
Efficient Switches for Network-on-Chip Based
Embedded Systems

Hsin-Chou Chi and Chia-Ming Wu
 Department of Computer Science and Information Engineering

National Dong Hwa University
Hualien, Taiwan

E-mail: hcchi@mail.ndhu.edu.tw

Abstract. System-on-a-chip (SoC) has emerged to become a cost-effective ap-
proach for embedded systems design with rapid advance of semiconductor
technology. It allows designers to integrate a number of heterogeneous IP
blocks together based on a system interconnect. However, traditional dedicated
wiring as the system interconnect has many shortcomings, such as non-scalable
global wire delay, failure to achieve global synchronization, and errors due to
signal integrity issues. These problems can be mitigated by the network-on-
chip (NoC) architecture based on regular on-chip communication networks. In
this paper, we present three efficient switch designs for NoC systems based on
circuiting switching. Such switch designs with efficient buffer management can
provide the on-chip network with guaranteed throughput and transmission la-
tencies.

1. Introduction

System-on-a-chip (SoC) designs provide designers to integrate a number of IP blocks
together. These IP cores can be a processor, DSP, FPGA block, or embedded memory.
With rapid advance of semiconductor technology, the complexity of such SoC in-
creases as a result. By the end of this decade, a single chip will accommodate up to 1-
billion transistors. Thus, the number of IPs in SoC designs can scale from a few doz-
ens to several hundreds or even thousands [1], [5].

One of the challenges in the billion-transistor era is the communication infrastruc-
ture between heterogeneous cores having different characteristics. The interconnect in
current SoC based embedded systems for connecting IPs is typically dedicated wires
or shared buses. The dedicated wiring approach provides the best communication
performance, but its design has poor reusability and scalability. Furthermore, the wire
latency and noise significantly affects the reliability of systems when the system com-
plexity increases and the feature size decreases. The shared bus architecture provides
a pool of bandwidth among all the cores in the system. However, the shared bus lim-
its the growth of system complexity. To deal with the interconnect problems in SoC
chips, a new methodology has to be developed for the next-generation SoC paradigm
[2], [3], [4], [5].

To overcome the communication problems of SoC designs, network-on-chip (NoC)
with regular tile-based architectures has been proposed for interconnecting the IPs in
SoC. Such on-chip interconnection networks provide a high-performance chip-level
communication infrastructure with regularity and modularity. Fig. 1 shows the com-
munication infrastructure of NoC with a 2D-mesh tile-based architecture [2], [3], [4],
[5].

S1 S2S0

S4 S5S3

S7 S8S6

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4

Tile 6 Tile 7 Tile 8

Tile 5

Path (S0,S1)

Path (S0,S4)

Fig. 1. The communication infrastructure of NoC with a 2D-mesh tile-based architecture.
The dotted lines indicate some of the circuit paths provided by the circuit-switched net-
work

The major component in the communication infrastructure of NoC is the routing
switch. In Fig. 1, each switch connects up to four neighboring switches and an asso-
ciated local tile. The switch forwards packets from an input port to the destined out-
put port according to the routing result of the network. In many applications such as
multimedia, mobile component, telecommunication and consumer electronics, the
characteristics of the communication traffic between IPs can be diversified. The
switch needs to efficiently utilize the limited bandwidth of the links to deliver com-
munication data between IPs and satisfies the different requirements of IPs. However,
VLSI design is very cost-sensitive, and the required communication quality-of-
service (QoS) must be achieved at a reasonable cost.

The circuit-switched network is suitable for NoC architectures since the transmis-
sion latency and throughput can be guaranteed. Furthermore, the complexity of the
switch architecture in the circuit-switched network is low since its main function is to
connect the incoming links to the outgoing links. The drawback of circuit-switched
networks is locking resources for the duration of the data transfer. However, this can
be alleviated by using virtual channel networks.

In this paper, we address a pre-scheduled circuit-switched network. Such network
is suitable for the on-chip network. We also design and implement three efficient
switches for such on-chip network. Compared with the design proposed in [9], our
first design provides a lower cost. Furthermore, for decreasing the cost and latency,
we design other two switch architectures. Our design provides high performance at a
reasonable cost.

The next section describes the architecture of the circuit-switched network briefly.
In Section 3, we present the design of our switches. Section 4 shows the implementa-
tion results. Finally, concluding remarks are given in Section 5.

