
Next Generation Embedded Processor Architecture for Personal
Information Devices

In-Pyo Hong, Yong-Joo Lee and Yong-Surk Lee

The School of Electrical and Electronic Engineering, Yonsei University,

134 Shinchon-dong, Seodaemoon-gu, 120-749, Seoul, Korea

{necross, leemann}@dubiki.yonsei.ac.kr, yonglee@yonsei.ac.kr

Abstract. In this paper, we proposed a processor architecture that is suitable for next generation

embedded applications, especially for personal information devices such as smart phones, PDAs, and

handheld computers. Latest high performance embedded processors are developed to achieve high

clock speed. Because increasing performance makes design more difficult and induces large

overhead, architectural evolution in embedded processor field is necessary. Among more enhanced

processor types, out-of-order superscalar cannot be a candidate for embedded applications due to its

excessive complexity and relatively low performance gain compared to its overhead. Therefore, new

architecture with moderate complexity must be designed. In this paper, we developed a low-cost SMT

architecture model and compared its performance to other architectures including scalar, superscalar

and multiprocessor. Because current personal information devices have a tendency to execute

multiple tasks simultaneously, SMT or CMP can be a good choice. And our simulation result shows

that the efficiency of SMT is the best among the architectures considered.

1. Introduction

Using simple RISC processors as CPUs for personal information devices such as smart phones, PDAs,

and handheld computers is one of the major applications of embedded processors. The characteristics of

application programs are similar to that of desktop computers and the need for high performance is

getting stronger. However, the limitation in chip size and power consumption prevent the handheld

computers from applying more powerful processor cores as their CPUs. The latest commercial processor,

ARM11 core, adopts single-issue in-order scalar architecture which is the simplest form among current

processor types. Current architectural evolutions in this kind of processors concentrate on increasing

clock speed through deeper pipelines [1]. Some embedded processors employ high performance out-of-

order superscalar technique that induces large chip area and design complexity. However, they are mainly

used for network/communication equipments or home game machines that are neither mobile nor battery-

powered. Due to their complexity, these processors cannot be used for handheld devices. Therefore, new

processor architecture that boosts architectural performance while suppressing the complexity under the

affordable level is needed.

This paper is organized as follows. In section 2, previous works are described. In section 3,

architecture models that we simulated are presented in detail. Section 4 shows our simulation

methodology and workloads. And after we present simulation results in section 5, section 6 concludes.

2. Previous Works

Most conventional embedded processors adopt simple scalar architecture with 3 to 5 stages of pipeline.

These processors can work well when applications are limited to simple personal data management and

when multi-tasking is not necessary. However, because mobile internet and multimedia applications are

getting popular, personal information devices are requested to cover the application domain of desktop

computers. Architectural evolution in this field is concentrated on increasing clock speed while

minimizing performance penalty of longer pipeline and suppressing power consumption overhead by

using intelligent clock speed and voltage control [1]. Although various techniques are used to prevent

negative effects, super-pipelining induces decrease in IPC and fast clock speed requires more power

[2][3]. Therefore architectural enhancement that can fundamentally overcome these problems is needed.

Some researchers tried to adopt multithreading to embedded processors [4][5]. They added multiple

register sets for multiple hardware contexts and made instructions from multiple threads issue-able cycle

by cycle while keeping the other part of the processor unchanged. This architecture type is a kind of fine-

grain multithreading. With this simple multithreading, they intended to improve response of processors to

randomly triggered events because multithreading architecture does not require context switching on

interrupt handling. However, the throughput of these processors is limited to 1 IPC even in ideal cases.

Although they invest the largest overhead of multithreading, multiple register sets, the potential of

multithreading cannot be fully exploited in the fine-grain multithreading architecture. It is mainly because

issue width is restricted to one instruction while more TLP (Thread Level Parallelism) exist. As a result,

previous multithreading processors improve response of the processor when multiple events are pending

and make real performance closer to the ideal level by switching threads dynamically in wasted cycles.

Enhanced architectures that can improve architectural performance are superscalar and SMT

(Simultaneous MultiThreading) [6]. However, it is impossible to use these gigantic processor

architectures for our target application that requires tiny and simple hardware, unless it is simplified

dramatically. A few researches tried to adopt the SMT technique to embedded applications. However,

they are very limited to the applications that require massive parallel data processing such as network

processors. In most cases, the complexity is not a matter of concern because the equipments have

sufficient space and stable power supply [7][8].

