
Mathematical mathematical user interfaces

Harold Thimbleby & Will Thimbleby

Department of Computer Science, University of Swansea, SWANSEA, Wales harold@thimbleby.net, will@thimbleby.net

Abstract. Taking Mathematica and xThink as representatives of the state of the art in interactive
mathematics, we argue conventional mathematical user interfaces leave much to be desired, because they
separate the mathematics from the context of the user interface, which remains as unmathematical as ever.
We put the usability of such systems into mathematical perspective, and compare the conventional
approach with a novel declarative, gesture-based approach, exemplified by TruCalc, a novel calculator we
have developed.

1 Introduction

TruCalc is a new calculator, with a gesture-based handwriting recognition user interface. This paper reviews
its design principles and relates them to the requirements of mathematical user interfaces.

2 The development of mathematical user interfaces

For thousands of years, we’ve been doing maths by using pencil and paper (or equivalent: quill and scroll,
stick and sand—whatever). When calculating devices were invented, this helped us do calculations faster and
more reliably, but we still did maths on paper. Comparatively recently, computers were invented, and for the
first time we could replace pencils with typed text and get results written down automatically, and then, later,
we replaced paper with screens. Mathematics displayed on screens can be manipulated more freely than ever
before, yet most calculators running on computers emulate mechanical devices.

Turing famously presented a formal analysis of what doing mathematics entailed [17]. He argued any
pencil and paper workings could be reduced, without loss of generality, to changing symbols one at a time
from a fixed alphabet stored on an unbounded one dimensional tape. Symbols are changed according to the
current state of the device, the current symbol on the tape, and elementary rules. The Turing Machine, which
can be defined rigorously (and in various equivalent forms), was a landmark of mathematics and computing.
Indeed, the Church-Turing Thesis essentially claims that all forms of computing, and hence mathematics, can
be ‘done’ by a Turing Machine in principle.

Turing introduced his machine with the following discussion:

“Computing is normally done by writing certain symbols on paper. In elementary arithmetic the
two-dimensional character of the paper is sometimes used. But such a use is always avoidable, and I
think that it will be agreed that the two-dimensional character of paper is no essential of computation.
I assume then that the computation is carried out on onedimensional paper.”

A. M. Turing [17]
Here, Turing’s use of the term ‘computing’ is historical; he is referring to human computation on paper.
While Turing is formally correct, good choice of notation is crucial to clear and efficient reasoning.

Moreover, almost all notations (for example, subscripts) are two dimensional, as suits pencil and paper—and
the human visual system. One view of the present paper is that the power—the ‘Turing equivalence’—of
typical mathematical user interfaces has blinded us to the importance of notation and interactive notation
properly integrated with the way the user interface works. Users put up with one-dimensional and other
limitations to interaction because the deeper ideas appear sufficiently well supported. A very interesting

discussion of Turing Machines and interaction is [3], but the focus of this paper now turns to the design of
interactive mathematical systems.

2.1 Conventional mathematical interaction

Without loss of generality, mathematicians use pencil, paper and optionally erasers. Pencils are used to draw
forms, or to cross them out. Typically, adjacent forms are related by a refinement. Harder to capture formally,
the mathematician’s brain stores additional material, which is typically less organised than the representation
on paper. One might argue that much of the mathematician’s work is to find a relation between what is in their
head and marks on paper. This is an iterative process. Finally, the concepts and previously unstated thoughts
are mapped to some representation such as LATEX, so that the organised and checked thoughts can be
communicated effectively to other brains.

When this process is computerised, the forms are linearised into some character sequence. A string, typed
onto ‘paper’ or a VDU left to right, is transformed by the computer inserting the values of designated
expressions. A typical handheld calculator is an example of this style of interaction, though most only display
numbers and not the operators—one of their limitations is that the user does not know whether the display is
the current number being entered or a result from a previous computation.

Around the 1970s, the sequential constraint became relaxed: the underlying model remained incremental
as before, but the user could ‘scroll back’ and edit any string. Now the values computed may have no relation
to the preceding strings, because the user may have changed them: the old output may be incorrect relative to
the current string.

More recently, from the late 1980s on, the user interface supported multiple windows, each separately
scrollable and editable, each with an independent user interface much like a typographically tidied up 1970s
VDU. Of course, this gives enormous flexibility for managing various objects of mathematical concern
(proofs, tactics, notes. . .) [10], especially when supplemented with menus and keyboard commands, but the
generality and power should not distract us from the relation of the user interface to doing the mathematics
itself. Normally we focus on the maths, and ignore the interface; it is just a tool to do the maths, not of
particular mathematical interest itself.

