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Abstract. Distributed Classification Fusion using Error-Correcting Codes
(DCFECC) has recently been proposed for wireless sensor networks. It
adopts the Minimum Hamming Distance (MHD) fusion rule and per-
forms much better than traditional classification approaches when the
network has faulty sensors. Different fusion rules were proposed later.
One of them is Distributed Classification fusion using Soft-decision De-
coding (DCSD). The DCSD fusion rule has a considerably lower mis-
classification probability than the MHD fusion rule. This work analyzes
the performance of the DCSD fusion rule. Asymptotic performance ap-
proximation of the DCSD fusion rule is derived based on the Central
Limit Theorem. Furthermore, an asymptotic upper bound on the mis-
classification probability is obtained. Finally, numerical simulations are
conducted to verify our analysis results.

Keywords: Wireless sensor networks, distributed detection, soft-decision
decoding, Central Limit Theorem.

1 Introduction

Wireless sensor networks (WSNs) comprise many tiny, low-cost, battery-powered
sensors in a small area. The sensors detect environmental variations and then
transmit the detection results to other sensors or a base station. The base sta-
tion or a sensor, serving as a fusion center, collects all detection results, and
determines what phenomenon has occurred [1,2]. The WSN sometimes must be
able to function under severe conditions, such as in a battlefield, fireplace or pol-
luted area. The transmission channel, as well as the environmental phenomenon
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observed by the sensor, is noisy. Furthermore, the observation signal to noise
ratio (OSNR) and the channel signal to noise ratio (CSNR) may change quickly
and be difficult to estimate accurately. Some sensors may even have unrecog-
nized faults in the harsh environment. Therefore, a fault-tolerant system must
be developed to make the received local decisions error-resistant [3, 4].

Wang et al. [5] proposed Distributed Classification Fusion using Error-Correcting
Codes (DCFECC) to solve this problem by combining the distributed detec-
tion theory [6] with the concept of error-correcting codes in communication sys-
tems [7]. DCFECC with the Minimum Hamming Distance (MHD) fusion rule
has a much lower probability of misclassification when some sensors are faulty
than the traditional distributed classification method. DCFECC outperforms the
method even when CSNR is not correctly estimated. Its performance analysis is
given in [8].

Three fusion rules were proposed and compared [9,10] later. One is the max-
imum a posteriori probability (MAP) fusion rule, one is the Minimum Euclean
Distance (MED) fusion rule, and the other is Distributed Classification fusion
using Soft-decision Decoding (DCSD) fusion rule. The MAP and DCSD fusion
rules have a considerably misclassification probability than the MED one. More-
over, the DCSD has a lower computational complexity than the MAP with little
performance loss when no faulty sensor appears. If some sensors are defective,
the DCSD outperforms the MAP when the misclassification probability is lower
than 0.2. Therefore, the DCSD fusion rule is a more practical choice than the
other ones. However, its performance analysis have not been provided.

In this work, we analyze the performance of the DCSD fusion rule without
assuming no errors in local decisions and wireless channels. Asymptotic perfor-
mance approximations are obtained by the Central Limit Theorem. Asymptotic
upper bounds on the misclassification probability are derived. These results can
be utilized for the optimal code matrix design in the future. Computer simula-
tions show the performance approximation is accurate and the upper bound is
tight when the misclassification probability is lower than 0.2.

The remainder of this work is organized as follows. Section 2 briefly addresses
the distributed detection problem in WSNs and the DCSD fusion rule. The
performance analysis of the DCSD fusion rule is derived in Section 3. Section 4
shows simulation results. Concluding remarks and suggestions for future works
are given in Section 5.

