
Write Back Routine for JFFS2 Efficient I/O

Seung-Ho Lim1, Sung-Hoon Baek1, Joo-Young Hwang2 and Kyu-Ho Park1

1 Computer Engineering Research Laboratory,
Department of Electrical Engineering and Computer Science,

Korea Advanced Institute of Science and Technology
{shlim,shbaek}@core.kaist.ac.kr, kpark@ee.kaist.ac.kr,

2 Embedded OS Lab.
Samsung Electronics

jooyoung.hwang@samsung.com

Abstract. When flash memory is used as a storage in embedded sys-
tems, block level translation layer is required between conventional filesys-
tem and flash memory chips due to its physical characteristics. A far more
efficient use of it is the design of a filesystem itself without no extra layer
of translation. However, since flash filesystem does not use block device
layer, it cannot utilize deferred I/O although deferred I/O enhances write
latency by delaying the flushing jobs. Linux operating system generally
uses the write back routine for deferred I/O using kernel thread, which
writes back dirty pages and buffers through the block device layer. In this
paper, we design and implement efficient I/O for JFFS2 flash filesystem
based on flash memory. For this, we first analyze the write procedure of
JFFS2 filesystem in detail, and derive the drawback and overhead. Then,
we design the flash write back routine for deferred I/O. We apply it to
the Linux JFFS2 by implementing fflush and flash writeback kernel
thread. The designed flash write back routine can reduce average write
latency when the kernel buffers are enough to get the users data.

1 Introduction

Flash memory has become an increasingly important component as a nonvolatile
storage media because of its small size, shock resistance, and low power con-
sumption[1]. In nonvolatile memories, NOR flash memory provides fast random
access speed, but high cost and low density, compared with NAND flash mem-
ory. NAND Flash has advantages in large storage capacity and relatively high
performance for large read/write in contrast to NOR flash. Recently, the capac-
ity of NAND flash memory for one chip becomes 2GB, and this will be increased
quickly. Based on the NAND flash chip, solid state disk was developed and this
could be used as a storage system in labtop computer[3]. Therefore, NAND flash
is widely used as data storage in embedded systems and also likely to be used for
PC based systems in the near future. Specifically, NAND Flash memory chips
are arranged into blocks, and each block has a fixed number of pages, which
is the unit of read or write. A page is further divided into a data region for
storing data and a spare region for storing the status of the data region. In first

generation, the typical page size was 512 bytes, the additional spare region was
16 bytes, and the block size was 16 KB, which was composed of 32 pages. As
its capacity grew, the page size of the next generation became 2 KB with an
additional 64 bytes spare region, and the block size became 128 KB.

Due to the flash memory characteristics, form of Electrically Erasable Read
Only Memory (EEPROM), no in-place update is allowed. This means that when
data is modified, new data must be written to an available free page in another
position, and this page is considered as a live page. The page which contains
old data is considered as a dead page. As time passes, a large portion of flash
memory is composed of dead pages, and the system should reclaim the available
free pages for write operations. The erase operation makes free pages available.
However, because the unit of an erase operation is a block, which is much larger
than a write unit, this mismatch causes an additional copy operation of live pages
in erasing the block somewhere else. This process is called garbage collection. To
address these problems, a flash translation layer has been introduced between
the conventional filesystem and flash memory[5]. This block level layer redirects
the location of updated data from one page to another page and manages current
physical location of each data in the mapping table. The mapping between the
logical location and physical location can be maintained either at the page level
(FTL)[2] or at the block level (NFTL)[6]. However, the use of an conventional
filesystem has many performance restrictions when using on the flash memory
because conventional filesystems are designed for disk based storage system.