3. Architecture Models

3.1. Baseline Architecture

Our baseline architecture is a reference for comparison against proposed architecture. It resembles current

embedded processors which has longer pipeline and single instruction issue mechanism. The instruction

set architecture (ISA) is compatible with ARM ISA version 5.

The pipeline has 7 stages and designed to achieve higher clock frequency. Fig. 1 shows the

microarchitecture and the pipeline. In fetch stage, a single-ported 128-entry branch target buffer with

bimodal direction prediction fields is installed. To track dependencies, a scoreboard is employed To

access the scoreboard array and calculate the availability of source operands, separated issue stage is

needed. The ARM ISA requires a maximum of three source registers for shifter operand feature.

Increasing register read path to three ports incurs additional register read delay and the shifter that must

be serially attached to ALU induces great timing overhead to the functional unit. Therefore we divided

execution stage to two stages, that is, a register read stage and an execution stage. The architecture

described above fetches and executes a single instruction each cycle. We call this architecture scalar

architecture in the rest of this paper.

The scalar architecture can be easily extended to execute two instructions per cycle in program order.

Although out-of-order scheduling of instructions is needed to maximize ILP, it induces tremendous

overhead. Therefore we restrict the issue order to strict program order. First of all, the fetch and decode

bandwidth is increased to two instructions. Secondly, to check dependencies successfully, the number of

scoreboard array ports is doubled. To fetch the increased number of operands and execute multiple

instructions, additional ports of register file and a supplementary ALU is also employed. Finally, a write

port of register file is added to support writeback of two instructions in the same cycle. We call this

architecture as superscalar in the rest of this paper.

Fig. 1. The microarchitecture and pipeline structure of the baseline processor

3.2. Multiprocessor Architecture

Multiple scalar or superscalar processors can be organized to form a multiprocessor model. We organized

two or four of our scalar and superscalar model into multiprocessor models. Each processor core has its

own level-1 caches because the level-1 cache must be tightly coupled with the processor core and sharing

a cache induces timing overhead. Because there is no level-2 cache in embedded processors, the cores

communicate with each other through the main memory bus.

3.3. In-order SMT Architecture

We developed an SMT architecture that executes instructions in program order. Although we used the

term, SMT, the architecture does not resemble the original SMT except for the fact that multiple threads

share execution resources. Our multithreading architecture is from our in-order baseline processor models.

To fetch instructions from multiple threads, thread selection stage is added. In select stage, the

hardware calculates priorities of each thread and determines which thread is to participate in fetching next

cycle. The number of threads that fetches instructions each cycle is the same with the number of I-cache

ports. It is known that it is desirable for the I-cache to have multiple ports to maintain good instruction

mixture in instruction queue [9]. After decoding the fetched instructions, a decoder puts them into per-

thread instruction queues. In these queues, dependency checking and selection for issue take place. In

scalar architecture, issue unit checks whether the oldest instruction in the queue can be issued or not using

scoreboard. If the result is positive, the instruction is sent to a functional unit. Our SMT architecture

extended this decision procedure. If the issue bandwidth is represented as n instructions per cycle, per-

thread dependency check logic determines whether the preceding n instructions can be issued or not.

After the decision is over, select logic chooses n instructions among all issue-able instructions across the

threads, as shown in fig. 3.

An essential part that needs to be modified to support multithreading is the register file. Because the

 Instruction queue 0

 Instruction queue 1

 Instruction queue 2

 Instruction queue 3

Extended issue unit

Extended issue unit

Extended issue unit

Extended issue unit

Issue
instruction

selector

Issue-able instruction list
(max. n instructions each)

Maximum n
instructions to FUs

Fig. 2. The Issue Unit of the SMT architecture

hardware must maintain contexts of multiple threads, register file, program counter and status registers of

every thread must be duplicated. This is the largest overhead of our multithreading architecture. While the

size of register file must be increased and renaming unit must be changed to accommodate the new

register file in the out-of-order SMT architecture, the register file in in-order SMT is merely duplicated

and multiplexed. Moreover, because the number of architectural registers is the same with that of physical

registers in our SMT model, absolute complexity of our register file is much lower than that of the

original SMT architecture. Another modification is in dependency tracking mechanism. Our baseline

architecture adopts a dependency tracking method in which every single register needs a corresponding

scoreboard entry. Therefore, each thread must have its own scoreboard array.

