Polyhedra-Based Approach
for Incremental Validation of Real-Time Systems

David Doose and Zoubir Mammeri

IRIT - Paul Sabatier University - Toulouse, France

Abstract. Real-time embedded systems can be used in hightly impor-
tant or even vital tasks (avionic and medical systems, etc.), thus hav-
ing strict temporal constraints that need to be validated. Existing solu-
tions use temporal logic, automata or scheduling techniques. However,
scheduling techniques are often pessimistic and require an almost com-
plete knowledge of the system, and formal methods can be ill-fitted to
manipulate some of the concepts involved in real-time systems.

In this article, we propose a method that gives to the designer the advan-
tages of formal methods and some simplicity in manipulating real-time
systems notions. This method is able to model and validate all the clas-
sical features of real-time systems, without any pessimism, while guaran-
teeing the terminaison of the validation process. Moreover, its formalism
enables to study systems of which we have only a partial knowledge,
and thus to validate or invalidate a system still under design. This lat-
est point is very important, since it greatly decreases the cost of design
backtracks.

1 Introduction

Validation is a mandatory step in critical real-time systems design, and can be
important even for non-critical ones. There are many ways to check the tem-
poral behavior of a real-time systems: we can use formal methods based upon
logic (LTL, CTL, etc.) or automata [3,2, 1] (Petri nets, linear hybrid automata,
etc.), or we can use scheduling techniques [7] (RMA method, etc.). Methods
based on logic give precise results and have a great expressive power. They can
model very specific features, but involve a strenuous designing process. Indeed,
they are not initially fitted to the particular case of real-time system validation,
and such notions as tasks or resources sharing do not exist in Petri nets or lin-
ear hybrid automata. Scheduling techniques have two main advantages. Firstly,
they are of course completely fitted to real-time systems. Secondly, they usually
have a very low complexity. However, they often are pessimistic, they require
an almost complete knowledge of system parameters (tasks periods, priorities,
precedences, etc.), and they give quite limited results, confined mostly to the
possible schedulability of the system.

Our goal is to combine formal methods and scheduling techniques by devising
a method fitted for scheduling analysis while preserving the expressivity and
precision of formal methods such as linear hybrid automata. The study of linear
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hybrid automata solvers [10-12] led us to the use of polyhedral domains, that
enable a powerful modeling and checking. This way, we devised the only method
(as far as we know) that brings together the following features:

— It can model and study classical features of real-time systems (tasks, re-
sources sharing, precedence, atomic task executions, etc.).

— It guarantees the ending of the validation process (decidability), contrary to
linear hybrid automata [13,9].

— It is non-pessimistic.

— It gives precise results on the behavior of the system: we can deduce the
response times of tasks, preemptions between tasks, etc., and of course the
schedulability of the system.

— It enables to validate/invalidate systems under partial knowledge. Moreover,
any parameter constraint (value or linear equation on parameter value) is
taken into account by the model.

The ability to check a system schedulability during its design (“under partial
knowledge”) can lead to important savings by avoiding backtracks. Besides, the
non-pessimism implies that we can avoid system over-sizing. Lastly, since the
method core works by computing all the different possible behaviors of a system,
we can highlight the fact that it is similar to the use of an exhaustive set of
simulations, while being far less time-consuming.

The paper is structured as follows: in section two, we introduce the notion
of polyhedra and the PV-domains. In section three, we describe our method.
In section four, we propose an example comparing the proposed method and a
simple schedulability analysis. Finaly, we conclude in section five.

2 Notion of Polyhedra

2.1 Polyhedron

The model we propose allows to take into account any constraint based on linear
inequalities. It uses polyhedra [19,14,15] to represent the parameters and the
properties of the real-time system under construction.

Definition 1. A polyhedron P is the intersection of a finite family of closed
linear half-spaces of the form {x|ax > ¢} where a is a non-zero row vector and
c 1s a scalar constant.

Double representation: A polyhedron has a dual representation: an implicit
representation and a parametric representation. Indeed, a polyhedron P can be
represented with a set of linear inequalities which represent its constraints. Its
implicit definition is the following one: P = {« | Az = b, Cx > d} in which A and
C are matrices and z, b and d are vectors. The parametric representation of the
polyhedron is the following one: P = {z | LA+ Ru+ Vv, u, v >0,> v=1}In
which the polyhedron is composed of several lines (columns of the matrix L), a



Polyhedra-Based Approach for Incremental Validation of Real-Time Systems 3

convex combination of vertices (columns of the matrix V'), and a combination
of external rays (columns of the matrix R). Algorithms exist to compute the
second representation from the first one, and reciprocally. Both representations
are useful. Indeed, the implicit representation is more intuitive, so we use it to
represent the different constraints of the system and the results of the valida-
tion. However, the parametric representation is more efficient to compute the
operations on polyhedral domains. Thus, we will use algorithms based on the
dual representation, which computes both representations simultaneously.

