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Abstract. We study solutions to a source discovery problem defined in the 
framework of providing time-critical context-aware services over a Peer-to-Peer 
communication paradigm. The proposed mechanisms, which take place in 
ubiquitous computing environments, exploit the locality of reference properties 
exhibited by context usage patterns, with efficient means provided by Active 
Networks. Simulation results show that the new methods reduce network traffic 
while they maintain the good search time of flood broadcasting methods. 
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1   Introduction 

Ubiquitous computing paradigm offers users the opportunity to truly perform their 
operations anywhere and anytime.  Many practitioners envision a future empowered with 
context-aware computation and communication infrastructure that allow users to access 
data and receive service at any place and any time. A context-aware system can be seen 
as a human assistant given user’s context to be responsible to make decisions in a 
proactive fashion, anticipating user needs while not disturbing the user, except for an 
emergency [1]. The exploitation of complete context-awareness in state-of-the-art 
services requires taking advantage of all types of context available to them. Thus, 
context-aware services (CASs) need a flow of information from and about their 
environment, in order to be able to adapt to it [2]. Elaborating on the efficient 
provisioning of CASs, the current work is based on a framework in which a CAS 
generates context requests and addresses them to the nearest broker. Brokers act as 
mediatory players between CASs and context sources. The need to support CASs that 
are highly robust and can scale well with the number of nodes and information sources 
points to Peer-to-Peer (P2P) architecture [3] as a more promising approach than most 
centralized solutions offer. Each peer Context Broker (CB) can make information 
available for distribution and depends on each other for getting information, forwarding 
requests, etc. 

The system faces the challenge to ensure efficient and scalable distribution of context 
information. Among the most popular approaches applied to improve performance are 
replication, caching, and intelligent routing. In our framework, the first two are 
considered less appropriate due to the volatile nature of context information, and thus we 



are concerned with routing techniques applied every time a request arises and a real-time 
search has to take place. In its purest form, the P2P model uses message forwarding 
mechanisms to search for information since there is no centralized server with a global 
view of all the peers in the network or the information they provide. The respective 
algorithms are typically implemented in the form of an application-level protocol. 
However, most existing techniques result in opposite extremes of bandwidth and 
response time. In this paper, we propose a set of usage-aware mechanisms that exploit 
the locality of reference properties exhibited by context usage patterns. The context 
demand profile is monitored by the distributed peer nodes, which exchange their 
knowledge with efficient means provided by Active Networks. The results show that the 
proposed mechanisms reduce the network traffic while they maintain the good search 
time of flood broadcasting methods. 

Section 2 presents a literature overview on decentralized search algorithms and 
section 3 describes the problem we deal with. Section 4 provides first the definition of 
the locality properties, and then describes the role of Active Networks in searching along 
with the proposed search mechanisms. Simulation results are presented in section 5 and 
section 6 concludes the paper. 

2   Literature Overview 

Resource Discovery constitutes a fundamental problem in large-scale distributed 
systems, and even though finding resources in a network of computers is a problem 
probably as old as distributed computing itself, different system requirements and 
conditions of current large-scale applications have led to a flurry of different approaches 
to the problem. Thus, the problem of searching for information in P2P networks can be 
treated in different ways, ranging from centralized indexing schemes, such as Napster 
[4], to decentralized mechanisms that navigate the underlying network without 
knowledge of its global structure. 

Decentralized search algorithms have been studied both for unstructured and 
structured systems. In the former case, there is not any precise control over the network 
topology or data placement. A client seeking information searches across scattered 
collections stored at numerous member nodes by forwarding queries to one’s neighbors 
until the target is found. Moreover, both search by identifier and by content is supported. 
Gnutella [5] uses flood routing to broadcast queries, generating a large amount of 
unnecessary traffic. There have been continuous efforts to improve the naïve search 
algorithm based on flooding. The authors of [6] proposed Random Walk, which forwards 
a query to a randomly chosen neighbor at each step and Expanding Ring, which 
performs successive floods with increasing time-to-live (TTL), until the target is found. 
It was shown through extensive experiments that a 32-walker Random Walk reduces the 
amount of network traffic by two orders of magnitude at the expense of slight decrease 
in search speed and generally outperforms Expanding Ring as well. Similar strategies, 
including Expanding Ring and a variation of Random Walks were examined in [7, 8]. 