A far more efficient use of flash memory as storage would be possible through
the use of a filesystem designed specifically for use on such devices, with no extra
layer of translation in between. One such design is Journaling Flash File Sys-
tem 2[9]. The JFFS2 is a log-structured filesystem which stores nodes containing
data and metadata to every free region in flash chip, sequentially. This sequen-
tial write is performed for each flash block. One of the most serious problem in
JFFS2 is very poor read/write response time at users feeling. When writing new
user’s data, JFFS2 makes new node which contains both inode information and
data, writes to the flash medium using flash driver interface directly. Then, node
tree structure is managed and maintained in the main memory using the specific
data structures such as jffs2 inode cache and node fragment lists. Whenever the
write is performed from users, it is not returned from kernel until all the data are
written out to flash memory. There are two reasons that JFFS2 uses synchronous
I/O scheme for write operation. First, JFFS2 does not use block device layer, so
it cannot use the buffer cache mechanism. Although JFFS2 maintains the com-
patible interface with the virtual file system(VFS) layer and uses the page cache
from the VFS, the deferred I/O mechanism in Linux operating system should
use both page cache and buffer cache. Second, flash memory should preserve the
write sequentiality for each flash block, which is from the inherent characteristics
of flash memory. JFFS2 should preserve the write sequentiality of the node to
be written. This write transaction mechanism which is implemented in JFFS2
gives much latency and response time to users and degrades the overall system
read/write performance.

In this paper, we design and implement the write back routine for JFFS2
filesystem on the flash memory storage. Linux OS generally use the write back
routine for deferred I/O using pdflush and kupdate kernel thread, which writes
back the dirty memory pages and buffers to the real storage medium through
the block device layer. For this, we first analyze the write procedure of the
JFFS2 filesystem in detail, and derive the drawback and overhead. Then, we
design the flash write back routine for the flash filesystem deferred I/O whose
method is similar to the Linux pdflush and kupdate operation for dirty buffers.
We implement the flash flush operation and apply to the JFFS2 flash filesystem.
The remainder of the paper is organized as follows: Section 2 describes the
background of Linux deferred I/O mechanism. Section 3 explain the designed
write back routine for JFFS2, and Section 4 describe the performance evaluation
of write back routine. Finally, we conclude in Section 5.

2 Background

In this section, we describe the write procedure in Linux kernel internals[11].
The overall procedure is described in Figure 1. The write() system call involves
moving data from the user mode address space of the calling process into the
kernel data structures, and then to storage. There are two important data struc-
tures in implementing filesystem, the one is file operations and the other is ad-
dress space operations. The write method of the file operations object permits
each filesystem type to define a specialized write operation. It is the a procedure
that basically identifies the blocks involved in the write operation, copies the
data from user mode address space into some pages belonging to the page cache,
and marks the buffers in those pages as dirty. Generally, filesystems implement
the write method of the file object, which is inherited by the file operations, by
means of the generic file write() function. The prepare write and commit write
methods of the address space operations object specialize the generic write op-
eration implemented by generic file write() for files. Both of them are invoked
once for every page of the file that is affected by the write operation. Each block
based filesystem implements simply a wrapper for common function. For exam-
ple, EXT2 filesystem[7] implements the prepare write function by means of the
following function:

int ext2_prepare_write(struct file *file,

struct page *page, unsigned from, unsigned to) {

return block_prepare_write(page,from,to,ext2_get_block)

}

The ext2 get block() function translates the block number relative to the file
into a logical block number, which represents the position of the data on the
physical block device. The block prepare write() function takes care of prepar-
ing the buffers and the buffer heads of the file’s page. Once the prepare write
function returns, the generic file write() function updates the page with the
data stored in the user mode address space using copy from user() macro. Next,

VFS Layer

Filesystem

Storage Medium

Block Device Driver

Users application
user
mem

page

BH

Page Cache

Buffer Cache

Address Space Operation
Prepare_write
Commit_write

pointer

pdflush & kupdate

copy_from_user

submit_bh

Fig. 1. Write Procedure and data structures in Linux Kernel

the generic file write() function invokes the commit write function of the ad-
dress space operations. The commit write function can be also implemented by a
wrapper for the common function, block commit write(). It considers all buffers
in the page that are affected by the write operation; for each of them, it sets the
BH Uptodate and BH Dirty flags and inserts the buffer head in the BUF DIRTY
list and in the list of dirty buffers of the inode. After the commit write function
returns, the generic file write() function does the same job until every page is
updated by the prepare write and commit write methods.

