of many complex types and are thus repeatedly requested. For
example, a source that provides pure location information of mobile users for a wide
geographical area is most likely to be accessed repeatedly, since location information is a
basic component of many complex and more specialized types of information.

Geographical Locality. It accounts for the location of the nodes from which a repeated
request originates and implies that an object accessed by a client is likely to be accessed
again in the future by “nearby” clients [19]. We first define the set N)l,n(N o ⊆ ,

which consists of the nodes included in a geographical area centered at Nno ∈ and

extended at distance l, as:

{ }l)n,n(distNn)l,n(N o <∈∀= 0 . (2)

where dist(n, n0) represents the path length between nodes n, no. An object o exhibits
geographical locality with radius L, if a significant number of repeated requests originate
from the same geographical area, which is extended around the home-node of o, namely:

geo
Nn o

o
n

T
f

))L),o(H(N,n(xR
>

⋅
∑
∈

 . (3)

where fo represents the popularity of o, H(o) its home-node, o
nR the set of repeated

requests initiated from node Nn∈ , Tgeo a certain threshold and x(n,N) equals to 1 (0) if
).Nn(Nn ∉∈

Geographical locality is most likely to be exhibited by context usage patterns, since
CASs are usually developed and designated to be provided at specific areas, usually near
the sources of information they utilize. For instance, in a university campus, a source
that provides academic-related context information is meaningful for and thus used from
relevant services offered in the campus, which constitutes a case of geographical
locality.

Spatial Locality. It is looking for dependencies among the requested objects and implies
that objects neighbouring an object frequently accessed in the past are likely to be
accessed in the future. Defining a traversal stride to be a sequence of requests where the
time between successive requests is less that StrideTimeout seconds [19], an object o
exhibits spatial locality, if there exists a traversal stride so starting with object o, such
that:

spat
o

s T
f
f
o > . (4)

where fo is the popularity of object o,

osf the popularity of the traversal stride so and

Tspat a given threshold.

Spatial locality of reference is likely to be found in a context access pattern due to the
modular design based on which context objects are constructed. In particular, a context
object may be composed of other simpler objects in a cascaded way, requiring a
cascaded assignment of values to each object in turn.

4.2 Active Networks Distributed Computing

Active network developers envisage transforming IP packets into encapsulated
fragments of executable code that traverse the network and execute in limited
environments at intermediate nodes. P2P networking, on the other hand, was devised as
a lightweight, primitive, networking concept that achieves adequate results at minimum
cost without sophisticated network protocols. We could thus easily think of active
capsules that carry P2P queries to locate particular information, or code for determining

traffic and usage patterns for individual sources at each node and dynamically make
decisions on redistributing information across the P2P network [3].

Because P2P queries are lightweight, the mobile code would pose a minimal
computational burden and impose minimal network overhead, leading to a highly
efficient self-sustaining and self-maintaining P2P system. In this framework, passive
monitoring of context usage patterns is supported, which substantially reduces traffic by
piggybacking the relative information on existing active packets traversing the network,
as opposed to active monitoring, in which the measurements are done by sending
additional control messages [21].

4.3 Usage-aware Search Mechanisms

The proposed mechanisms are based on a limited version of the flooding algorithm that
takes advantage of the locality of reference properties exhibited by the monitored context
usage patterns. We assume that appropriate Tables maintained by all the peers provide
information on the objects exhibiting locality properties: T-Table for temporal locality,
G-Table for geographical locality and S-Table for spatial locality. When a peer initiates a
request, it first searches the local copies of the Tables to find potential matching sources.
In case of a hit, it applies an appropriate limited flooding algorithm, depending on the
type of property. Otherwise, it resorts to pure Flooding. In each case, once the requested
object is found, the response message follows the reverse path to reach the initiatory-
node and a new entry is created in the RSD of the initiatory-node. Note that the Tables
are consulted once for each request, namely at the initiatory-node of the request, whereas
the RSDs at each visited peer.