In [9], hybrid search schemes that combine Flooding and Random Walks were 
proposed, which rectify the performance of Flooding in the case of a sparse network 
with a few vertices of large degrees. Moreover, it was shown that Random Walk with 



Local Flooding, which performs shallow floodings on each step of the random walk, is 
more preferable than simple random walk on regular graphs since it achieves savings in 
response time, while the savings are much sharper if the graph has supernodes. In [10] a 
probabilistic message dissemination method was developed. By altering the probability 
of routing search request messages, it varies the probability that the search is successful. 
Contrary to the above works that propose alternatives to Flooding based mainly on 
specific properties of the network topology, in the current paper we expect to reduce 
network traffic without retarding search, by taking into account the locality of reference 
properties that are likely to be exhibited by the monitored context usage patterns. 

In structured systems, objects are placed not at random nodes but at specified 
locations that will make subsequent queries easier to satisfy. Such systems (e.g. [11, 12, 
13, 14, 15]) implement Distributed Hash Tables (DHTs), and search is performed by 
looking up the DHTs. In more recent works, techniques based on DHTs have been 
proposed for multiple-keyword search [16] and full-text search [17, 18]. They differ 
from our approach since we are interested in finding sources that are managed by peers, 
which have complete autonomy over their location. 

3   Problem Description 

We consider a set of Context Brokers forming an overlay network. Each Broker manages 
a set of local information sources registered to it via a registration protocol and thus it 
maintains the necessary interfaces for interacting with its local sources. Peers can use an 
enquiry protocol to query other peers in order to discover sources. Once a Broker 
receives a search request coming from either another peer or a local consumer (e.g. a 
CAS), it first looks up the request in its local information. If a matching source is not 
found, the Broker forwards the request to different peers until the target source is 
located. Precluding dependence from central control, the aim is to design efficient 
mechanisms for discovering and retrieving data. Due to the volatile nature of context, we 
deal only with dynamic information sources and thus, there is no caching support for 
actual data.  

Each peer maintains a local directory, the Local Sources Directory (LSD), with 
entries to the sources it manages. Note that sources cannot be replicated. Each peer 
maintains additionally the Remote Sources Directory (RSD), which caches directory 
entries for sources maintained by other peers. An entry in the RSD is a pair (source_info, 
loc), where source_info provides a description of the information produced by a source 
and loc is the network address of the peer that is presumed to manage the given source. 

Each peer n has a local neighborhood, denoted by N(n) and defined as the set of peers 
that are close (e.g., at one hop distance or within the same local area network) to that 
peer. Finally, global network topology is unknown and a peer only contacts peers in its 
neighborhood, as well as peers indicated in its RSD. 

4   Solution 

Based on the distributed computing environment provided by Active Networks, we 
propose specific algorithmic solutions built on top of the P2P communication paradigm, 



that aim to enhance the system’s efficiency and scalability for the provision of time-
critical CASs. The relevant algorithms avoid the inefficiency of flood broadcasting 
methods, and a source exhibiting a locality of reference property can be easily located by 
applying an appropriate limited flooding algorithm, according to the type of locality. 

4.1   Locality of Reference Properties 

We define the following notation and terminology: Given a set of nodes ( Nn∈ ) and a 
set of objects ( Oo∈ ), we denote by )n,o(r  a request ( Rr∈ ), where o ( Oo∈ ) is the 

requested object and n ( Nn∈ ) the node the given request originated from, henceforth 
called initiatory-node of the request. Moreover, we will use the term home-node of an 
object to refer to the node that hosts the source of the given object. Note that in the 
following text, the words “source” and “object” are used interchangeably. 

Temporal Locality. It implies that an object frequently accessed in the past, namely a 
popular object, is likely to be accessed in the future [19]. We define the popularity f of 
an object o as: 

∑
∈

=
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o
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where N is the set of nodes, and o
nR the set of requests for object o initiated from node 

Nn∈ , namely: { }n'n,o'oR)'n,'o(rR o
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Observing the context usage patterns in our real test scenarios conducted under the 
IST project Context [20] we concluded that temporal locality was evident since a few 
objects were most popular and thus were repeatedly requested from the majority of 
peers. Such objects usually refer to some elementary types of information that constitute 
basic components of many complex types and are thus repeatedly requested. For 
example, a source that provides pure location information of mobile users for a wide 
geographical area is most likely to be accessed repeatedly, since location information is a 
basic component of many complex and more specialized types of information. 