Consider Mathematica [18]. A Mathematica notebook is a scrollable, editable document representing the
string. Certain substrings in the notebook are identified, though the user can edit them at any time and in any
order. A set of commands, typed or through menu selection, cause Mathematica to evaluate the identified
substrings, and to insert the output of their evaluations. It is trivial to create Mathematica notebooks with
confusing text like that shown Figure 1, which illustrates the inconsistency problem (is x 5 or 8?) as
Mathematica separates the order of the visible document from the historical order of editing and evaluation. In
the example above, the x=5 may have been edited from an earlier x=8; the Print may have been evaluated
after an assignment x

Fig. 1. Example of problematic interaction in Mathematica.

=8 evaluated anywhere else in the notebook; or the Print may have been edited from something equivalent to
Print["x is 8"]—and this is n ot an exhaustive list. In short, to use Mathematica a user needs to remember what
sequence of actions were performed. (In fact, Mathematica helps somewhat as it can show when a result is
possibly invalid.)

Although the presentation can be confusing, the flexibility is alluring. While the mathematician can keep
the editing and dependencies clear in their head, the notebook (or some subset of it) will make sense.

Mathematica and many other systems add notational features so they can present results in conventional
2D notation. Instead of writing a linearised string, such as 1/2, the user selects a template

from a palette of many 2D forms. The

symbols can then be over-typed by 1 and 2, to
achieve (in this example),

1

2 . Such mechanisms allow the entry of forms such as
∞

sin x
2
e−

x

dx and 1+
1

1

1+
0

1+
1

1+1+

1+
1

···

as shown with relative ease. However, a problem is that the template continues to exist even though the user
cannot see it. A simple example illustrates the problem: editing

1

2
to 12 is difficult, because the initially hidden

template will reappear explicitly in intermediate steps such as
12
or 1

2.
In Mathematica a function TraditionalForm achieves the inverse: presenting evaluations using standard

2D notation. While these 2D notations look attractive (and indeed are considerably clearer for complex
formulae, especially for matrices, tensors and other such structures), they do not alter the semantics or basic
style of interaction.

Padovani and Solmi [5] provide a good review of the interaction issues of using 2D notations, such as
Mathematica and other systems use. They argue that 2D notation requires a model, namely the internal
representation of the structure, which is not visible in the user interface. Hence, for the user to manipulate the
2D model new operations are required. The model itself is not visible, so inevitably 2D notation introduces
modes and other complexities. That is, it looks good, but is hard to use. Editing operations are performed on
non-linear structures (e.g., trees), but the displayed information does not uniquely identify the structure. Like
the criticisms of Mathematica above, to use a 2D structure requires a user to remember how they built it;
worse, what the user has to

Fig. 2. Example of xThink, showing natural handwriting notation combined with calculated output. Picture from xThink’s
web site [19]; the original is in several colours, making the input/output distinctions clearer than can

3

be shown in greylevels. In the picture, xThink has just parsed a handwritten √123
, shown its interpretation at the bottom of

the screen (as 1212=(1/3)ר3ר), and has inserted a result in a handwriting-like font below the formula.

remember (Padovani and Solmi argue) does not correspond with the user’s mental image of the mathematics
being edited.

xThink is a different mathematical system [19], and its model is directly based on a 2D representation.
xThink recognises the user’s handwriting in standard notational format, and can compute the answer which is
displayed adjacent to the hand-written sum. Provided xThink recognises the user’s writing reliably, the
internal model of the formula is exactly what the user wrote. Nothing is hidden. In this sense, xThink solves
the problems Padovani and Solmi elaborate, though not all of the problems we attributed to Mathematica (as
we shall see below).

A typical “page” from xThink is shown in Figure 2. Its advantage over Mathematica’s templatebased
approach is the ease and simplicity of entering mathematics, however its interaction style retains the problems
of Mathematica’s—there is no guarantee the ‘answers’ are in fact answers to the adjacent formulae, and
furthermore xThink has introduced new handwriting recognition problems; that is, the formula evaluated may
not ever be one that was thought to have been written down!

xThink and Mathematica are only two examples, selected from a wide range of systems. Maple [2], for
example, is closer to Mathematica in its computer algebra features, but closer to xThink in its handwriting
recognition. However, Maple uses handwriting recognition to recognise isolated symbols which are written in
a special writing pad—whereas xThink allows writing anywhere, but the writing has to be selected (by
drawing a lasso around it) before it can be recognised. xThink, Mathematica and Maple are PC-based systems,
and there are also many handheld mathematics systems, such as Casio’s ClassPad [1], which allow pen-based
input. However, rather than review individual systems, this paper now turns to principles underlying
mathematical interaction.
2.2 Principles for mathematical interaction

With such a long and successful history of procedural interaction it is hard to think that it could be improved;
systems like Mathematica are Turing Complete (upto memory limitations). Interactive mathematical systems,
such as Mathematica and xThink, are clearly very powerful and have a very general user interface. The book
A = B [6] gives some substantial examples of what can be achieved.