The rationale behind the proposed approach is based on two observations: first, only a
small percentage of all the available objects are likely to exhibit a locality of reference
property. Second, most requests refer to such objects. Therefore, we expect that the
majority of requests can be satisfied by looking up the Tables and applying limited
flooding, whereas the locality information requires limited storage space and thus can be
retrieved quickly with small overhead.

Range-limited Flooding. It proposes to limit the range of flooding to an extent
determined by the popularity of the object requested and in a way to save as much
bandwidth as possible without increasing the time to locate the appropriate source. Thus,
the more popular the object, the lower the number of neighbours K to which the request
should be forwarded in each step, since popularity provides a clue about the number of
previous repeated requests for the object, which should have thus located the
corresponding source. Supposing that peer i receives a request)n,o(r , K is given by:

i
o
d

f
K ⋅∝

1
 . (5)

where fo is the popularity of o and di the degree of i.
We assume that the T-Table hosts popularity information of the most popular objects.

An entry (o, fo) indicates the popularity fo of an object o, as measured by its home-node,

which keeps logs of the requests it has serviced. An object o is registered with T-Table
only if its popularity is greater than a given threshold a, while an update operation is
performed only if a noticeable change, which is determined by a given percentage
threshold b, is recorded by its home-node. In case a peer decides to perform a register or
an update operation, the respective information will be encapsulated in a following
request message initiated from that peer. In this case, the respective active packet has to
load a modified code that executes both the query and the register/update operation in
each visited peer, and thus updates all the copies of T-Table.

Depth-limited Flooding. It is proposed as an alternative that aims to save bandwidth by
limiting the depth (TTL) of flooding. The success of this algorithm when searching for
an object is based on a strong indication that the given object is most likely to be located
following a limited number of hops. Therefore, if an object proves to exhibit
geographical locality of reference with radius L, it is likely that the same object will be
requested from nearby nodes in the future. These nearby nodes could limit the depth of
flooding in following repeated requests initiated from them to the value D=L, with the
expectation that either the source itself will be located nearby or the location of the
source will be found cached in the RSD of a nearby node.

The existence of geographical locality of reference for a given object is verified by its
home-node. Each peer maintains information related to its broader neighborhood,
namely the nodes located in close geographic proximity, and periodically examines the
request history of each source it owns, so as to correlate the initiatory nodes of the
relevant requests. It thus registers every object that proves to exhibit geographical
locality, based on inequality (3), with the G-Table maintained by each node in its
broader neighborhood. A register/delete operation is performed by encapsulating the
respective information in a following request message initiated from this peer.

Prefetch-limited Flooding. It exploits the idea of prefetching within flooding, namely
search for more than one object within a single flooding, in anticipation of future
requests. In particular, when a node initiates a request for an object that proves to exhibit
spatial locality of reference, it piggybacks its request with a set of queries for the
dependent objects that it speculates will be requested by the client in the near future, in
order to resolve all of them during the same flooding search.

Contrary to the other properties that are server-detected, a thorough analysis of the
clients’ access patterns is required in order to identify the spatial locality of reference
that may exist among the various objects. Assuming that each peer keeps logs of the
requests it has initiated, it is capable of testing for the existence of the property locally
for every object that is frequently requested, based on the inequality (4). Note that each
entry (o, so) of the S-Table indicates the object o that exhibits spatial locality and the
respective stride so. Every peer that frequently initiates requests for an object registered
in the S-Table is responsible for verifying that this object indeed exhibits spatial locality.
In the opposite case, it should initiate a delete operation in order to remove the object
from all the S-Tables. The register/delete operation is performed with the same
piggybacking mechanism.