Geographical Locality. It accounts for the location of the nodes from which a repeated 
request originates and implies that an object accessed by a client is likely to be accessed 
again in the future by “nearby” clients [19]. We first define the set N)l,n(N o ⊆ , 

which consists of the nodes included in a geographical area centered at Nno ∈  and 

extended at distance l, as: 
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where dist(n, n0) represents the path length between nodes n, no. An object o exhibits 
geographical locality with radius L, if a significant number of repeated requests originate 
from the same geographical area, which is extended around the home-node of o, namely: 
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where fo represents the popularity of o, H(o) its home-node, o
nR  the set of repeated 

requests initiated from node Nn∈ , Tgeo a certain threshold and x(n,N) equals to 1 (0) if 
).Nn(Nn ∉∈  

Geographical locality is most likely to be exhibited by context usage patterns, since 
CASs are usually developed and designated to be provided at specific areas, usually near 
the sources of information they utilize. For instance, in a university campus, a source 
that provides academic-related context information is meaningful for and thus used from 
relevant services offered in the campus, which constitutes a case of geographical 
locality. 

Spatial Locality. It is looking for dependencies among the requested objects and implies 
that objects neighbouring an object frequently accessed in the past are likely to be 
accessed in the future. Defining a traversal stride to be a sequence of requests where the 
time between successive requests is less that StrideTimeout seconds [19], an object o 
exhibits spatial locality, if there exists a traversal stride so starting with object o, such 
that: 
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where fo is the popularity of object o, 

osf the popularity of the traversal stride so and 

Tspat a given threshold. 

Spatial locality of reference is likely to be found in a context access pattern due to the 
modular design based on which context objects are constructed. In particular, a context 
object may be composed of other simpler objects in a cascaded way, requiring a 
cascaded assignment of values to each object in turn. 

4.2   Active Networks Distributed Computing 

Active network developers envisage transforming IP packets into encapsulated 
fragments of executable code that traverse the network and execute in limited 
environments at intermediate nodes. P2P networking, on the other hand, was devised as 
a lightweight, primitive, networking concept that achieves adequate results at minimum 
cost without sophisticated network protocols. We could thus easily think of active 
capsules that carry P2P queries to locate particular information, or code for determining 



traffic and usage patterns for individual sources at each node and dynamically make 
decisions on redistributing information across the P2P network [3]. 

Because P2P queries are lightweight, the mobile code would pose a minimal 
computational burden and impose minimal network overhead, leading to a highly 
efficient self-sustaining and self-maintaining P2P system. In this framework, passive 
monitoring of context usage patterns is supported, which substantially reduces traffic by 
piggybacking the relative information on existing active packets traversing the network, 
as opposed to active monitoring, in which the measurements are done by sending 
additional control messages [21]. 

4.3   Usage-aware Search Mechanisms 

The proposed mechanisms are based on a limited version of the flooding algorithm that 
takes advantage of the locality of reference properties exhibited by the monitored context 
usage patterns. We assume that appropriate Tables maintained by all the peers provide 
information on the objects exhibiting locality properties: T-Table for temporal locality, 
G-Table for geographical locality and S-Table for spatial locality. When a peer initiates a 
request, it first searches the local copies of the Tables to find potential matching sources. 
In case of a hit, it applies an appropriate limited flooding algorithm, depending on the 
type of property. Otherwise, it resorts to pure Flooding. In each case, once the requested 
object is found, the response message follows the reverse path to reach the initiatory-
node and a new entry is created in the RSD of the initiatory-node. Note that the Tables 
are consulted once for each request, namely at the initiatory-node of the request, whereas 
the RSDs at each visited peer. 

The rationale behind the proposed approach is based on two observations: first, only a 
small percentage of all the available objects are likely to exhibit a locality of reference 
property. Second, most requests refer to such objects. Therefore, we expect that the 
majority of requests can be satisfied by looking up the Tables and applying limited 
flooding, whereas the locality information requires limited storage space and thus can be 
retrieved quickly with small overhead. 

Range-limited Flooding. It proposes to limit the range of flooding to an extent 
determined by the popularity of the object requested and in a way to save as much 
bandwidth as possible without increasing the time to locate the appropriate source. Thus, 
the more popular the object, the lower the number of neighbours K to which the request 
should be forwarded in each step, since popularity provides a clue about the number of 
previous repeated requests for the object, which should have thus located the 
corresponding source. Supposing that peer i receives a request )n,o(r , K is given by:  
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 . (5) 

 
where fo is the popularity of o and di the degree of i. 
We assume that the T-Table hosts popularity information of the most popular objects. 

An entry (o, fo) indicates the popularity fo of an object o, as measured by its home-node, 



which keeps logs of the requests it has serviced. An object o is registered with T-Table 
only if its popularity is greater than a given threshold a, while an update operation is 
performed only if a noticeable change, which is determined by a given percentage 
threshold b, is recorded by its home-node. In case a peer decides to perform a register or 
an update operation, the respective information will be encapsulated in a following 
request message initiated from that peer. In this case, the respective active packet has to 
load a modified code that executes both the query and the register/update operation in 
each visited peer, and thus updates all the copies of T-Table. 