2 Fault-Tolerant Distributed Detection and DCSD Fusion
Rule

Figure 1 depicts a wireless sensor network for distributed detection with N
sensors deployed for collecting environment variation data and a fusion center
for making a final decision of detections. At the jth sensor, one observation yj is
undertaken for one of phenomena Hi, where i = 1, 2, . . . , M . The observation is
normally a real number represented by many bits. Transmitting the real number
to the fusion center would consume too much power, so a local decision, uj, is
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Fig. 1. Structure of a wireless sensor network for distributed detection using N sensors

made instead. For a phenomenon, if only L bits are allowed to send the local
decision from the sensor to the fusion center, then the L bits are used to represent
the decision.

The DCFECC approach [5] sets L = 1, and designs an M × N code matrix
T not only to correct transmission errors, but also to resist faulty sensors. The
application of the code matrix is derived from error-correcting codes. Table 1 lists
an example of T, which is the optimal code matrix found through the criterion
in [11]. Row i of the matrix represents a codeword ci = (ci,1, ci,2, . . . , ci,N )
corresponding to hypothesis Hi, and ci,j denotes a 1-bit symbol corresponding
to the decision of sensor j. Notably, sensors 1 to 10 have the same decision
pattern and sensors 11 to 20 have the same decision pattern. As a result, there
are two decision patterns for the code matrix in Table 1.

Table 1. The 4 × 20 optimal code matrix

H1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

H2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

H3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

H4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Let vj be the received local decision at the fusion center, where vj ∈ {0, 1}.
A cost function is then defined as

Cv,ci =

⎧⎪⎨
⎪⎩

1 − 1
q , ci is one of q solutions of

argmin
ck

dH (v, ck) ;

1, else.
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Notably, dH(v, ck) denotes the Hamming distance between a received vector,
v = (v1, v2, . . . , vN ), and a codeword, ck. Hence, the Bayes risk function [6]
represents the probability of misclassification,

Pe =
∑
i,v

∫
y

p(v,y, Hi)Cv,cidy, (1)

where y = (y1, y2, ..., yN ). Set u = (u1, u2, . . . , uN ), and make the following
assumptions:
Assumption 1: Observations at all sensors are conditionally independent, i.e.,

p (y|Hi) = p (y1, y2, . . . , yN |Hi) =
N∏

j=1

p (yj |Hi) .

Assumption 2: The jth local decision, uj , only depends on the jth observation,
yj .
Assumption 3: The jth received local decision, vj , only depends on the jth
local decision, uj .
Equation (1) can then be recast as

Pe =
∑

i,u,v−vj

∫
y

P (Hi)[P (vj=1|u)p(u|y)p(y|Hi)Cvj=1,ci

+P (vj=0|u)p(u|y)p(y|Hi)Cvj=0,ci ]dy,

where vj=bv = (v1, . . . , vj−1, bv, vj+1, . . . , vN ), bv ∈ {0, 1}, and v− vj represents
the elements of v except vj .

The DCSD is applied as follows. Set u = (u1, u2, . . . , uN). The local decision
u is transmitted for the final decision to the fusion center. The received data at
the fusion center are ṽ = (ṽ1, ṽ2, . . . , ṽN ), where

ṽj = (−1)uj

√
Es

L
+ nj . (2)

Notice that Es is the total transmission energy per sensor, and nj is the additive
white Gaussian noise (AWGN) with the two-sided power spectral density N0/2.
The received data are decoded as hypothesis i if

p (ṽ|ci) ≥ p (ṽ|ck) for all ck, where k = 1, . . . , M. (3)

For simplicity, let L = 1. Since ṽj does not depend on ci,j given uj , and according
to Assumptions 2 and 3, (3) can be rewritten as

N∏
j=1

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ci,j) ≥
N∏

j=1

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ck,j) ,

⇒
N∑

j=1

ln

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ci,j)

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ck,j)
≥ 0. (4)
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Because ci,j and ck,j are binary, the bit logarithm-likelihood ratio of the received
data at the fusion center can be defined as

λj = ln

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ci,j = 0)

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ck,j = 1)
. (5)