5 Simulation Results

We have implemented an event-based multithreaded simulation in Java to test our
algorithms. As a reference for comparison we use the pure Flooding, which achieves the
best search time at the cost of intensive network use, and the Random Walk with Local
Flooding of TTL=1, which was proposed recently as an alternative to the pure Random
Walk that improves its search time. Henceforth, the latter one will be called Random
Walk for the sake of brevity. We assume constant peer participation, no failures, and that
the sources do not migrate during the simulation. The simulated requests are simple and
there is exactly one matching source to a request. Moreover, we assume that the RSD
size is infinite. The initial topology of the overlay network, as formed by the neighbors’
connections, is modeled as a random graph that is generated based on the Waxman
model [22]. We follow the analytic workload generation method, which starts with
models for various workload characteristics i.e., the locality of reference properties in
our case, and then generates outputs that adhere to these models [23]. Since each
property is proposed to be exploited in a different way, we generate distinct synthetic
traces for each property in order to experiment exclusively with the potential benefits
achieved in each case. Zip’s law [24] is used to model the distribution of context
requests and the default TTL value is set to the graph diameter. As a metric for the time
to locate a source we use the average path-length per request (defined as the ratio of the
total number of hops incurred across all requests to the total number of requests), while
the bandwidth consumption is well captured by the average number of messages per
request (defined as the ratio of the total number of messages sent across all requests to
the number of all requests).

5.1 Test Case 1: Temporal Locality

The network size equals to 200 nodes and each peer node controls one source, for a total
of 200 sources. Each peer monitors the popularity of the local sources and updates the T-
Tables accordingly. For simplicity we assume that the T-Tables are updated at constant
periods, namely every time the overlay has executed 100 new requests, for a total of
1000 requests. Fig.1 and Fig.2 depict the evolution of the average path-length and the
average number of messages per request, over time, under Range-limited Flooding (R-
F), Flooding (F) and Random Walk (RW), for two different values of the Zipf parameter
a, namely �=0.7 and �=0.95, respectively. The time evolution is given in terms of
consecutive time periods, each corresponding to the execution of 100 requests.

Clearly, the average path-length per request decreases over time and R-F achieves to
follow F very closely. Similarly, the average number of messages per request decreases
with time, but in this case R-F clearly outperforms F, achieving lower bandwidth waste.
Moreover, the bandwidth savings achieved by R-F becomes more intense with time.
Comparing R-F with RW, it becomes obvious that the latter one achieves high
bandwidth savings, but at the cost of a noticeable increase in the average path-length per
request. It is also remarkable that the performance of RW improves with time. In
particular, the bandwidth savings it achieves with regard to R-F increases from 53% to
78%, whereas the path-length savings of R-F with regard to RW decreases from 89% to
73%.

a=0.7

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t Flooding

Range-limited Flooding
Random Walk

a=0.7

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.7

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t Flooding

Range-limited Flooding
Random Walk

a=0.7

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t Flooding

Range-limited Flooding
Random Walk

a=0.7

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.7

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

Fig 1. Performance of R-F versus F and RW, for �=0.7

Moreover, the value of a affects the bandwidth savings achieved by R-F with

reference to F. In particular, usage patterns with a higher skew in popularity distribution
seem to take greater advantage of the savings achieved by R-F (Fig.2). On the other
hand, the percentage of bandwidth savings and path-length waste achieved by RW with
regard to R-F seem not to be affected from the value of �.

a=0.95

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.95

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.95

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.95

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.95

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

a=0.95

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Range-limited Flooding
Random Walk

Fig. 2. Performance of R-F versus F and RW, for �=0.95

5.2 Test Case 2: Geographical Locality

We first consider an overlay graph of 500 nodes and density equal to 0.035. Each peer
maintains 10 sources. We experiment with synthetic traces of 400 requests produced
according to Zipf distribution (with a=0.7), that exhibit geographical locality at different
degrees. The degree, namely the fraction of the requests executed in the whole trace that
exhibit geographical locality, has been set to 0.2, 0.4, 0.6, and 0.8, with 0.48%, 1.28%,
2.72% and 4.32% of the most popular objects exhibiting the property, respectively. We
evaluate the performance of pure Flooding (F), Random Walk (RW) and Depth-limited
Flooding (D-F), assuming that the last one has set the radius of geographical locality to 3
and then we repeat the experiment on a graph of density 0.07. The results are depicted in
Fig.3 and Fig.4, respectively.