Depth-limited Flooding. It is proposed as an alternative that aims to save bandwidth by 
limiting the depth (TTL) of flooding. The success of this algorithm when searching for 
an object is based on a strong indication that the given object is most likely to be located 
following a limited number of hops. Therefore, if an object proves to exhibit 
geographical locality of reference with radius L, it is likely that the same object will be 
requested from nearby nodes in the future. These nearby nodes could limit the depth of 
flooding in following repeated requests initiated from them to the value D=L, with the 
expectation that either the source itself will be located nearby or the location of the 
source will be found cached in the RSD of a nearby node. 

The existence of geographical locality of reference for a given object is verified by its 
home-node. Each peer maintains information related to its broader neighborhood, 
namely the nodes located in close geographic proximity, and periodically examines the 
request history of each source it owns, so as to correlate the initiatory nodes of the 
relevant requests. It thus registers every object that proves to exhibit geographical 
locality, based on inequality (3), with the G-Table maintained by each node in its 
broader neighborhood. A register/delete operation is performed by encapsulating the 
respective information in a following request message initiated from this peer. 

Prefetch-limited Flooding. It exploits the idea of prefetching within flooding, namely 
search for more than one object within a single flooding, in anticipation of future 
requests. In particular, when a node initiates a request for an object that proves to exhibit 
spatial locality of reference, it piggybacks its request with a set of queries for the 
dependent objects that it speculates will be requested by the client in the near future, in 
order to resolve all of them during the same flooding search. 

Contrary to the other properties that are server-detected, a thorough analysis of the 
clients’ access patterns is required in order to identify the spatial locality of reference 
that may exist among the various objects. Assuming that each peer keeps logs of the 
requests it has initiated, it is capable of testing for the existence of the property locally 
for every object that is frequently requested, based on the inequality (4). Note that each 
entry (o, so) of the S-Table indicates the object o that exhibits spatial locality and the 
respective stride so. Every peer that frequently initiates requests for an object registered 
in the S-Table is responsible for verifying that this object indeed exhibits spatial locality. 
In the opposite case, it should initiate a delete operation in order to remove the object 
from all the S-Tables. The register/delete operation is performed with the same 
piggybacking mechanism. 



5   Simulation Results 

We have implemented an event-based multithreaded simulation in Java to test our 
algorithms. As a reference for comparison we use the pure Flooding, which achieves the 
best search time at the cost of intensive network use, and the Random Walk with Local 
Flooding of TTL=1, which was proposed recently as an alternative to the pure Random 
Walk that improves its search time. Henceforth, the latter one will be called Random 
Walk for the sake of brevity. We assume constant peer participation, no failures, and that 
the sources do not migrate during the simulation. The simulated requests are simple and 
there is exactly one matching source to a request. Moreover, we assume that the RSD 
size is infinite. The initial topology of the overlay network, as formed by the neighbors’ 
connections, is modeled as a random graph that is generated based on the Waxman 
model [22]. We follow the analytic workload generation method, which starts with 
models for various workload characteristics i.e., the locality of reference properties in 
our case, and then generates outputs that adhere to these models [23]. Since each 
property is proposed to be exploited in a different way, we generate distinct synthetic 
traces for each property in order to experiment exclusively with the potential benefits 
achieved in each case. Zip’s law [24] is used to model the distribution of context 
requests and the default TTL value is set to the graph diameter. As a metric for the time 
to locate a source we use the average path-length per request (defined as the ratio of the 
total number of hops incurred across all requests to the total number of requests), while 
the bandwidth consumption is well captured by the average number of messages per 
request (defined as the ratio of the total number of messages sent across all requests to 
the number of all requests). 

5.1   Test Case 1: Temporal Locality 

The network size equals to 200 nodes and each peer node controls one source, for a total 
of 200 sources. Each peer monitors the popularity of the local sources and updates the T-
Tables accordingly. For simplicity we assume that the T-Tables are updated at constant 
periods, namely every time the overlay has executed 100 new requests, for a total of 
1000 requests. Fig.1 and Fig.2 depict the evolution of the average path-length and the 
average number of messages per request, over time, under Range-limited Flooding (R-
F), Flooding (F) and Random Walk (RW), for two different values of the Zipf parameter 
a, namely �=0.7 and �=0.95, respectively. The time evolution is given in terms of 
consecutive time periods, each corresponding to the execution of 100 requests. 