The dirtied pages and buffers are not sent to the block layer and flushed to
the storage medium immediately. Linux allow the deferred writes of dirty buffers
into block devices, since this noticeably improves system performance. At the
system’s aspect, I/O bandwidth is increased and at the users aspect, the write
response time is reduced. A dirty buffer might stay in main memory until the
last possible moment. However, when the system failure occurs, the updated
data are lost if the dirty buffers are not flushed to permanent storage. Also,
the size of main memory would have to huge at least as big as the size of the
accessed block devices. Therefore, the dirty buffers are flush to storage under the
following conditions; The buffer cache gets too full and more buffers are need,
too much time has elapsed since a buffer has stayed dirty, or sync() system call
is invoked. Among these conditions, first two conditions are occurred by the
system’s request. To perform flushing the dirty buffers, Linux runs kernel thread
called pdflush and kupdate in Linux kernel 2.6. While the pdflush kernel thread
is activated when there are too many dirty buffers or when more buffers are
needed, the kupdate kernel thread is introduced to flush the older dirty buffers.
Therefore, the kupdate thread is a periodic timeout function that flush the dirty
buffers to the real storage medium.

3 Write Back Routine for JFFS2

In this section, we explain the implementation of JFFS2 write back routine. Since
the read/write operation of flash filesystem is strongly related to the filesys-
tem architecture, our implementation of write back routine is only dedicated to
JFFS2 filesystem. However, the design concept can be generalized to all of the
flash memory based file system. Actually, it is our future work.

There are some implementing issues in applying the write back routine in
flash filesystem. First, like the pdflush kernel thread and kupdate function, the
kernel thread and writeback function are required whose roles are transferring
the deferred data to the lower layer for real flushing, similar to previous ones.
Second, another data structure is required that contains the information to be
deferred data just like a buffer head in general system, since JFFS2 cannot
utilize buffer head data structure. Lastly, the connecting code should be im-
plemented between JFFS2 write code and writeback kernel thread code. The
jffs2 prepare write and jffs2 commit write method of the JFFS2 address space
object do the jobs. The Figure 2 shows the overall implementation of JFFS2
write back routine.

struct jffs2_flash_bh \{

struct list_head queue_list;

unsigned short type;

struct page *page;

unsigned start;

unsigned end;

unsigned size;

}

The defined structure jffs2 flash bh is shown in above. It should have variables
that jffs2 prepare write and commit write function can deliver the important pa-
rameters. In the structure, queue list represents the jffs2 flash bh list that is to be
scheduled for real flushing, and the type represents JFFS2 node type. The page,
start, end and size means page pointer, page start address, page end address,
and written size, respectively. These are the arguments from generic file write
function. When jffs2 prepare write() function is called, the jffs2 flash bh is al-
located for node and the member variable, *page, in jffs flash bh is is set to the
value from the generic file write(). However, there is no data write and only
node contains metadata in the jffs2 prepare write(), the variables, start and
end, have null values. Jffs2 flash bh is inserted into the flash bh list for deferred
write. The flash bh list, in here, contains all the deferred jffs2 flash bh structure
objects. It is generated when write back kernel thread is initialized. which is
done using the queue list and Linux list head macros. Then jffs2 prepare write
returns. The jffs2 commit write() does the similar job, which also allocates
one jffs2 flash bh, and so on. In addition, the start, end and size is set for the
data writing, then the constructed structure is inserted into the flash bh list. Af-
ter that, the VFS related inode information is updated such as update time and
inode size. Since original JFFS2 writes page data to flash memory immediately,
pages are not set to anything in JFFS2 address space operations. We should
prolong the page lifetime until the data in pages are written to flash memory
by the write back routine. It is done by setting pages appropriate flags and not
releasing page memory. Then, jffs2 commit write() returns.