Our multithreading architecture models are divided into two categories. The first is a fine-grain

multithreading architecture with issue bandwidth of one instruction. And the second is SMT architecture

that can issue multiple instructions from any thread simultaneously. Fig. 4 shows the two architectures. In

this figure, the number of supported threads is set to two and maximum two instructions can be issued per

cycle in the SMT architecture model.

Fig. 3. Multithreading architecture models; single issue fine-grain multithreading (left), in-order SMT (right)

4. Methodology

A cycle-based execution-driven simulator is used in this research. The core part of the simulator is from

our previous research [10]. ARM ELF binary loader and system call handling routine that is compatible

with ARM Linux is derived from Simplescalar ARM port [11]. Multiple ARM binaries are read

simultaneously and participate in the simulation on multithreading architecture. By setting the number of

supported threads to one, the simulator operates as a scalar or a superscalar architecture model.

When performing simulation, we set initial options as described in table 1.

In this research, most workloads are derived from MiBench embedded benchmark suite [12] and we

programmed an application that performs the IEEE 802.11 WLAN WEP (Wired Equivalent Privacy)

algorithm [13]. In personal information devices, internet and streaming multimedia applications are

getting as important as traditional personal data management applications that replace a pocket diary.

Therefore, workloads are organized to represent the trend that requires multi-tasking of multimedia and

networking applications. Detailed information about the workloads is as follows.

• Web browsing: While the processor is receiving packets from a secured WLAN channel, it decodes a

html text and a jpeg image.

• Streaming audio and e-book: While the processor is decoding a streaming MP3 audio sequence via

WLAN channel, it searches a specific word in an e-book text.

• Smart phone (Voice phone call): While encoding a raw voice data into ADPCM signals and decoding

reversely, the processor handles a GSM communication channel.

• Smart phone (Web browsing via GSM channel): While receiving data from a GSM channel, the

processor decodes an html text and a jpeg image.

• Secured file transmission: The processor encrypts a plain text file into AES encrypted text and

transmits it through a WLAN channel with enabled WEP.

Table 1. Brief descriptions about simulated architecture models

5. Simulation Results and Optimization

5.1. Overall Performance Comparison

We have simulated eight architecture variations. In Fig. 5, the performance evaluation results are shown.

Because in-order instruction scheduling is employed, superscalar architecture cannot increase

performance dramatically. It shows only 19% of speedup which is not sufficient for next-generation

processors. On the other side, architectures that utilize thread-level parallelism raise performance greatly.

Even the simplest single-issue FGMT achieves 51% increased performance. Two-issue processor models,

SMT_sm and CMP_is1_pr2, nearly double the performance. The largest four-issue processor models,

SMT_lg, CMP_is2_pr2 and CMP_is1_pr4, increase performance by the ratio of 120% to 280%. In the

absolute performance aspect, CMP with four individual scalar cores is the best. However, it means that

four individual processors with their own caches on a chip are needed. While threads in SMT architecture

share many hardware resources, such as caches, branch predictors, TLBs, and functional units, the CMP

must have those individually. Because most part of the chip area is devoted to memory blocks including

cache memory and MMU, sharing capability of the SMT has great influence on overhead. Therefore,

cost-performance efficiency of the SMT is better than that of the CMP. Moreover, the CMP_is1_pr4

shows the same performance with the scalar architecture when there is only one thread to execute. On the

other side, the SMT can execute the thread as fast as the superscalar architecture, that is, 19% faster than

the CMP.