2. Circuit-Switched Networks for SoC

When a sender wants to deliver data to a receiver in a circuit-switched network, the
communication path between the sender and the receiver is established firstly. If there
are lots of communication paths in the network at the same time, a link may be shared
by multiple paths. Fig. 1 has shown such a network for example. In this diagram, the
dotted lines represent the communication paths. The two paths path(S0,S1) and
path(S0,S4) share the link between Tile0 and Tile1. Time-division multiplexing
(TDM) technique can solve the problems of sharing links. In TDM, a frame is divided
into a fixed number of time slots. When a communication circuit is established across
a TDM link, the network allocates a certain number of time slots in each frame of this
circuit for the sole use of data transmission.

Before transmitting data, traditional computer networks use the routing probe to
establish communication circuits. The routing probe progresses toward the destina-
tion to reserve a certain number of time slots for a communication circuit as it is
transmitted through intermediate switches. When the probe reaches the destination,
the communication circuit has been set up and an acknowledgement is transmitted
back to the source. The circuit is released as the data has been transmitted. Fig. 2
shows the time-space diagram of a circuit-switched message. In such architecture,
switches need to allocate the valid time slots for the circuit setup. If the network is
congested, the setup time tsetup might be unacceptable. The traditional computer net-
works use this approach to achieve guaranteed service, since the communication
paths in the cyberspace are too diverse to predict.

Fig. 2. The time-space diagram of a circuit-switched message

In NoC design, the requirements of communication between IPs are estimated be-
fore they are assigned to the tiles. The pre-established circuit-switched network is
appropriate for NoC. In many methodologies of NoC approaches [4], [6], [7], [10], a

mapping algorithm is needed to map IPs onto the tiles in the NoC architecture. The
mapping algorithm must consider the communication delays and bandwidths between
the tiles while it maps the IPs onto the tiles. Thus, after all IPs have been mapped, the
communication paths among the tiles of the NoC are potentially existent. Switches
can use a table in the switch to store the routing information. Therefore, before
transmitting data, switches do not have to set up a communication circuit.

There have been several recent studies on NoC architectures [2], [3], [4], [5], [8],
[9], [11], [12], [13], [14], [15], [16], [17]. In [12], the proposed architecture differs
from others in that they use the Butterfly Fat Tree architecture as the backbone of
NoC. They also design a switch with wormhole routing for their NoC architecture. In
[9], a guaranteed-throughput switch is presented. Their switch supports unicast and
multicast with pre-scheduling. The input buffers and output buffers in this switch use
several frame buffers implemented with random access memory. The cost of their
design is too high to be useful in the on-chip network.

Fig. 3. The diagram of input buffering architecture

Switches connect to up to five links, as S4 in Fig. 1. An arriving flit may be stored
in the buffer firstly. The output port of the switch selects a flit from the buffer and
injects it into the network according to the routing table. In the buffering strategy, we
distinguish output buffering and input buffering by the location of buffers inside the
switch [13]. An input buffering architecture is shown in Fig. 3. In this architecture,
the buffers are at the inputs of the switch. This architecture needs a routing table to
determine at which times which buffers are connected to which output ports with
contention freedom. In this switch, flits from the input ports are buffered awaiting
transmission by the output ports. The size of a frame buffer, FB, in the switch is:

SNBWFB ××= (1)

 where BW is the link bandwidth, N is the number of time slots, and S is the interval
of the time slot. With a link bandwidth of 1Gbps, the number of time slots of 16, and
the interval of the time slot of 2µs, the size of the FB is more than 33Kb. The sizes of
the buffer in previously proposed architectures are over than two frames [9], [13].

Since NoC architecture design is cost-sensitive, the buffer size must be decreased
as much as possible. We hence propose the switch architecture with only a frame
buffer at every input.

We show the diagram of this architecture with one input and its associated output
port in Fig. 4. We omit the global signals such as clocks, reset and some stimulating
signals in this diagram for simplicity. In this architecture, each input has a frame
buffer (FB) and two input slot address tables, ISATa and ISATb. The FB is used to
store the input frame data, while the ISATs are used to store the addresses of the input
data in the FBs. Each output port has a private input time slot table (ITST), and the
ITST has two fields, input port (IP), input time slot (ITS). Furthermore, each input
port has a private output port table (OPT). The OPT and the ITST determine at which
times which buffers are connected to their output port respectively.

Fig. 4. The switch architecture with a frame buffer at each input

Latency is defined as the duration of a packet being transported from the sender to
the receiver. The major factors of the latency are the latency of the switch and latency
of the link, denoted by Ls and Ll. The latency for sending one bit of data from tile tilei
to tile tilej can be analytically calculated as:

() lhops

hopsni
iS

jtileitile
bit LnLL ×−+= ∑

≤

1, (2)

where nhops is the number of switches the bit passes on its way from tile tilei to tile
tilej. If the latencies of all switches in NoC are equal, the equation (5) becomes:

() lhopsshops
jtileitile

bit LnLnL ×−+×= 1, (3)

Compared with the architecture in [9], the architecture in Fig. 4 provides a lower
cost. However, both switches do not deliver the data of the frame to the next destina-
tion until all flits of the frame have already arrived. Thus, the latency of these
switches is too long. In NoC architecture, we do not need to do so. For decreasing the
latency of the switch, the arriving data has to be transmitted as early as possible.