It is interesting to observe that the representations these mathematical system work with are not
referentially transparent nor are they declarative. That is they only do mathematics that is ‘delimited’ in
special ways, and the user has to ‘suspend disbelief’ outside of the theatre that is so delimited. As a case in
point, we gave the example above of x not having the value it appeared to have (see Figure 1); even allowing
for the semantics of assignment, there is no model like lvalues and rvalues that maintains referential
transparency [9], without some subterfuge such as having a hidden subscript on all names—which, of course,
must exist in the user mind (if at all) if users are to do reliable mathematical reasoning.

Such Fregean properties as referential transparency
1
are key to reliable mathematical reasoning. Another is

his idea of ‘concept’ that has no mental content, that is, a concept is not subjective. Most interactive systems
require the user to conceptualise (i.e., make a mental model of) the interaction; they have modes, hidden state
dependencies, delays, separated input and output and so on.

It is ironic that modern mathematical systems are so flexible that they compromise the core Fregean
principles—though [12] shows, under broad assumptions, any string-based (i.e., Turing equivalent) user
interface interaction properties such as modelessness and undo are incompatible. Modelessness is, of course,
an HCI term covering issues such as side effects, referential transparency, declarativeness, substitutivity, etc.
Essentially, a purely functional interface is modeless; if one cannot have modelessness and undo (under the
assumptions of [12]), any such user interface must be compromised for mathematical purposes. Such

observations beg questions: is it possible to modify the style of interaction to preserve the core mathematical
properties—and what would be gained by doing so?

3 Modern mathematical interaction

We will use xThink below to make a side by side comparison with our novel interface, TruCalc, to highlight
the difference between a truly mathematical system and one that is not.

Note. xThink is a commercial application available from [19] (PC only), and TruCalc from
[16] (Mac, PC, Linux).

Both our calculator and xThink’s calculator from first glance appear to do the same things. In fact xThink’s
calculator seems to be more powerful, it can handle annotation, multiple sums, more complex mathematics.
Yet ignoring a bullet point comparison and the superficial similarity of the two programs, they are in fact very
different.

Both calculators provide a user interface based on handwriting recognition. But this is where the similarity
ends!

Our calculator, TruCalc, was designed from generative user interface principles [12]; in contrast, xThink
seems to merely add the idea of utilising the affordance [4] of pen and paper without escaping
Mathematica-style problems.

1
Quine introduces the term referential opacity but attributes the idea to Frege [7].

To better illustrate the differences between these two superficially similar interfaces we will describe the
interaction a user employs to solve a simple sum, along with the potential pitfalls.

3.1 xThink vs TruCalc

A first example problem we compare finding the value of “(4+5)/3” in xThink and in our calculator, TruCalc.
In both, the user starts by writing the sum on the screen, using a pen (or using their fingers on suitable
touch-sensitive screens).

1a In xThink, the user must press a button to change xThink into selection mode. The user can then select
what they have written. They must now press another button to get the selected handwriting recognised.
The handwriting is recognised and represented in a separate window, which the user must read to check
the accuracy of the handwriting recognition. If the handwriting is misrecognised by xThink then without
checking the small text at the bottom of the screen the user can easily be fooled into thinking they have
the correct answer. The text at the bottom of the screen is both small and linearised, losing the benefit of
the handwritten 2D notation—for example Figure 2 shows the cube root of twelve cubed being
calculated, it is printed as 12^3^(1/3)=12.

1b In TruCalc, as the user writes, the hand-written characters and numbers are converted to typeset symbols
without any further user action. The user feels as if they are writing in typeset characters, and confirming
recognition is as natural as checking your own handwriting is legible.

2a In xThink, to determine the answer, the user must now press another button to evaluate the recognised
formula, and the answer is then displayed somewhere on the screen. In Figure 2 all such answers have
been positioned under their respective formulae.

2b In TruCalc, the typesetting includes solving the equation. In this case, the screen will show a typeset
4+5

=
3—the user wrote

4+5
and the computer inserted = 3 in the correct position.

3 3

3a In xThink, to determine the answer, the user’s input must be syntactically complete (an expression). For
example, to find the value of √4 the user must write exactly this (and it must be recognised correctly).

3b In TruCalc, answers are provided even with incomplete expressions, as well as with equations. For
example, to find the value of √4 the user can write √ then 4, or 4 then √, and they can write = if they wish.
In any case, the value 2 or =2 is also displayed. Furthermore, if the user wrote √ = 2, then TruCalc would
insert 4 appropriately, thus solving a type of equation where xThink would require the user to write 2

2

(which is notationally different).

4a In xThink, the user’s handwriting can be altered and hence make the answer (here, 3) invalid— and it will
remain invalid until the handwriting is re-selected, recognised and re-evaluated (and the old answer
removed). Or several answers may accummulate if the user evaluates formulae and does not remove old
answers.