Polyhedral domain: We mainly use two operations on polyhedra: intersection
and wnion of polyhedra. Contrary to the intersection, the result of a polyhedra
union may not be a convex polyhedron. That is why the notion of polyhedral
domain is needed.

Definition 2. A polyhedral domain of dimension n is defined as D : {i|li C
Z" i C P} =Z" (P where P is a union of polyhedra of dimension n.

2.2 PV-domain

We introduce a new notion that aims to create a link between the variables
corresponding to the system parameters and their polyhedral representation. A
PV-domain (Polyhedral representation of Variables) is composed of a list of
variables (V) and a polyhedral domain (S). The variables can either be a value
or a dimension of the polyhedral domain.

PV-domain operations: Adding a variable consists in adding a space dimen-
sion at the end of the polyhedral domain and adding a variable to the variables
list V (noted: D' =D & {v}).

Removing a variable consists in removing the variable from the list and re-
moving the corresponding dimension in the polyhedral domain D (D' = De{v}).

Reducing the PV-domain consists in modifying each variable of the list
representing a dimension which has a unique value in the polyhedral domain
(VoevVpes, {v =a} C p) by removing the corresponding dimension in the poly-
hedral domain and transforming the variable representing a dimension into a
variable representing the value a (D' = ®(D)).

The intersection (resp. union) of the PV-domain D = (V,S) and D' is noted

N (resp. U) and defined as follows: DND = (V,S N Sl) (resp. U).

Efficiency: The complexity and thus the computation time of intersections
(resp. unions) of polyhedra depends (exponentially) on their space dimension.
That is why the main objective is to reduce as much as possible the space dimen-
sion of the system model. The real efficiency of the space reduction made by the
PV-domain reduction operator can be shown by simulations. The simulations on
figure 1 are run on one polyhedron with ten unknown dimensions and from 20 to
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500 space dimensions. In each case (i.e. for each total number of dimensions), we
run 500 intersections (resp. unions) with and without using the space dimension
reduction. The computation time of the unions is due to the polyhedra power-set
[5,16] operations used for the representation of the disjunctions. We can see here
how efficient the dimension reduction can be, but it is important to notice that
the dimension reduction is not an invertible operation.
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Fig. 1. PV-domain operations computation time

3 The proposed method

System parameters: Each task instance i has four descriptive parameters: its
period (T3), its release time (R;), its execution time (C;) and its absolute deadline
(D;); and two behavioral parameters: the time when the task instance begins its
execution (b;), and the moment when it ends its execution (e;). The hidden
parameters (see below) are mandatory to represent some information specific
to the system. From a geometric point of view, each descriptive, behavioral
or hidden parameter corresponds to a variable of the PV-domain. Last, static
parameters are useful to take into account some specific properties of the system.
The main difference between static parameters and the others is that their values
are always known.

Interactions and Behavior: In the proposed model, only two interactions are
needed to represent tasks instances and their evolution. Indeed, an instance can
either preempt or delay another instance. The behavior of tasks instances is
defined by the interactions which can either exist between the instances. In the
paper we will compute possible behaviors. A behavior is possible for a group of
instances (see below) if all the interactions characterizing this group can occur on
the instances of the group, with the respect of all the constraints of the system.

Group: A group of tasks instances is characterized by:
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— a list of instances with interactions (noted interactions);

— the first instance in interaction of the group (first);

— a list of context instances (noted contexts);

— a PV-domain representing the properties of the previous groups (i.e. the con-
straints of the systems before the creation of the group noted pre_constraints);

— a PV-domain representing the properties of the groups (part_system).

Each instance of the interactions list is at least in interaction with another
instance of the list. The first instance in interaction and the number of instances
of each task are useful to determine the beginning and the end of the group. The
list of context instances is made of instances which, under the same constraints,
are not in interaction with any instance of the list of the instances in interaction.

3.1 Method overview

Analysis of real-time systems with the proposed method has two main parts.
The first part consists in taking into account the knowlegde of the system by:
adding the tasks of the system, modifying the static parameters, adding the tasks
constraints and adding the invariants. The second part consists in analysing
the behaviors of the system by determining all the groups of interactions and
analysing the schedulability of each group. At the end of the validation process
the method provides the list of the situations in which the system is schedulable,
and the list of the situations in which the system is not schedulable.

3.2 Static steps

The first step consists in simply adding the tasks of the system in order to
determine the number of tasks.