(4) is then equivalent to

N∑
j=1

[λj − (−1)ci,j ]2 ≤
N∑

j=1

[λj − (−1)ck,j ]2 . (6)

3 Performance Analysis

Assume that the wireless channel between the fusion center and the sensor
is influenced by AWGN with zero mean and variance σ2

c . Namely,

p (ṽj |uj = bu) =
1√

2πσ2
c

exp
{
− (ṽj − (−1)bu)2

2σ2
c

}
. (7)

For simplicity, let

Pj,0|0 = p (uj = 0|ck,j = 0)
Pj,1|1 = p (uj = 1|ck,j = 1) . (8)

Substituting (7) and (8) into (5), we can rewritte logarithm-likelihood ratio as

λj = ln
exp
{

ṽj

σ2
c

}
Pj,0|0 + exp

{
− ṽj

σ2
c

}
(1 − Pj,0|0)

exp
{

ṽj

σ2
c

}
(1 − Pj,1|1) + exp

{
− ṽj

σ2
c

}
Pj,1|1

= ln
exp
{

2ṽj

σ2
c

}
Pj,0|0 +

(
1 − Pj,0|0

)
exp
{

2ṽj

σ2
c

}(
1 − Pj,1|1

)
+ Pj,1|1

. (9)

Thus, the Cumulative Density Function (CDF) of λj can be expressed as

Pr(λj < x|ci,j) = Pr

⎧⎪⎪⎨
⎪⎪⎩ln

exp
{

2ṽj

σ2
c

}
Pj,0|0 +

(
1 − Pj,0|0

)
exp
{

2ṽj

σ2
c

}(
1 − Pj,1|1

)
+ Pj,1|1

< x

∣∣∣∣∣ci,j

⎫⎪⎪⎬
⎪⎪⎭

= Pr

{
ṽj <

σ2
c

2
ln

exPj,1|1 + Pj,0|0 − 1
Pj,0|0 + ex(Pj,1|1 − 1)

∣∣∣∣∣ci,j

}
. (10)
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We denote

ζj(x) =
σ2

c

2
ln
(

exPj,1|1 + Pj,0|0 − 1
Pj,0|0 + ex(Pj,1|1 − 1)

)
. (11)

Because the Probability Density Function (PDF) of ṽj can be represented by

fṽj (x|ci,j) =
Pj,ci,j |ci,j√

2πσ2
c

exp
{
−x − (−1)ci,j

2σ2
c

}

+
(1 − Pj,ci,j |ci,j

)√
2πσ2

c

exp
{
−x − (−1)(1−ci,j)

2σ2
c

}
, (12)

where Pj,ci,j |ci,j
represents the probability of correct local decision for the sensor

j, (10) can be rewritten as

Pr(ṽj < ζj(x)|ci,j)

=
∫ ζj(x)

−∞
fṽj (x|ci,j)dx

= Pj,ci,j |ci,j
× Φ

(
ζj(x) − (−1)ci,j

σc

)

+(1 − Pj,ci,j |ci,j
) × Φ

(
ζj(x) − (−1)ci,j

σc

)
,

(13)

where Φ(·) is the CDF of a random variable with normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
exp
{
−x2

2

}
dx.

Therefore, the PDF of λj can be given by

fλj (x|ci,j) =
d

dx

∫ ζj(x)

−∞
fṽj (t|ci,j)dt

=
1
2

[
Pj,ci,j |ci,j√

2πσ2
c

exp
{
−ζ(x) − (−1)ci,j

2σ2
c

}

+
(1 − Pj,ci,j |ci,j

)√
2πσ2

c

exp
{
−ζ(x) − (−1)(1−ci,j)

2σ2
c

}]

× σ2
cex(Pj,1|1 + Pj,0|0)

(exPj,1|1 + Pj,0|0 − 1)(exPj,1|1 + Pj0|0 − ex)
. (14)

The mean and the variance of λj can be found as

μλj =
∫ ∞

−∞
xfλj (x|ci,j)dx, (15)
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σ2
λj

=
∫ ∞

−∞
(x − μλj )

2fλj (x|ci,j)dx, (16)

respectively.
The misclassification probability at the fusion center can be expressed by

Pe =
M∑
i=1

Pr(Hi) Pr

⎛
⎝ M⋃

k=1,k �=i

H̃k

∣∣∣Hi

⎞
⎠ . (17)

When the DCSD fusion rule is employed, the misclassification probability given
that Hi occurs can be derived as follows.