JFFS2 write back routine is composed of fflush kernel thread, and a timer
function called flash writeback. The fflush kernel thread is created during sys-
tem initialization. It executes fflush() function, that gets the argument func-

VFS Layer

Users application

Page Cache

pointer

copy_from_user

Flash Device Driver

JFFS2 fliesystem

Flash Memory Chip

jffs2_prepare_write

jffs2_commit_write

page

user
mem

jffs2_flash_bh

fflush & flash_writeback

Fig. 2. Write Back Routine of JFFS2 in Flash Memory based Storage

tion, called wb flash(), which selects some nodes from flash bh list and forces
an update of corresponding flash memory pages and blocks. This argument func-
tion is transferred from the flash writeback timer function. The flash writeback
timer function is created by the Linux timer interface, mod timer(), that sets
the timer interval and the function to be executed when the timer is expired.
When it is created, list head for the list management of jffs2 flash bh, called
flash bh, is generated. In mod timer() setting, we set the wb flash() to be ex-
ecuted, later it is executed when fflush thread has scheduled. The wb flash()
function is key function that actually schedule the jffs2 flash bh elements in list
which are gatherd from jffs2 prepare write() and jffs2 commit write(). In
wb flash, it checks whether the flash bh contains any list element or not. If it is,
it gets one element from the list and tries to write it to flash memory. It makes
appropriate type of JFFS2 node, fills node variables with metadata and data,
and sends it to lower layer by calling jffs2 write dnode() function. If the write
is done with success, the element is eliminated from the list. The wb flash()
function iterates the same job until timer function is expired or threshold num-
ber of elements that is written in this time becomes over. The list scheduling
and merging can be considered while dealing the elements. Each data size and
offset in the element is likely to align with the Linux page size and offset since
address space operation in Linux is performed with page aligned. Therefore, the
offset alignment of elements in the list is likely to be continuous order, which
can be merged. This operation is done until the element cannot be merged into
previous ones. Or, the merging should be stopped when merged data size is
exceed the size of flash block because JFFS2 node should not be exceed the
size of flash memory block. The JFFS2 node can be generated with the merged
element, and flushed into flash memory. Since flash memory should ensure the
sequential write order for each flash block, the merged node should be written
immediately. Merging the elements reduce the number of JFFS2 nodes, thus it
can reduce the system overhead not only managing the node fragments list but
also flash memory storage itself.

Finally, special treatments are required for special filesystem operations.
When fsync() system call is called, the file should be flushed into flash mem-
ory immediately. In this case, jffs2 fsync method in file object tries to write
jffs2 flash bh elements which are related to the file by finding them in the flash bh

Platform : OMAP 5912 OSK
Memory : SDRAM 32MB
CPU : ARM9 168MHz
Flash Memory : OneNAND 128MB
OS : Linux 2.6.9
MTD Snapshot Ver. : 2005/10/22

Part Number : KFG1G16U2M
Block Size : (128K+4K)Bytes
Page Size : (2K+64)Bytes
Page Read Time : 30us
Page Program Time : 220us
Block Erase Time : 2ms

Experimental Platform NAND Flash Memory Characteristic.

Table 1. Experimantal Platform Environment and NAND Flash Memory Character-
istics.

list, making JFFS2 nodes and programming to flash memory. When filesystem
is unmounted, all the list elements should be written to flash memory.

4 Performance Evaluation

We have experimented JFFS2 write performance with our implementation of
write back routine for JFFS2 deferred I/O. For the experiments, we use the
embedded system which is composed of ARM CPU based system with ARM9
192MHz clock frequency and 32MB main memory[12]. The used NAND flash
memory is newly designed memory chip, OneNAND[4]. OneNAND has NOR
interface, however, the memory sell is composed of NAND array. It can be con-
nected to the memory system bus, and used for storage. Therefore, there is no
problem the performance test to see the flash memory based flash filesystem.
The developed and experimented software platform is Linux 2.6.9. In the Linux
kernel, we have modified and implemented the JFFS2 write back routine. The ex-
perimental environments are summarized in Table 1. The test program we use is
the tiobench[13] benchmark program, which is designed to test I/O performance
with multiple running threads. The tiobench generates multiple threads that do
the read/write operations with specific file size. When they call read/write sys-
tem call, the write unit, called block size, can be set. In our experiments, we set
three types of block size 4KB, 64KB, and 128KB to evaluate the performance
for various request size distributions.