4b In TruCalc, as typesetting includes solving the equation, the user could continue and write =
4+

or = 3 themselves. In particular, if they wrote an equation, such as
3

= 3, TruCalc would solve it, and
insert (in this case) 5.

5a xThink provides no other relevant features for the purposes of this paper.
5b In TruCalc, the editing of the user’s input is integrated into its evaluation. Thus the user can then continue

to write over the top of this morphed equation, adding in bits that they consider are missing. For example,
if the RHS 3 is changed to 30, the display would morph to

4+86
= 30.

3
It is possible to edit by inserting, overwriting and by drag-and-drop to a bin to delete a selection, or to
other parts of the equation to move it. In all cases, the equation preserves its mathematical truth, as
TruCalc continually revises it. TruCalc also provides a full undo function, which animates forwards and
backwards in time—also showing correct equations.

3.2 In-place visibility

With TruCalc the replacement of the user’s handwriting with typeset symbols not only provides an
immediately neat and tidy (and correct) equation but also provides immediate visible feedback of what was
recognised. The displayed typeset equation is the equation that the answer is shown. This in-place visibility
removes confusion and misunderstanding over what the calculator is doing, and whether it has misrecognised
bad handwriting.

In our experiments with TruCalc [14], one of the outstanding results was that whilst users made
intermediate errors, no user stopped on a wrong answer. We believe this was because the calculation they
were performing was entirely visible and unambiguous to them in an in-place 2D notation.

Without in-place visibility, the user may be unsure which results correspond with which inputs. This
compromises mathematical reliability; the user has to rely on their head knowledge.

3.3 No hidden state; modelessness

Hidden state and modes compromise mathematical reasoning. Hidden state affects how to interpret input and
output; specifically, modes are hidden state (e.g., knowledge of history) in the user’s head that is needed to
know how to control the user interface predictably.

Typically, a system does not show what mode it is in, but the mathematical interpretation of its display
depends on the user knowing some hidden state. For example, in xThink to erase or move parts of the
equation the user has to select different tools at the bottom of the screen, then when they have finished they
have to remember they are in a special mode and reselect the pen tool. The xThink interaction style makes this

cumbersome approach unavoidable in principle. The relative meanings of displayed results obviously changes
when other images are modified; simply, they may become wrong.

The xThink user also has to be aware that once they have finished an equation they have to do more (press
several buttons, select their text) this time switching mental modes from “entering” to “getting the answer.” If
they don’t change modes (or of they don’t change through the modes appropriately, or select inaccurately),
there is either a wrong result or no result for the problem.

With TruCalc there are no hidden modes or state, and no user context switching. Not only is there no
menu of different tools but there is no need to switch mental modes or to pause and press an

Enter

button to make things work. This greatly simplifies the user’s mental model and reduces the effort
required to use the calculator. TruCalc does have a few modes, for example a dragging mode, but these are
clearly visible and they are directly initiated and controlled by the user.

Note that in-place visibility and modelessness together give a very strong—and easy to use—
interpretation of WYSIWYG (what you see is what you get), as proposed in [11].
3.4 Instant declarativeness

A system may show the mathematically right answer when the user asks for it; but until they ask for
computation, the mathematics is strictly incorrect (or possibly shows a representation of a meta-‘undefined’).
In TruCalc the results are ‘instantly’ correct, with no user action required.

Declarative programming was popularised through Prolog. Essentially, the programmer writes true
statements, ‘declaring’ them, and Prolog backtracks to solve the equations (sets of Horn clauses in Prolog).
Prolog is thus a declarative language—though its user interface isn’t.

Likewise, TruCalc is declarative. The user writes equations (or partial equations, taking advantage of the
automatic syntax correction), and these are declarations that TruCalc solves (by numerical relaxation).

In Prolog, the user has to enter a query, typically terminated by a special character. Until that character is
pressed, the output (if any) is incorrect. This inconsistency within the interface is what we are used to, even to
the extent of accepting the sort of inconsistencies illustrated in Figure 1. But it requires the user to remember
the past; they haven’t pressed return or some other special character or menu selection yet. If they forget
confusion happens.

TruCalc extends declarativeness to instant declarativeness, that is, an interface that is always true all of
the time. No matter what the user writes the answer shown is always correct.

An instantly declarative interface implies that the calculator has to be showing something that is correct
even if the user has not finished entering everything, or has a currently incorrect edit. Thus the calculator also
has to cope intelligently with partial expressions like

÷
3+2. In our case the calculator fills in place holders that

alter the expression as little as possible. There are also problems like 1/0 or overflow like 101010
...

—these too can
be handled by correction (such as showing 1/0 as 1/(0 + 1); see [13]), or by changing the algebra implemented
by TruCalc.