Clearly, the average path-length per request decreases over time and R-F achieves to 
follow F very closely. Similarly, the average number of messages per request decreases 
with time, but in this case R-F clearly outperforms F, achieving lower bandwidth waste. 
Moreover, the bandwidth savings achieved by R-F becomes more intense with time. 
Comparing R-F with RW, it becomes obvious that the latter one achieves high 
bandwidth savings, but at the cost of a noticeable increase in the average path-length per 
request. It is also remarkable that the performance of RW improves with time. In 
particular, the bandwidth savings it achieves with regard to R-F increases from 53% to 
78%, whereas the path-length savings of R-F with regard to RW decreases from 89% to 
73%. 
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Fig 1. Performance of R-F versus F and RW, for �=0.7 

 
Moreover, the value of a affects the bandwidth savings achieved by R-F with 

reference to F. In particular, usage patterns with a higher skew in popularity distribution 
seem to take greater advantage of the savings achieved by R-F (Fig.2). On the other 
hand, the percentage of bandwidth savings and path-length waste achieved by RW with 
regard to R-F seem not to be affected from the value of �.  
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Fig. 2. Performance of R-F versus F and RW, for �=0.95 

5.2   Test Case 2: Geographical Locality 

We first consider an overlay graph of 500 nodes and density equal to 0.035. Each peer 
maintains 10 sources. We experiment with synthetic traces of 400 requests produced 
according to Zipf distribution (with a=0.7), that exhibit geographical locality at different 
degrees. The degree, namely the fraction of the requests executed in the whole trace that 
exhibit geographical locality, has been set to 0.2, 0.4, 0.6, and 0.8, with 0.48%, 1.28%, 
2.72% and 4.32% of the most popular objects exhibiting the property, respectively. We 
evaluate the performance of pure Flooding (F), Random Walk (RW) and Depth-limited 
Flooding (D-F), assuming that the last one has set the radius of geographical locality to 3 
and then we repeat the experiment on a graph of density 0.07. The results are depicted in 
Fig.3 and Fig.4, respectively.  

As the degree of geographical locality increases, the average path-length drops and D-
F achieves to maintain the path-length at the same level with F. On the other hand, while 



the average number of messages per request remains almost constant under F as the 
degree increases, D-F achieves growing savings. Comparing the performance of RW to 
the one of D-F, we observe that the bandwidth savings achieved by the former with 
regard to the latter is on the order of 50%, whereas the path-length savings of the latter 
with regard to the former is 90%. Moreover, both values are not affected by the variation 
of the degree of geographical locality. 
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Fig. 3. Performance of D-F versus F and RW for graph density equal to 0.035 

 
As far as the graph density is concerned, the sparser the graph, the more profitable the 

application of D-F compared to F would be. On the other hand, the performance of D-F 
compared to RW seems not to be affected by the graph density. 
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Fig. 4. Performance of D-F versus F and RW for graph density equal to 0.07 

5.3   Test Case 3: Spatial Locality 

The goal of the third experiment is to quantify the cost of Prefetch-oriented Flooding (P-
F) in terms of the degree of spatial locality exhibited by a trace. The network graph 
consists of 200 nodes, each maintaining 1 source. We generated 4 different synthetic 
traces according to Zipf distribution (a=0.7), each consisting of 1000 requests. The 
degree of spatial locality in each of them is adjusted to 0.2, 0.4, 0.6 and 0.8, respectively, 
with 2.5%, 10%, 26% and 54.5% of the most popular objects exhibiting the property, 
respectively. The traversal strides consist of 2 objects. Measuring the same metrics, the 
graphs that result are depicted in Fig.5. 



Clearly, while F is not affected notably by the degree variation, P-F achieves 
significant savings in terms of the average path-length and the number of messages per 
request, which become more evident as the degree increases.  
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Fig. 5. Performance of P-F versus F 

6   Conclusions 

While the majority of mechanisms proposed in literature are based on network topology 
properties, the current work shows the potential of exploiting usage-awareness toward 
improving search efficiency. The simulation results show that the new mechanisms 
maintain the good search time of Flooding, while they achieve to reduce the bandwidth 
consumption that tends to cripple such systems. Moreover, the degree of bandwidth 
savings is tightly connected to the degree of the locality of reference properties 
exhibited. In the proposed framework, the overhead imposed by usage-awareness is kept 
low because the locality-Tables are of small-size, with light registries, and no additional 
traffic is needed to maintain them. We thus believe that the current work could be 
considered as a first step toward proposing even more powerful mechanisms that 
combine both approaches. It therefore contributes to a growing development toward 
economic activity in decentralized search mechanisms. 
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