We compare the designed method with the EXT2 and JFFS2 original version.
The EXT2 is set upon the linux mtdblock ftl layer, and JFFS2 original version
means that is constructed without our writeback method. Figure 3 shows the
overall experimental results. The latency means the time of read or write for one
block. In the Figures, both in EXT2 and JFFS2, the write back method repre-
sents very low average write latencies until the file size becomes 16MB. When
the file size is over 16MB, average write latencies of them increase dramatically.
This threshold value suggests available main memory size for buffering. When
the buffers are sufficient to copy users data, these two methods copy file from user
address to kernel buffers, but real flushing are not done immediately. However, if
buffers are not enough, Linux should flush the dirty buffers immediately to make
free buffers. On the other hand, the original JFFS2 shows steady average write

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(a) Average Write Latency for 4KB Block Size

Ext2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(a) Average Write Latency for 4KB Block Size

Ext2
JFFS2 write back

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(a) Average Write Latency for 4KB Block Size

Ext2
JFFS2 write back

JFFS2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(b) Average Read Latency for 4KB Block Size

Ext2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(b) Average Read Latency for 4KB Block Size

Ext2
JFFS2 write back

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(b) Average Read Latency for 4KB Block Size

Ext2
JFFS2 write back

JFFS2

 0

 20

 40

 60

 80

 100

 120

 140

 160

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(c) Average Write Latency for 64KB Block Size

Ext2

 0

 20

 40

 60

 80

 100

 120

 140

 160

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(c) Average Write Latency for 64KB Block Size

Ext2
JFFS2 write back

 0

 20

 40

 60

 80

 100

 120

 140

 160

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(c) Average Write Latency for 64KB Block Size

Ext2
JFFS2 write back

JFFS2

 0

 10

 20

 30

 40

 50

 60

 70

 80

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(d) Average Read Latency for 64KB Block Size

Ext2

 0

 10

 20

 30

 40

 50

 60

 70

 80

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(d) Average Read Latency for 64KB Block Size

Ext2
JFFS2 write back

 0

 10

 20

 30

 40

 50

 60

 70

 80

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(d) Average Read Latency for 64KB Block Size

Ext2
JFFS2 write back

JFFS2

 0

 50

 100

 150

 200

 250

 300

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(e) Average Write Latency for 128KB Block Size

Ext2

 0

 50

 100

 150

 200

 250

 300

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(e) Average Write Latency for 128KB Block Size

Ext2
JFFS2 write back

 0

 50

 100

 150

 200

 250

 300

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(e) Average Write Latency for 128KB Block Size

Ext2
JFFS2 write back

JFFS2

 0

 20

 40

 60

 80

 100

 120

 140

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(f) Average Read Latency for 128KB Block Size

Ext2

 0

 20

 40

 60

 80

 100

 120

 140

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(f) Average Read Latency for 128KB Block Size

Ext2
JFFS2 write back

 0

 20

 40

 60

 80

 100

 120

 140

32168421

Av
er

ag
e

La
te

nc
y(

m
s)

File Size(MB)

(f) Average Read Latency for 128KB Block Size

Ext2
JFFS2 write back

JFFS2

Fig. 3. Experimental Results for Tio Benchmark Program with different file sizes

1MB
2MB
4MB
8MB

16MB
32MB

1MB
2MB
4MB
8MB

16MB
32MB

1MB
2MB
4MB
8MB

16MB
32MB

1.9<x<2
185
372

56
110

2<

4031435
2791 828

726 235

5505 1697
0.2< 0.3<
243 12
495
988

1971
3926 154
7786 315

3<

12
37

1

90

2

0.5<

13

4<
13
28

113
261

56

488
1<

3
55

1
1

5<

44
92

4

249
10<

2

10<

5
7

2

15
100<

9
18

100<

35
79

147
10000<

1
2

28
<0.4

211
0.4<

27 443
30 899
27 1811
81 3584
89 7315

0.5<
15
41
94

197
405
673

1<

12
9

74

10<

2
7

14
31

100<

1
2

10000<size
time

size

size

time

time

Filesystem

JFFS2 WB

JFFS2

Ext2

15
32
70 6

3
1

Table 2. Experimental Results for Tio Benchmark Program, which represents write
latency distribution for each 4KB block write