In this first step no information about the tasks are taken into account. The
second step consists in setting the static parameters of the system. Thus, we
determine whether the tasks are periodic, atomic, ... We also determine the
scheduler category (EDF or fixed priority). At the end of this step, the static
parameters of the system and the number of tasks are known, thus we can create
the first polyhedral representation of the system.

In the third static step, the designer takes into account the system informa-
tion by adding constraints to the domain representing the system as previously
described. For example, if the worst execution time of task 7 is 20 ms, the system
is equal to system N (Cy < 20). At the end of this step, the domain representing
the system contains all the information about the tasks.

In the last static step, the invariants of the system concerning the tasks are
taken into account by adding the corresponding constraints. If the previously
added information of the system does not respect these invariants, then the
domain is empty, and the validation ends. The domain representing the system
is: system = ©(in formation N (V,,(R; > 0) N (C; > 0t) N (D; > 0)))



6 David Doose and Zoubir Mammeri

3.3 Determining groups

The principle is to determine all the possible groups of instances as shown by
the following algorithm:

groups: stack of Group ;
groups.push(Group(system)) ;

while groups.not_empty() do

Group g = groupes.pop() ;

if g.complete() then

if (mot g.cycle) and g.validation then

| groups.push(g.next()) ;

else
for each instance 7; do
if g.can_interact_with(r;) then
| goups.push((new Group()).add-interaction(7;)) ;

if g.can_be_context_of(t;) then
| goups.push((new Group()).add_context(r;)) ;

The function can_add_interaction (resp. can_be_context) determines whether

or not the instance 7; can interact (resp. can be a context instance) in the group
g. This is determined by verifying the non-emptyness of the following PV-domain
representing the addition of the instance: part_system N (r; j > 7ipst) N (155 <
T first +Ciot) (resp. part_systemN(r; j > T irst+Ciot) ) While 745 represents the
release time of the first instance of the group (i.e. the beginning of the group),
r;,; the release time of the instance j of the task ¢ and c;o; represents the length
of the group.
The function cycle aims to determine if the the group g is in a behavioral cycle
with another group that has already been computed. The notion of cycle is
important because it guarantees the end of the validation process. A group G is
in behavioral cycle with the group G’ if the instance in interaction can correspond
(verifyed with the function mapping) and if the constraints of the system are the
same but at another moment. The function validation determines if the group
of instances is schedulable or not. This function is described in the following
subsection.

3.4 Group schedulability

In this subsection, we detail the validation of a group. The tasks instances are
not linked to the corresponding tasks, thus the instances parameters are noted
with lowercase letters with a single index representing the instance number.

General information and invariants: The invariants are mandatory to main-
tain the correctness of the model. They are added like any information about the
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system. The following invariants are useful in the proposed method: V7;, (b; > r;)N
(ei > b; + ;)

Scheduler information: In practice, two schedulers are used: fixed priority
and EDF. In this paper, a lower priority value means a greater priority.

Determining priorities: In order to represent a fixed priority scheduler, the pri-
ority of a task instance just has to be equal to the priority of the corresponding
task. If the priority of one or more tasks is not known, it is important to add
the following information to the system: V; ; 1 P; ; = P; x; because without this
equation, two task instances of the same task can have different priorities. If the
scheduler of the system is EDF, then the priority of each task instance is equal
to the absolute deadline: V; p; = d;.

Determinism: A scheduler is said to be deterministic if for every situation for
every system with the same parameters, the same task instance is executed. The
previously defined properties and hypotheses of the system and the method do
not induce that the scheduler is deterministic; because two instances can have
the same priority. However, the following property must be guaranteed:

Property 1. If several task instances that need the processor at the same time
have the same priority which is the smallest of the system, then the scheduler
must choose one and only one instance to execute.

Property 2. Once this choice done, the scheduler must not change it until the
next system’s change.

These two properties aim to prevent two task instances from being executed at
the same time. To represent a possible non-deterministic scheduler, we introduce
another parameter, the hidden parameter IT;. This parameter acts as a hidden
secondary priority, known by the scheduler only. Consequently, a task instance
(¢) has a higher priority than another (j) if and only if: prio(i, j) = (p; < p;) U
((pi = pj) N (I1; < II;)). In order to verify the previous properties, the following
constraint is added to the system: V; ; suchasi # j, (p; = p;) N (II; # I;). The
non-determinism of the scheduler comes from the fact that the hidden parameter
II; is not given a fixed value.

Task instances behaviors: The notion of time is introduced with parameters
which represent a moment when a particular action happens and thus a behav-
ior. The complete behavior of a task instance is described with the following
equation: instance behavior; = (| (possible b;)) N (|J (possiblee;)).