This instant declarativeness removes the disparity between the input and the output, removing an
enormous potential for user confusion and it also removes the need for the user remembering having to press
the “equals” button (or some other change mode button) to get an answer.

The implementation of instant declarative user interfaces is only slightly more complex than conventional
user interfaces; at least two threads are required, one for the user input, one for processing. Processing restarts
every time the user extends or changes the input; in TruCalc there is a short delay, which allows the user to
write an expression fluidly without visual interference from it being morphed into recognised text until they
finish or pause.

3.5 Equal opportunity

The power of TruCalc’s implementation of instant declarativeness combines powerfully with equal
opportunity [8]. Unlike xThink, TruCalc does not distinguish in principle between the user’s input and its own

output. Each has ‘equal opportunity’ in the equation. This makes it possible to write on both sides of an
equality.

The ability to change either the answer or the question lets a user solve problems simply that they would
have struggled with otherwise. For example, “what power of 2 is 100” can be solved directly without
logarithms. (For example, the user writes 2 = 100, which is corrected to 2 = 100

−
98, then writes a decimal

point as the exponent of 2, which is where they want the answer. 2
.
= 100

−
98 then morphs to 26.643856 = 100.)

Equal opportunity is not in itself a feature that is required for a highly mathematical user interface, but it is
a natural generalisation (from expressions to equations) that significantly increases the power of the user
interface for the user.

Fig. 3. Example of drag and drop interaction in TruCalc, shown as three consecutive screen-shots. Initially, the user has
written

3
×=7; next, the user drags the 3

×
numerator to the denominator; finally, TruCalc provides

9

the correct numerator. The only user interaction to achieve this transformation is to draw the loop (shown in the middle
figure) and drag it. Had the user had dragged the 3

×
to the wastebasket, it would have been deleted, and the equation would

be corrected to
54

=7. (If a loop is drawn not containing anything to select, it is recognised

9
as a zero.)

3.6 Rearranging

In xThink’s calculator it is possible to delete things or move them around but it is always an awkward process
involving many mode changes and it is fairly limited in what it achieves. Moreover, any editing in xThink
breaks the relation between written input and calculated output, and the user has to remember to re-evaluate
an edited formula. Hence, in xThink the ability rearrange introduces modes and hidden state.

In TruCalc the ability to drag and drop an arbitrary part of the equation elsewhere is synchronised by
TruCalc’s ability to morph the result into a new typeset equation. It is therefore possible to move parts of the
equation around without regard for their size or shape, and the user always sees a fully correct equation.

More specifically, in xThink drag-and-drop is achieved by choosing the selection tool, drawing around the
object, then dragging, then choosing the next tool to use; however, once moved, the formula typically needs
explicitly selecting, recognising, and evaluating, as further steps for the user. In TruCalc drag-and-drop is
achieved by drawing around an object and moving it. No mode change is required, and no action needs to be
taken to evaluate the new formula. Figure 3 illustrates some simple examples.

4 A demonstration of TruCalc

Because xThink is not highly interactive, ironically, its screen shots (such as Figure 2) make it easier to
understand than screen shots of TruCalc! xThink’s screen shots show handwriting input, the recognised input
(shown in the bottom pane), and the result. Figure 2 shows several such examples. It looks straight
forward—except, as we showed in Section 3.1, constructing the interesting display of Figure 2 requires
transitions between many modes, and hence possible user errors. Figure 4 shows TruCalc solving the problem

that xThink is shown solving in Figure 2; however, xThink solves the equation in one step and requires
changing modes, whereas TruCalc solves continually, in place, and needs no modes at all. (In this short paper
we do not illustrate how TruCalc can solve equations more powerfully than xThink—by combining
rearranging with equal opportunity; see [13] for examples.)

TruCalc has just recognised a handwritten 1, and shown the (at this moment) correct
equation 1 = 1; the user is now writing 2 by hand.

TruCalc has recognised the 2; the user is writing 3 as an exponent.

TruCalc has recognised the 3, and updated the RHS of the equation.

The user is writing a √ around the 12
3
. Of course, the user could equally have started by writing the √ , and then writing

inside it.

The √ is recognised, the RHS is updated, and the user has started to write
3.

Fig. 4. A step-by-step, broken-down example of using TruCalc on the sum that xThink is shown solving in Figure 2,
showing how a single equation changes as the user writes on it. This brief example does not show drag-and-drop, nor
equational calculations. However, notice that TruCalc provides continual correct feedback; there are no hidden modes, no
special commands—TruCalc just ‘goes ahead’ and provides in-place answers. The user feels as if they are writing in a
formal typeface (here, Times Roman). This brief example does not show how TruCalc would handle solving equations,
for instance if the user dragged the 12 onto the RHS. Had the user written an = themselves on the left of their formula,
then the answers would have been shown on the LHS.