Pr(H̃k|Hi) = Pr

⎛
⎝ N∑

j=1

[λj − (−1)ci,j ]2 ≥
N∑

j=1

[λj − (−1)ck,j ]2
∣∣∣Hi

⎞
⎠

= Pr

⎛
⎝ N∑

j=1

λj (ck,j − ci,j) ≤ 0
∣∣∣Hi

⎞
⎠ , (18)

where k �= i. Let S be the number of the decision patterns for a code matrix
and Ω(�), � = 1, 2, ..., S, be the set of sensors with the same decision pattern �.
For example, Ω(1) = {1, 2, ..10} and Ω(2) = {11, 12, ..20} for the code matrix
in Table 1. Since the sensors with the same decision pattern operate identically,
the means and the variances of λj , where j ∈ Ω(�), have no difference and can
be denoted as μ� and σ2

� , respectively. Moreover, define d
(�)
H (ck, ci) as the partial

Hamming distance between ck and ci at the set �. For example, d
(1)
H (c1, c2) = 0

and d
(2)
H (c1, c3) = 10 for the code matrix in Table 1. The sensor sets Ω(�)

satisfying d
(�)
H (ci, ck) �= 0 are employed to differentiate Hk from Hi at the fusion

center. When the information from two or more sensor sets are utilized for the
final decision, the Hamming distance between ci and ck is large. Because of the
large Hamming distance, the probability of misclassification is small. Therefore,
when ‖{� : d

(�)
H (ci, ck) �= 0}‖ ≥ 2, (18) can be rewritten and approximated as

Pr(H̃k|Hi) = Pr

⎛
⎜⎝ ∑

{�:d
(�)
H (ci,ck) �=0}

∑
j∈Ω(�)

λj (ck,j − ci,j) ≤ 0
∣∣∣Hi

⎞
⎟⎠

≈
∏

{�:d
(�)
H (ci,ck) �=0}

Pr

⎛
⎝ ∑

j∈Ω(�)

λj (ck,j − ci,j) ≤ 0
∣∣∣Hi

⎞
⎠ . (19)

The following corollary can be obtained based on the Central Limit Theorem.

Corollary 1. If d
(�)
H (ck, ci) is sufficiently large, the misclassification probability

can be approximated as

Pr(H̃k|Hi) ≈
∏

{�:d
(�)
H (ci,ck) �=0}

Φ

⎛
⎝−

√
d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞
⎠ . (20)
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If the size of the code matrix is large, it is difficult to calculate the approximation
according to (20). Since the probability of the union in (17) can be approximated
as

M∑
k=1,k �=i

Pr
(
H̃k|Hi

)
, (21)

we can obtain the following approximation.

Corollary 2. If d
(�)
H (ck, ci) is sufficiently large, the misclassification probability

can be approximated as

Pe ≈
M∑
i=1

M∑
k=1,k �=i

Pr(Hj) ×

∏
{�:d

(�)
H (ci,ck) �=0}

Φ

⎛
⎝−

√
d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞
⎠ .

Define

P ∗
e =

M∑
i=1

M∑
k=1,k �=i

Pr(Hj) ×

∏
{�:d

(�)
H (ci,ck) �=0}

Φ

⎛
⎝−

√
d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞
⎠ .

Next, we propose a corollary to derive the upper bound of the approximation.