The execution beginning of a task instance (b;) can be delayed by another task
instance (7;) with a higher priority: delay(i, j) = prio(i, j) N (b; < r;)N(e; > 15).
It is important to notice that only the task instance with the latest end of
execution really delays the task instance. If the task instance i delays the task
instance j, then the task instance j begins its execution when the task instance
i ends: b; = e;.
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The execution end of a task instance depends on the moment the task instance
begins its execution and on the interactions with other task instances during its
execution. In this case the interactions are preemptions. The end of an instance
execution: e; = b; +¢; + Zipmemptj ¢;. The task instance ¢ preempts the task

instance j if: preempt(i, j) = prio(i, j) N (b; > b;) N (b; < €;).

Verifying properties: The result of the behavioral step represent all the pos-
sible behaviors of the system. The question consists in asking what is possible in
the system behaviors by adding the correspond constraint. Thus, the PV-domain
D representing the system is schedulable if: V.., DN (e; > d;) =0

Specific characteristics

Atomic task instances: A task instance that cannot be preempted is said to be
atomic. Thus, we introduced the static parameter atomic(i) (and not atomic(i))
to indicate whether a task instance can be preempted. This induces a modifi-
cation of the previously defined interactions by adding U (resp. N) atomic(i) to
the equation delay(i,j) (resp. preempt(i, j)).

Resource sharing: Sharing resources [18,6] is a complex problem in real-time
systems and several algorithms exist to solve it, thus we won’t study it in detail.
But we want to show how easy it is for this method to handle this problem
by considering mutexes. The static parameter Res(i,r) indicates that the task
instance ¢ needs the shared resource r. The function Resource(i, j) represents
that the task instance ¢ and the task instance j need a common shared resource.
This function is defined as follows: Resouce(i,j) = 3r, Res(i,r)and Res(j,r).
Thus, the equations of the interactions are modified:

delay(i, j) = (prio(i, j) U atomic(i) U Resource(i, 7)) N (b < ;) N (e; > rj)
preempt(i, j) = prio(i, j) N —~atomic(j) N ~Resource(i, j) N (b; > b;) N (b; < e;)

4 Example

In this section we present a simple example in which the system is made of three
aperiodic tasks. The priorities of the tasks are known: Py =1, P, =2 an P, = 3.
The deadlines are also known: Dy = 6, D1 = 6 et Dy = 20. The release time are
partially known: Ry = 0, R; = 3 and Ry is unknown. The execution times of
To and 7o are partially known: 2 < Cy < 5 and Cy = 2. The execution time of
71 depends on the execution of the other tasks. Indeed, C; = 3 if 7y begins its
execution before the end of 7p; C; = 4 if 71 begins its execution before the end
of 75 and after 79; and C7 = 5 if 71 begins its execution after 7y and 7.

To validate this system with a scheduling technique we proceed as follows: first,
we determines the worst case values of the system parameters. Thus Cy = 5,
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Cy =5 and Cy = 2. This approximation induces the pessimism of this method.
That is why we show that the system is not schedulable. Indeed, a simple exe-
cution trace highlights that the second task misses its deadline (figure 2 ).
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Fig. 2. Example

The main advantage of our method is it can represents the specific constraint
of the execution of the second task. Thus, the following equation represent this
information: ((Cl = 3) N (bl < 60)) @] ((Cl = 4) N (bl > 60) N (bl < 62)) @] ((Cl =
5)N (by > eg) N (b1 > e3)). Then, the behavioral step is done. In the result
representing the possible behaviors of the system we can highlight the invariants
of the system behavior: by = 0, C1 = 4, eg = Cp. It shows that the first task is
neither delayed nor preempted and also that the execution time of the second
task is C; = 4. That means the second task begins its execution after the first
one and before the third one, in all the possible situations. Thus, the worst
value for this parameter (Cy = 5) determined with the scheduling technique is
impossible. The proposed method is not pessimistic; that is why we can prove
that the system is schedulable with this method but not with a schedulability
analysis.

With this simple example we show that it is possible to validate a real time
system in which some parameters are exactly known, some are partially known,
some are unknown and some parameters are defined with specific constraints.
We also highlight that the proposed method is not pessimistic, contrary to a
simple scheduling analysis.

5 Conclusions

We propose a new non-pessimistic method to analyse real-time systems. This
method can be used to represent systems with specific behaviors and complex
relationships between their parameters, because any information that can be
represented with a linear inequality can be taken into account. A major ad-
vantage of this method is that can be used to analyse study a system at any
design step. Indeed, this method can be used with partial knowledge and thus
it is well adapted to reduce costs. To complete this work, we intend to focus on
two points: taking into account new system characteristics, and implementing a
complete software. Indeed, several system behaviors have to be represented in
our method (dependable and/or non-preemptive tasks, resources sharing, parti-
tioning [8, 20, 17, 4]), which implies some modifications of the previously defined
equations. We also plan to include specific components such as bounded buffers.
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