5 Other features of TruCalc

TruCalc provides other features that make it more powerful and easier to use. These features support, but are
semantically unrelated to the highly interactive way it does mathematics. Further discussion of TruCalc,
beyond the scope of the present paper, can be found in [14] and [15].

5.1 Ink editing

In xThink, the user writes a formula then asks for it to be recognised. In TruCalc, the formula being written is
continually being recognised. This permits a very powerful, and natural, interaction style we call ink editing.

If the user writes ‘
−
’ it is recognised as a minus sign. If they write 2 above it, the minus sign becomes a

division bar. If they cross it out by a vertical stroke, it becomes a + sign.
2

None of these natural ink editing
operations makes sense in a batch recogniser.

2
The current implementation of ink editing is not complete; for example you cannot edit

−
to 4, or edit . to ! in the

obvious ways yet.
5.2 Dock

TruCalc provides a dock, with functionality similar to the dock in Mac OS X. That is, a whole or partial
equation can be dragged to the dock, and it will be stored as an item. Conversely, any item in the dock can be
clicked on, and it will replace the current equation. If an item is dragged out, it ‘comes out’ as a picture
representing its value. Hence an equation such as 1 + 2 = 3 might be dragged out of the dock and used, say, as
an exponent, as in

2
1+2 = 3

=8

(the subequation is boxed, as it cannot be edited except by recalling it from the dock); such dock items can be
used in many places in any other equation. The dock serves as a convenient declarative memory for the user.

The dock would be a very natural way to extend TruCalc to have variables, at least if entries in the dock
could be named. Indeed, dock entries might be associated with URLs, and be able to represent internet
resources—such as the current dollar/euro conversion rate, or standard numbers and equations, and so on.

5.3 Optionally hidden answers

TruCalc shows correct answers at all times, just as we have described it. However, for use in teaching, it is
possible to hide the answer, and show an empty box. This indicates to a student that their answer is wrong or
incomplete, and some correction is still required. Here is an example:

2+ =3

where normally it would show 2 + 1 = 3.

5.4 Undo

TruCalc provides the ability to undo edits and alterations by means of a clock metaphor. A user grabs the
clock hands and can ‘rewind the time,’ and as they do so the symbols and numbers animate back through time
exactly as they were morphed. The morphing provides a temporal continuity between the different steps of the
calculation, and it can be played backwards and forwards (i.e., undo and redo).

5.5 Possible extensions to TruCalc

TruCalc can be extended in many ways. We give a few examples:

1 The dock could be on a web site, and made multiuser so several people can collaborate. The dock
could also have a palette of functions (log, sin etc) that, like the current equations, could be dragged into the
working equation.
2 The back-end could be replaced with (for example) the Mathematica kernel so it was extensible.
Currently, TruCalc only does complex numerical arithmetic; it could provide an interface to anything
Mathematica etc can do.

3. Unlike xThink, TruCalc currently provides no way for a user to write things that are not recognised;

formulae cannot be annotated, arrows cannot be drawn, and so on. A teacher would probably like another
colour which can be used to draw freely with but which TruCalc does not interpret.

There are many obvious developments: complete handwriting recognition, to extend TruCalc to standard
function notation (such as log); restrictions for teaching purposes (TruCalc uses complex arithmetic); multiple
equations on the screen, like xThink. And so on.

However, what TruCalc does is show how effective—both reliable and indeed enjoyable (see
§
6.1)—a

user interface for mathematics can be when the interaction, the user interface, itself respects the principles of
mathematics.

6 Mathematical mathematical interfaces lead into HCI

HCI is the science and art of making user interfaces more effective (and enjoyable) for humans (though HCI
techniques have also been used to improve user interfaces for farm animals!).

TruCalc allows the user to write an equation e involving complex numbers from C and elementary
arithmetic operators. TruCalc has no variable names, but uses slots; thus, in conventional terms, the equations
can contain variables without repetition—future versions of TruCalc may include variable names as they are
of course useful for many purposes, not least in providing mnemonics for the slots as currently used.

The variety of solutions S of e is intended to be S(e, C), except the current version implements C by CJ ,
the obvious approximate representation of C using pairs of Java double precision floating point numbers.