Overall Performance of Various Architecture models

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Web browsing Streaming
audio

Smart phone
voice

Smart phone
web

Secured file
transmission

average

Workload sets

IP
C

Scalar
Superscalar
FGMT
SMT_sm
SMT_lg
CMP_is1_pr2
CMP_is2_pr2
CMP_is1_pr4

Fig. 4. Performance evaluation results of various architecture models

5.2. More Practical SMT Architecture

To exploit TLP (Thread Level Parallelism) well, instructions from multiple threads must be fairly

distributed across the per-thread instruction queues. For this reason, fetching instructions from multiple

threads every cycle has positive effect on performance. Therefore, our multithreading architecture also

has multiple instruction cache ports, one port for two threads. In our simulation, limiting the number of I-

cache ports to one induces average 14.8% of performance penalty in four-thread SMT_lg architecture

when thread selection algorithm is round-robin. However, it can be recovered by changing the thread

selection algorithm to a more intelligent one. We adopted a selection algorithm which calculates the

number of total instructions in instruction queues separately according to threads and selects the thread

that has the smallest number of instructions in the queues. By doing so, the simulation result with one I-

cache port can be the same as that with two I-cache ports in the SMT_lg architecture model. We used

ECACTI model to estimate the effect of the number of cache ports [14]. In a cache memory with 8KB of

capacity, 32-byte of line size and 8-way set associative configuration, reducing two read ports to a single

port decreases access time from 1.28ns to 0.96ns when 0.10um fabrication process is supposed. Total area

is diminished by about 41%, in detail, from 0.017cm2 to 0.010cm2. We can achieve 33% of increase in

clock speed by simplifying the I-cache and employing the intelligent thread selection algorithm.

Another impractical part is in the register file. In our SMT architecture, a maximum of four

instructions from a thread can be issued every cycle. This incurs serious overhead in register file. As

stated before, ARM ISA requires maximum three source operands per instruction and four instructions

uses maximum 12 read ports and four write ports in worst case. This means that each per-thread register

set must have 12 read ports and four write ports to supply source operands of four issued instructions

successfully. This excessive number of register file ports is a problem. To mitigate this overhead, we

restrict the maximum number of issue-able instructions per thread to two instructions per cycle. By doing

so, the number of read ports can be diminished to six, and write ports to two as depicted in Fig. 6. This

simplification also affects the number of scoreboard array ports. Before the issue restriction, the issue unit

must read the dependency information of four instructions per thread. However, it is reduced to two

instructions per thread in a similar way of register file. The architectural performance is decreased by 3%

in SMT_lg model because it limits the ability of hardware to use ILP. However, this reduces per-thread

register file access time by 41%, from 1.12ns to 0.65ns.

5.3. Rough Estimation on Complexity

To evaluate cost-performance relations, we estimated gate counts of all the architectures simulated.

Instead of designing all processor models into hardware, we manipulate the approximated area overhead

based on the gate count of real ARM9 processor hardware. Total gate counts of a new architecture can be

estimated by manipulating gate counts of individual sub-blocks. Though it is not accurate, it can be used

as data for comparison. Therefore, meaningful data is not absolute gate counts but relative size. The result

is summarized in table 2. To compare the architectures, the unit of IPC per million gates (IPC/area field in

the table) is used in the table. Although IPC values of SMT_lg and CMP_is1_pr4 are the best, cost-

performance of SMT_sm and SMT_lg is better. Therefore, the in-order SMT architecture can be a strong

candidate of next generation processors for personal information devices.

To functional units

Port

allocation

Register set
(Thread 0)

Register set
(Thread 2)

Register set
(Thread 1)

Register set
(Thread 3)

R R

RR W

WW

W

Register

set
(Thread 0)

Register

set
(Thread 2)

Register

set
(Thread 1)

Register

set
(Thread 3)

Port

allocation

To functional units

R R

RR W

WW

W

(a) (b)

Fig. 5. Reducing the number of register file ports (a) before limiting issue width (b) after limiting issue
width to two instructions per thread

Table 2. Estimated area overhead and cost-performance

 Scalar
(ARM9)

Super-
scalar FGMT SMT_sm SMT_lg CMP

is1_pr4
ALU 8.1 16.2 8.1 16.2 32.4 8.1*4

Multiplier 9.8 9.8 9.8 9.8 9.8 9.8*4
Register file 22 44 88 176 176 22*4

Control 4.2 6.3 6.3 6.3 8.4 4.2*4
Decode 2 4 2 4 8 2*4

Forwarding 2 4 2 4 8 2*4
MMU 87 87 87 87 87 87*4

BUS i/f 12 12 12 12 12 12*4
Cache 278 278 278 278 278 278*4

Total area 425.1 461.3 493.2 593.3 619.6 1748.4
Area

overhead - 8.52% 16.02% 39.57% 45.75%311.29%

IPC/area 1.49 1.62 1.92 2.50 3.73 1.36

6. Conclusions

In this paper, a new processor architecture that is suitable for the CPU of personal information devices is

proposed. Simple architectures that are focused on using TLP rather than ILP can achieve high

performance without complex out-of-order scheduling of instructions. It is due to the application

characteristics of latest personal information devices. Current applications of personal computing

machines are getting more network and multimedia oriented than ever while traditional applications

merely managing personal information that consists of text data. This inclination requires the processor

core to perform multi-tasking.