3. Design of Efficient Switches

In Fig. 5, the architecture is simpler than the architecture shown in Fig. 4. Arriving at
an input port, the data is buffered in the temporary register. Without the whole frame
has arrived, the data will be stored in the FB or directly sent to output ports. To do so,
a comparator is needed to control the direction of the data stored of the temporary
register. The comparator compares the input time slot of the data with the output
address to generate the control signal which determines the destination of the data of
the temporary register. If the data of the temporary register exactly is one of other
output ports want to transmit, it is sent to this output port immediately. Otherwise, it
will be stored in the FB, since it needs to wait for transmitting with a certain times.
The address of the data in the FB is based on the input time slot of the data. The time
of the data storing in the FB does not exceed the period of a frame transmission. Thus,
a FB is enough to store all input data that need to wait for transmitting.

Fig. 5. The switch architecture with one FB at each input

A scheduler is needed to lower the waiting time. By employing optimal scheduling,
the latency of data staying in switches can be minimized. Such optimal scheduling is
an NP-complete problem. In the design described in the following, it meets the worst
case scenario that all input data need to be stored. Therefore, the size of the buffer at
each input is one FB.

In this architecture, some locations of the buffer will never be used for storing data,
since some data is immediately transmitted. The unused space of the buffers in the
switche is wasted. Though the size of the buffer depends on the scheduling algorithm,
we also propose a second switch design in this section that reduces the cost of the
switch. In this architecture, the buffer size at each input is less than a FB according to
the application and can be designated by the designer.

Fig. 6. The switch architecture with less than one FB at each input

Fig. 6 shows the low-latency and cost-effective switch architecture with less than
one FB at each input. In this architecture, the size of the input buffer, denoted by KB,
is designated by the design according to the specific application. The slot address
table (SAT) stores the addresses of the data that needs to be buffered in the KB ac-
cording to the input time slots of the data.

When arriving data needs to be stored into the KB, the log2K Counter provides an
address. The size of the counter is at least log2K bits. The KB uses this address to
store the data. Meanwhile, SAT stores this address in the location corresponding to
the input time slot of the data. In each output time slot period, if one of the data in the
KB is to be sent to the next switch, the SAT outputs the address of the data according
to the ITS selected by the OP of the OPT. The data of this address in the KB is sent to
the scheduled output port.

The size of the SAT is ⎡ ⎤KS 2log× bits, where S is the number of time slots in a
frame. With S of 32, K of 16, the size of the SAT is 128 bits. Such size is smaller than
a location of the buffer in the switch. Hence, the cost of this architecture is signifi-
cantly reduced.

4. Implementation

We have implemented the designs described in the above. We use pipelining tech-
nique to improve the performance. This architecture has three pipeline stages. The
number of the time slots in a frame is 16. The data bus of the input port is 128 bits.
We need one clock cycle for a packet crossing a link. Thus, the packet size is 128 bits.
The table setup circuit is responsible for setting up the OPT and ITST and forwards
the setup message to the next switch. Before initializing the system, the data for the
setup table must be pre-scheduled and generated by a software scheduler. The sched-
uler could be part of the EDA tools for the NoC platform. On the other hand, we can
also embed the scheduler into the chip and run be a processor core. Such design can
dynamically schedule the circuits in NoC. Our design can support both scheduling
methods.

Table 1 illustrates the chip area of three designs. Each is a 5 × 5 switch with a
clock rate of at least 1 GHz supporting 16 time slots. The link width of the first and
the third architectures is 128 bits while the second is 32 bits. The size of the buffer at
each input of the switch for the first and the second architectures is a frame while the
third is half a frame. In the experiment results, the third architecture reduces the cost
significantly.

Table 1. Chip areas of three designs

Switch Architecture Chip Area
128 bits with one frame buffer at each input 1.48mm2

32 bits with one frame buffer at each input 0.4mm2

128 bits with half a frame buffer at each input 0.26mm2

Table 2. The comparison between our design and others

Design Link Width Freq. A. Bandwidth Area Technology
Ours 128 1GHz 640Gb/s 0.26mm2 0.18µm
[8] 32 185MHz 29.6Gb/s 3.5 mm2 0.25µm

[13] 32 500MHz 80Gb/s 0.175mm2 0.13µm

We have used TSMC 0.18µm technology to implement our designs. The layout

of the first design in the table is shown in Fig. 7. Our chip has an aggregate band-
width of 5 × 1 GHz × 128 bits = 640 Gbit/s. Table 2 shows the comparison between
our design and others. In [8], a switch for multiprocessor with latency insensitive
NoC is proposed. In [13], their switch also provides both circuit-switched and

packet-switched transmissions. To reduce area, they have implemented a dedicated
FIFO architecture with full-custom design. However, our design achieves higher
throughput with less advanced technology.