With these clarifications, we can express some important HCI issues:

1 What should TruCalc do when S(e, CJ) does not determine a unique solution? Currently Tru-Calc
uses heuristics to try to find solutions that are principal values, identities of operators, and so on. For example

×
= 10 will be solved by 10

×
1 = 10, using the right identity of

×
. On the other hand, 10

1

?
×

10
1

? = 10 has no

solution as currently implemented, because TruCalc effectively tries to solve 1/x = 0.
2 What should TruCalc do when S(e, CJ)=

׎
? TruCalc’s solution is to show ? symbols (or ?+?i);

however, an earlier version [13] modified the equation so that at least one solution could be found. Neither
solution, we feel, is entirely satisfactory, since S(e, CJ)=

 ׎
can occur as a transient step in entering a solvable

equation—for example, to enter 1/0.1 either requires contortions or the intermediate step 1/0.
3 What should TruCalc do when there is a humanly-obvious algebraic solution, but S(e, CJ)=

׎
? For

example, the very easily entered LHS

2
2
2

2
2

=?+?i

fails because it is a 19,729 digit decimal
number, which is in C but not in CJ —but

the equation could be solved as
2
2

222

=2
65536

or in many other equivalent symbolic ways. Which is best? Should the user have choices, and if so, how?
A a symbolic approach would also be a good way to solve equations the user enters containing 1/0 terms.

1 Can users choose S(e, R),S(e, Q),S(e, Z),S(e, N), for instance for elementary teaching? What about
S(e, Z12) for clock numbers, or S(e, Fp), and other interesting domains, say predicate logic or even chess?
2 Improving the handwriting recognition would allow the solution of larger classes of equations, for
instance that include transcendental functions.
3 TruCalc uses = as an operator over CJ , not C. This can result in (apparently) peculiar results such as
the following:

3

π = 335/113 π
=3.142

3.142 = 1571/500 π =3.142
−

4.073
×

10−
4

Perhaps TruCalc should use an operator
�

when the equality is approximate? (Although results that are

approximate in CJ may be exact in C!)
7. TruCalc could explicitly show, where it is the case, that numbers are approximate. For example, π = [3]

3.142 could be the notation to indicate the equality is correct to three decimal places. If the user changed
the subscript 3, they would be changing the precision of the displayed number. Chaitin however
suggested that it would be more in keeping with the direct manipulation style of TruCalc to allow the user
to drag the righthand extension of decimals: so if the user drags the ‘. . . ’ to the right in the equation π
=3.142 ... it could become π =3.141592653589793 ...; and dragging the ‘. . . ’ left would put it back to π
=3.1 ..., for example.

In summary, an interesting part of the ‘HCI of TruCalc’ can be expressed as the relation between S(e, CJ),
the solutions the implementation provides for an equation e, and S(e, H), what the user expects.

6.1 Enjoyment

Finally, it surprised us that TruCalc was fun to use—we had developed it from principles and had not
anticipated the strong feeling of engagement it supports. It integrates body movement, handwriting, and
instant satisfaction, that children and post-doc mathematicians find exciting. Elsewhere we have reported on
our usability surveys, a topic that is beyond the scope of this paper [14]. More recently TruCalc was exhibited
at the Royal Society Summer Science Exhibition, where it was used by thousands of visitors, children,
parents, teachers, to math postdocs. An exit survey was completed by 420 participants (and we insisted that
anybody who took a survey form completed it, to avoid under-reporting of negative results) had 90% liked or
really liked TruCalc, and nobody (0%) disliked it.

3

The last example shows 4.073
×

10−
4
which in an earlier version would have been presented in the standard Java format

as 4.073E
−

4, a ‘buggy’ notation, because a user could not enter E themselves, so it failed equal opportunity. Here,

equal opportunity is seen to be a generative design principle: given the existing features, it suggested improvements.
7 Conclusions

Current leading mathematical systems are capable of a remarkable range of mathematics. With Mathematica,
a market leading example of an interactive computer algebra system, we are able to solve problems we could

not do without it. It is easy to confuse these mathematical capabilities with usability. So much power seems
harnessed that the power seems usable.

This ‘power leverage’ blinds us to the fundamental non-mathematical nature of these user interfaces.
Often clear mathematical principles like referential transparency and declarativeness are lost in modes, history
dependence, context sensitivity, and so on. The failure of these principles in conventional mathematical user
interfaces undermines our ability to reason reliably or mathematically.

xThink makes use of the affordance of pen and paper to create an interface that solves partially some of
the interface issues. But it still ignores basic mathematical principles when applied to interaction. It gains the
affordance of paper, at the expense of introducing evaluation modes (and uncertainty in the handwriting
recognition).

We have shown in TruCalc that it is possible to create an interface that supports basic principles
throughout the user interface; it has no hidden state, is modeless, instantly declarative, and so on— or in Frege
et al.’s metamathematical terms, substitutional, referentially transparent, and so on. Adhering closely to these
mathematical principles do not compromise the power of TruCalc; it is in principle as powerful
mathematically as xThink and other conventional systems (though obviously the two systems vary in detail,
such as in the choice of built-in functions they support)). Further, we have shown that by supporting these
principles that the calculator is easier, more enjoyable, fun and usable—a paradigm shift in usability.