Corollary 3. For all � and all pair {i, k}, if

Φ

⎛
⎝−

√
d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞
⎠ ≤ Pr

⎛
⎝ ∑

j∈Ω(�)

(ck,j − ci,j) ṽj ≤ 0

⎞
⎠ , (22)

then

P ∗
e ≤

M∑
i=1

M∑
k=1,k �=i

Pr(Hi) ×
∏

{�:d
(�)
H (ci,ck) �=0}

Pr

⎛
⎝ ∑

j∈Ω(�)

(ck,j − ci,j) ṽj ≤ 0

⎞
⎠ . (23)

From (12), the characteristic function of ṽj is

ϕ(z) = Pj,ci,j |ci,j
exp
{
j (ck,j − ci,j) z − σ2

cz2

2

}

+(1 − Pj,ci,j |ci,j
) exp

{
−j (ck,j − ci,j) z − σ2

cz2

2

}
(24)
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and the characteristic function of a random variable which is the summation of
ṽj , j = 1, 2, ..., n, is

ϕn(z) =
n∑

t=0

(
n

t

)
(Pj,ci,j |ci,j

)t(1 − Pj,ci,j |ci,j
)(n−t)

× exp
{
j(2t − n) (ck,j − ci,j) − z2

2
(nσ2

c )
}

, (25)

where j =
√−1. Then, the PDF of a random variable which is the summation

of ṽj , j = 1, 2, ..., n, is

f� ṽj
(x) =

1√
2πnσ2

c

n∑
t=0

(
n

t

)
(Pj,ci,j |ci,j

)t(1 − Pj,ci,j |ci,j
)(n−t)

× exp
{
− (x − (2t − n) (ck,j − ci,j))2

2nσ2
c

}
. (26)

Let w� = d
(�)
H (ck, ci). According to Corollary 3, when (22) holds, the upper

bound can be expressed as

P ∗
e ≤

M∑
i=1

M∑
k=1,k �=i

Pr(Hi)
∏

{�:w� �=0}

w�∑
t=0

(
w�

t

)
(Pj,ci,j |ci,j

)t

×(1 − Pj,ci,j |ci,j
)w�−tΦ

(
− (2t − w�) (ck,j − ci,j)√

w�σc

)
.

(27)

4 Numerical and Simulation Results

The proposed approximations and the upper bound are verified by simu-
lations with 106 Monte Carlo tests. A fusion center and N = 20 sensors are
deployed to detect and classify four hypotheses H1, H2, H3 and H4. We also as-
sume that the local observations are interfered by the Gaussian noise with the
same standard deviation σo and mean 0, 1, 2, and 3, respectively. In addition,
wireless channels are interfered by AWGN and CSNR is 10× log10(Es/N0). The
code matrix in Table 1 was utilized.

The first and second approximations are stated in Corollary 1 and Corol-
lary 2, respectively. The first set of figures shows the approximations and the
simulation result when CSNR is set to be 0 and 10, respectively. In this case,
M is small and the probability of the union in (17) is obtainable. As shown
in Fig. 2 and 3, both approximations are accurate when the misclassification
probability is lower than 0.2. The first approximation is better than the second
one. However, the computational complexity of the first approximation is higher
than the second one, as we pointed in the previous section. When OSNR is low,
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the probability of the union in (17) cannot be approximated by (21). Thus, the
difference between the approximation and the simulation result is large at −3
dB. Figures 4 and 5 show that the upper bound in (27) is very close to the
simulation result when the misclassification probability is lower than 0.2.
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Fig. 2. Proposed approximations and simulation results when CSNR = 0 dB

5 Conclusions and Future Works

This work analyzes the performance of the distributed detection using the
DCSD fusion rule. Two approximations and an upper bound of the misclassi-
fication probability are presented. The analysis is based on the Central Limit
Theorem. The simulation results showed that the approximation and the upper
bound are accurate for the network with only twenty sensors. In the future, we
will employ the analysis result to design the optimal code matrix for the DCSD
fusion rule.
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