As the degree of geographical locality increases, the average path-length drops and D-
F achieves to maintain the path-length at the same level with F. On the other hand, while

the average number of messages per request remains almost constant under F as the
degree increases, D-F achieves growing savings. Comparing the performance of RW to
the one of D-F, we observe that the bandwidth savings achieved by the former with
regard to the latter is on the order of 50%, whereas the path-length savings of the latter
with regard to the former is 90%. Moreover, both values are not affected by the variation
of the degree of geographical locality.

graph density=0.035

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding
Depth-limited Flooding
Random Walk

graph density=0.035

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.2 0.4 0.6 0.8 1Degree

A
ve

ra
ge

 n
um

be
r o

f m
es

sa
ge

s
pe

r r
eq

ue
st

Flooding
Depth-limited Flooding
Random Walk

graph density=0.035

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding
Depth-limited Flooding
Random Walk

graph density=0.035

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.2 0.4 0.6 0.8 1Degree

A
ve

ra
ge

 n
um

be
r o

f m
es

sa
ge

s
pe

r r
eq

ue
st

Flooding
Depth-limited Flooding
Random Walk

Fig. 3. Performance of D-F versus F and RW for graph density equal to 0.035

As far as the graph density is concerned, the sparser the graph, the more profitable the

application of D-F compared to F would be. On the other hand, the performance of D-F
compared to RW seems not to be affected by the graph density.

graph density=0.07

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r r

eq
ue

st

Flooding
Depth-limited Flooding
Random Walk

graph density=0.07

0

5000

10000

15000

20000

25000

30000

35000

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Depth-limited Flooding
Random Walk

graph density=0.07

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r r

eq
ue

st

Flooding
Depth-limited Flooding
Random Walk

graph density=0.07

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r r

eq
ue

st

Flooding
Depth-limited Flooding
Random Walk

graph density=0.07

0

5000

10000

15000

20000

25000

30000

35000

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Depth-limited Flooding
Random Walk

graph density=0.07

0

5000

10000

15000

20000

25000

30000

35000

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Depth-limited Flooding
Random Walk

Fig. 4. Performance of D-F versus F and RW for graph density equal to 0.07

5.3 Test Case 3: Spatial Locality

The goal of the third experiment is to quantify the cost of Prefetch-oriented Flooding (P-
F) in terms of the degree of spatial locality exhibited by a trace. The network graph
consists of 200 nodes, each maintaining 1 source. We generated 4 different synthetic
traces according to Zipf distribution (a=0.7), each consisting of 1000 requests. The
degree of spatial locality in each of them is adjusted to 0.2, 0.4, 0.6 and 0.8, respectively,
with 2.5%, 10%, 26% and 54.5% of the most popular objects exhibiting the property,
respectively. The traversal strides consist of 2 objects. Measuring the same metrics, the
graphs that result are depicted in Fig.5.

Clearly, while F is not affected notably by the degree variation, P-F achieves
significant savings in terms of the average path-length and the number of messages per
request, which become more evident as the degree increases.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding

Prefetch-oriented Flooding

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Prefetch-oriented Flooding

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 p
at

hl
en

gt
h

pe
r

re
qu

es
t

Flooding

Prefetch-oriented Flooding

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1
Degree

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Flooding
Prefetch-oriented Flooding

Fig. 5. Performance of P-F versus F

6 Conclusions

While the majority of mechanisms proposed in literature are based on network topology
properties, the current work shows the potential of exploiting usage-awareness toward
improving search efficiency. The simulation results show that the new mechanisms
maintain the good search time of Flooding, while they achieve to reduce the bandwidth
consumption that tends to cripple such systems. Moreover, the degree of bandwidth
savings is tightly connected to the degree of the locality of reference properties
exhibited. In the proposed framework, the overhead imposed by usage-awareness is kept
low because the locality-Tables are of small-size, with light registries, and no additional
traffic is needed to maintain them. We thus believe that the current work could be
considered as a first step toward proposing even more powerful mechanisms that
combine both approaches. It therefore contributes to a growing development toward
economic activity in decentralized search mechanisms.