Acknowledgements Harold Thimbleby was supported by a Royal Society-Wolfson Research Merit Award,
and Will Thimbleby by a Swansea University studentship. The design of TruCalc is covered by patents. Paul
Cairns, Greg Chaitin, James McKinna, John Tucker and very many anonymous participants in demonstrations
and lectures gave us very useful comments. The Exhibition of TruCalc at the Summer Science Exhibition at
the Royal Society was funded by EPSRC under grant EP/D029821/1, and Gresham College.

This paper was originally an invited talk at the Mathematical User-Interfaces Workshop 2006
(http://www.activemath.org/~paul/MathUI06), but did not appear in the proceedings.

References

1 Casio, Casio ClassPad 300 Resource Center, http://www.classpad.org, 2006.
2 F. Garvan, The MAPLE Book, CRC Press, 2001.
3 D. Q. Goldin and D. Keil, “Persistent Turing Machines as a Model of Interactive Computation,”

Foundations of Information and Knowledge Systems, pages 116–135, 2000.

4 D. A. Norman. “Affordances, Conventions and Design,” Interactions 6(3):38–43, ACM Press, 1999.
5 L. Padovani and R. Solmi, “An Investigation on the Dynamics of Direct-Manipulation Editors for

Mathematics,” Proc. MKM 2004, LNCS 3119:302–316, 2004.

6 M. Petkowvˇsek, H. S. Wilf and D. Zeilberger, A = B, A K Peters, 1996.
7 W. V. O. Quine, Word and Object, MIT Press, 1960.
8 C. Runciman and H. Thimbleby , “Equal opportunity interactive systems,” Int. J. Man-Mach. Stud. 25(4):439–451,

1986.
9 R. D. Tennent, Principles of Programming Languages, Prentice-Hall, 1981.

10. L. Th´ery, Y. Bertot and G. Kahn, “Real Theorem Provers Deserve Real User-Interfaces,” Proc. Fifth ACM

Symposium on Software Development Environments, pages 120–129, 1992.
11. H. Thimbleby, “What You See is What You Have Got”—A User-Engineering Principle for Manipulative Display?

First German ACM Conference on Software Ergonomics, Proc. ACM German Chapter, 14:70–84, 1983.
12. H. Thimbleby, User Interface Design, Addison-Wesley, 1990.
13. H. Thimbleby, “A New Calculator and Why it is Necessary,” Computer Journal, 38(6):418–433, 1996.
14. W. Thimbleby, “A Novel Pen-based Calculator and Its Evaluation.” Proc. ACM NordiCHI 2004, pages

445–448, 2004.
15. W. Thimbleby and H. Thimbleby, “A Novel Gesture-Based Calculator and Its Design Principles,” Proc. BCS

HCI Conference, 2:27–32, 2005.
16. W. Thimbleby and H. Thimbleby, TruCalc,

http://www.cs.swan.ac.uk/calculatorshttp://www.cs.swan.ac.uk/calculators, 2006.

17. A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London
Mathematical Society, Series 2, 42:230–265, 1936/7 (corrected Series 2, 43:544–546, 1937).

18. S. Wolfram, The Mathematica Book, 4th. ed., Cambridge, 1999.
http://www.wolfram.comhttp://www.wolfram.com
19. xThink, “xThink Calculator,”

http://www.xThink.com/Calculator.htmlhttp://www.xThink.com/Calculator.html, 2006.

Questions

Michael Harrison:
Question: Referential transparency is a problem when you are embedding something in a
surrounding area.
Answer: It purposely doesn’t have a surrounding context such as memory. That is intentionally not
made visible because it’s not important.

Jo Vermeulen:
Question: Is it possible to do variable assignment?
Answer: There is a history, so you can save and retrieve equations, and reuse them in other
equations by dragging them into these other equations.

Prasun Dewan:
Question: Can you couple this with a text-based interface so that actions in maths get translated
into a text representation and vice versa?
Answer: It would be useful to combine it with more complex back-ends to integrate – e.g. with
Maple.

Panos Markopulos:
Question: Sometimes I do want a history that is observable at a glance, e.g. by using different
regions of the paper for partial / intermediate calculations.
Answer: There is a clock metaphor to go back in time to observe previous states of the system.
There is also history preservation in the scratch pad.

Question: How do you know children were enjoying doing maths rather than writing with their
fingers?
Answer: It is difficult to tell from the video, but we have done users studies and feedback has been
positive. E.g. children doing GCSE studies enjoyed using it.

Stéphane Conversy:
Question: What users are you targeting with this application? E.g. is it related to Alan Kay’s work
with Computer Science? He bases his work on education theory such as constructivism. Is your
approach based on such a theory?
Answer: No, I don’t make that link yet. There’s great potential.

Phil Gray:
Question: Have you thought about disentangling the effects of different features on users?
Answer: That’s a good point. I haven’t tried to do that. It’s clearly easy to ‘wow’ users, which
makes it more enjoyable.