latency while varying the file size, since JFFS2 flushes the requests immediately.
The reason that EXT2 and JFFS2 write back has higher latencies than that of
JFFS2 when file size becomes 16MB is very large peak of maximum latency for
some written blocks, which is due to the OS scheduling effect and CPU utiliza-
tion of bulk flushing. The flushing overhead is realized from the Table 2, which
represents the write latency distribution for 4KB block size, for each filesystem.
When system feels lack of free memory, more kernel flush threads occupy cpu
utilization to make more free memory by reducing the timer wakeup intervals.
Also in wb flash, as pending requests are increased, number of flushed requests
are also increased. Therefore, the maximum latency is thousands of average la-
tency when the file size is large, as shown in Table 2. However, this phenomenon
rarely occurs. As block size is increased, experiments give similar results, which
increase average latency as block size increases. The read latency similar results
of that of write except the average latency of JFFS2 original version. It is from
the caching effect of written file.

5 Conclusion

In this paper, we design and implement the efficient I/O mechanism for JFFS2
filesystem based on the flash memory storage. Linux OS generally uses the write
back routine for deferred I/O using pdflush and kupdate kernel thread, which
writes back the dirty memory pages and buffers to the real storage medium
through the block device layer. However, flash memory based filesystem, JFFS2,
does not use block device layer, so they cannot utilize Linux deferred I/O. When

writing new user’s data, JFFS2 makes new node which contains both inode infor-
mation and data, writes to the flash medium using flash driver interface directly.
Whenever the write is performed from users, it is not returned from kernel until
all the data are written out to flash memory. This write transaction mechanism
gives much latency and response time to users and degraded the overall system
read/write performance. Therefore, we implement the deferring mechanism of
write requests to enhance write latency. For this, we first analyze the write pro-
cedure of the JFFS2 filesystem in detail, and derive the drawback and overhead.
Then, we design the flash write back routine for deferred I/O whose method
is similar to the Linux deferred I/O mechanism. We apply to the JFFS2 flash
filesystem by implementing fflush kernel daemon and flash writeback routine
in Linux kernel. The designed flash write back routine can reduce average latency
of write operations when the buffers are enough to get the users data.

References

1. F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A. Tauber, “Storage
alternatives for mobile computers”, In Proc. of the 1st Symposium on Operating
Systems Design and Implementation(OSDI), 1994, pp 25-37

2. Intel Corporation, “Understanding the flash translation layer(FTL) specification”,
http://developer.intel.com/.

3. Samsung Electronics Co., “NAND Flash Memory & SmartMedia Data Book”,
2002.

4. Samsung Electronics Co., “OneNAND Specification”, 2005.
5. “Memory Technology Device (MTD) subsystem for Linux.”, http://www.linux-

mtd.infradead.org.
6. A. Ban, “Flash file system,”, United States Patent, no. 5,404,485, April 1995.
7. Card R, Ts’o T, Tweedie S., “Design and Implementation of the Second Extended

Filesystem.”, The HyperNews Linux KHG Discussion, http://www.linuxdoc.org,
1999.

8. A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory Based File System”,
Usenix Technical Conference, 1995.

9. D. Woodhouse, “JFFS: The Journalling Flash File System”, Ottawa Linux Sym-
posium, 2001.

10. Mendel Rosenblum and John K. Ousterhout, “The Design and Implementation of
a Log-Structured File System”. ACM Transactions on Computer Systems, 10(1),
1992.

11. Daniel P. Bovet and Marco Cesati, “Understanding the Linux Kernel”,. O’reilly
12. Texas Instruments Co., “OMAP 5912 Startker Kit(OSK)”,

http://focus.ti.com/omap/docs/omaphomepage.tsp.
13. Threaded I/O bench for Linux http://sourceforge.net/projects/tiobench/