5. Conclusions

In this paper, we propose the pre-scheduling circuit-switched network for the on-chip
network in embedded system design. Such network does not set up communication
paths before transmitting data. Thus, it provides guaranteed transmission throughputs
and latencies. We have designed three efficient switch architectures to support this
network. In these architectures, we show the trade-offs between hardware complexity
and efficiency. We have used TSMC 0.18µm technology to implement our designs.
The layout of one of the designs has an area of 0.26 mm2 and offers 640 Gbit/s ag-
gregate throughputs.

Fig. 7. The layout of the design of 128 bits with one frame buffer at each input

References

1. Semiconductor Industry Association, International Technology Roadmap for Semicon-
ductors, World Semiconductor Council, 1999.

2. L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE Computer,
vol. 35, pp. 70 -78, Jan. 2002.

3. W. J. Dally and B. Towels, "Route packets, not wires: On-Chip Interconnection
Networks," Proceedings of 38th Design Automation Conference, pp 684-689, June 2001.

4. S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, A.
Hemani, “A Network on Chip Architecture and Design Methodology, ” Proceedings of
the IEEE Computer Society Annual Symposium on VLSI, 2002 (ISVLSI.02) , pp 105-112,
April 2002.

5. A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist,
“Network on Chip: An Architecture for Billion Transistor Era,” Proceedings of IEEE
NorChip Conference, pp. 166-173, Nov. 2000.

6. J. Hu and R. Marculescu, ”Exploiting the Routing Flexibility for Energy/Performance
Aware Mapping of Regular NoC Architectures,” Proceedings of Design Automation and
Test in Europe Conference and Exhibition, pp. 688-693, March 2003 .

7. T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping Task Graphs to a
Network on Chip Architecture,” Proceedings of Euromicro Symposium on Digital Sys-
tem Design: Architectures, Methods and Tools, Turkey, Sept. 2003.

8. L.-Y. Lin, C.-Y. Wang, P.-J. Huang, C.-C. Chou, J.-Y. Jou, “Communication-driven
Task Binding for Multiprocessor with Latency Insensitive Network-on-Chip,” Proceed-
ings of Asia and South Pacific. Design Automation Conference 2005.

9. J. Liu, L.-R. Zheng and H. Tenhunen, “A Guaranteed-Throughput Switch for Network-
on-Chip,” Proceedings of International Symposium on System-on-Chip, Nov. 2003.

10. S. Murali and G. D. Micheli, “Bandwidth-Constrained Mapping of Cores onto NoC
Architectures,” Proceedings of Design Automation and Test in Europe Conference and
Exhibition, pp. 869-901, Feb. 2004.

11. J. Nurmi, I. Saastamoinen, and D. Siguenza-Tortosa, “Interconnect IP Node for Future
System-on-Chip Designs,” Proceedings of 1st IEEE International Workshop on Elec-
tronic Design, Test and Applications (DELTA '02), Jan. 2002.

12. P. P. Pande, C. Grecu, A. Ivanov, R. Saleh,”Design of a Switch for Network on Chip
Applications,” Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS), Jan. 2003.

13. E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. Van Meerbergen, P.
Wielage, and E. Waterlander, “Trade Offs in the Design of a Router with Both Guaran-
teed and Best-Effort Services for Networks on Chip,” Proceedings of Design Automa-
tion and Test in Europe Conference and Exhibition, March 2003.

14. M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, and J. Rabaey, and A. Sangio-
vanni-Vencentelli, “Addressing the System-on-a-Chip Interconnect Woes through
Communication-Based Design,” Proceedings of 38th Conference on Design automation,
June 2001.

15. S. Sathe, D. Wiklund, D. Liu, “Design of a Switching Node (Router) for On-chip Net-
works,” Proceedings of the 6th International Conference on ASIC (ASICON 2003), Oct.
2003.

16. D. Wiklund and D. Liu, “SoCBUS: Switched Network on Chip for Hard Real Time
Embedded Systems,” Proceedings of International Parallel and Distributed Processing
Symposium, April 2003.

17. D. Wingard, “MicroNetwork-Based Integration for SOCs,” Proceedings of 38th Design
Automation Conference, June 2001.