References

1. Satyanarayanan, M.: Challenges in Implementing a Context-Aware System. Editorial
Introduction in IEEE Pervasive Computing, 2 (2002)

2. Xynogalas, S., Chantzara, M., Sygkouna, I., Vrontis, S., Roussaki, I., Anagnostou, M.: Context
Management for the Provision of Adaptive Services to Roaming Users. IEEE Wireless
Communications 11 (2), 40--47 (2004)

3. Parameswaran, M., Susarla, A., Whinston, A.B.: P2P Networking: An Information-Sharing
Alternative. Computer 34 (7), 31--38 (2001)

4. Napster, http://www.napster.com
5. Kan, G.: Gnutella. In: Oram, A. (eds.) Peer-to-Peer: Harnessing the Power of Disruptive

Technologies. O’Reilly (2001)
6. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-to-

peer Networks. In: International Conference on Supercomputing, pp. 84--95. ACM Press, New
York, USA (2002)

7. Yang B., Garcia-Molina, H.: “Efficient Search in Peer-to-peer Networks”, In: IEEE ICDCS,
IEEE Press, Vienna, Austria (2002)

8. Gkantsidis, C., Mihail, M., Saberi, A.: Random Walks in Peer-to-peer Networks. In: Infocom
2004, pp. 120--130. IEEE Press, Hong Kong, China, (2004)

9. Gkantsidis, C. Mihail, M., Saberi, A.: Hybrid Search Schemes for Unstructured Peer-to-Peer
Networks. In: Infocom 2005, pp. 1526--1537. IEEE Press, Miami, Florida (2005)

10. Menascé, D.A., Kanchanapalli, L.: Probabilistic Scalable P2P Resource Location Services.
ACM Sigmetrics Performance Evaluation Rev. 30 (2), 48--58 (2002)

11. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In: Proc. ICSI Workshop on Design Issues in
Anonymity and Unobservability. LNCS, vol. 2009, pp. 46--66. Springer-Verlag (2001)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.E., Balakrishnan, H.: Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications, In:ACM Sigcomm, San Deigo, (2001)

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content
Addressable Network. In: ACM Sigcomm 2001, San Deigo, CA (2001)

14. Rowstron A., Druschel, P.: Pastry: Scalable, Distributed, Object Location and Routing for
Large-scale Peer-to-Peer Systems. In: IFIP/ACM International Conference on Distributed
System Platforms (Middleware), pp. 329--350, Heidelberg, Germany (2001)

[15] Zhao, Y., Kubiatowicz, J.D., Joseph, A.: Tapestry: An Infrastructure for Fault-tolerant Wide-
area Location and Routing. Technical report, UCB/CSD-01-1141, Berkeley (2000)

16. Reynolds P., Vahdat, A.: Efficient Peer-to-peer Keyword Searching. In: International
Middleware Conference, pp. 21--40, Rio de Janeiro (2003)

17. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-Peer Information Retrieval Using Self-organizing
Semantic Overlay Networks, In: ACM SIGCOMM 2003, pp.175--186, Germany (2003)

18. Tang C., Dwarkadas, S.: Hybrid Global-local Indexing for Efficient Peer-to-peer Information
Retrieval. In: Symposium on Networked Systems Design and Implementation (NSDI), pp. 211-
-224, San Francisco, California, (2004)

19. Bestavros, A.: Speculative Data Dissemination and Service to Reduce Server Load, Network
Traffic and Service Time for Distributed Information Systems. In: International Conference on
Data Engineering, pp. 180--187. New Orleans, Louisiana (1996)

20. IST-2001-38142-CONTEXT: http://context.upc.es
21. Caripe, W., Cybenko, G., Moizumi, K., Gray, R.: Network Awareness and Mobile Agent

Systems. IEEE Communications Magazine 36 (7), 44--49 (1998)
22. Waxman, B.M.: Routing of Multipoint Connections. IEEE Journal on Selected Areas in

Communications 6 (9), 1617--1622 (1988)
23. Barford P., Crovella, M.: Generating Representative Web Workloads for Network and Server

Performance Evaluation. In: ACM SIGMETRICS 98, pp.151--160, Madison (1998)
24. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like

Distributions: Evidence and Implications. In:INFOCOM, pp.126--134, New York (1999)