Under the assumption above, we set up several workload sets that represent applications of the

personal information devices, and various processor architectures that have complexity within affordable

level are simulated by using the workloads. To avoid excessive overhead, all processor models employ

in-order instruction scheduling policy. And some optimizations that reduce hardware overhead of in-order

SMT model is proposed. Because the processor cannot exploit ILP well in in-order issue mechanism,

superscalar shows the speedup under 20%. On the other hand, SMT and CMP architectures that uses TLP

as their performance source outperforms superscalar model with large gap. Although IPC values of the

two architectures in case of multithreaded workloads are similar, SMT occupies less area and complexity.

Moreover, the SMT can achieve similar performance with superscalar when executing single-threaded

workload while the CMP cannot. As a result, proposed simple SMT shows the best cost-performance

efficiency.

Acknowledgements

The work presented in this paper is supported by Korea Sanhak Foundation.

References

1. David Cormie, The ARM11TM Microarchitecture, ARM Ltd, 2002

2. V. Agarwal, M. S. Hrishikesh, S. W. Keckler and D. Burger,“Clock Rate versus IPC: The End of the Road for

Conventional Microarchitectures”, Proc. of the 27th Annual International Symposium on Computer Architectures,

pp. 248 - 259, 2000

3. Claasen, “High speed: not the only way to exploit the intrinsic computational power of silicon,” Digest of

Technical Papers, Solid-state Circuits Conference, pp.22~25, 1999

4. U. Brinkschulte , C. Krakowski , J. Kreuzinger , Th. Ungerer, “A Multithreaded Java Microcontroller for Thread-

Oriented Real-Time Event Handling,” Proceedings of the 1999 International Conference on Parallel Architectures

and Compilation Techniques, p.34, October 12-16, 1999

5. J. Kreuzinger, A. Schulz, M. Pfeffer, T. Ungerer, U. Brinkschulte, C. Krakowski. "Real-time scheduling on

multithreaded processors," the proceedings of seventh international conference on Real-Time Systems and

Applications, pp. 155, 2000

6. Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy, “Simultaenous Multithreading: Maximizing On-Chip

Parallelism,” Proceedings of 22nd Annual International Symposium on Computer Architecture, pp. 392-403, Santa

Margherita Ligure, Italy, May 1995

7. Patrick Crowley, Marc E. Fiuczynski Jean_Loup Baer, and Brian N. Bershad, “Characterizing Processor

Architectures for Programmable Network Interfaces,” Proceedings of the 2000 International Conference on

Supercomputing, May 2000.

8. Peter N. Glaskowsky, “Networking Gets XStream,” Microprocessor Report, November 13, 2000

9. Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, and Henry M. Levy, "Exploiting Choice: Instruction Fetch and

Issue on an Implementable Simultaneous Multithreading Processor," Proceedings of 23rd Annual International

Symposium on Computer Architecture, pp. 191-202, Philadelphia, Pennsylvania, May 1996

10. Byung In Moon, Moon Gyung Kim, In Pyo Hong, Ki Chang Kim, and Yong Surk Lee, "Study of an In-order

SMT Architecture and Grouping Schemes," International Journal of Control, Automation, and Systems, Volume

1, Number 3, pp.339~350, September 2003

11. SimpleScalar Version 4.0 Test Releases, SimpleScalarLLC, http://www.simplescalar.com/v4test.html

12. Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, Richard B. Brown,

"MiBench: A free, commercially representative embedded benchmark suite," IEEE 4th Annual Workshop on

Workload Characterization, Austin, Texas, December 2001

13. ANSI/IEEE Std 802.11-1999, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications

14. Mahesh Mamidipaka and Nikil Dutt, "eCACTI: An Enhanced Power Estimation Model for On-chip Caches,"

Center for Embedded Computer Systems (CECS) Technical Report TR-04-28, Sept. 2004

