
Engaging Patterns: Challenges and Means shown by an
Example

Sabine Niebuhr Kirstin Kohler Christian Graf

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
{kohler, niebuhr, grafc}@iese.fraunhofer.de

Abstract. This paper presents first results of a research project whose goal is to develop
a pattern language that enhances business software by motivating and engaging
elements. The goal of the pattern language is to turn the soft and vague term of
“emotions in user interaction design” into constructive design guidance. The patterns are
especially tailored for joy-of-use in business applications. The main contribution of this
paper is the description of quality characteristics for this pattern language. They are
illustrated by references to existing pattern descriptions and elaborating their
deficiencies. This paper shows how these weaknesses were addressed in the pattern
language.

ACM Classification Keywords. D.2.1 Requirements/Specifications, D.2.2 Design
Tools and Techniques, H.5.2 User Interfaces

1. Introduction

Using patterns (originally introduced in architecture [1, 2]) for developing software is well
established [3] and still up-to-date [4]: Why reinvent the wheel if solutions for a problem are
already known and approved? Many pattern languages exist for nearly every developing step
– e.g., for designing the interaction and the user interface [5-7], or for the software
implementation [3]. But for a software developer, applying patterns is not as simple as one
might assume.

Let us imagine a software developer who wants to design a user interface. He has found
some interaction patterns on the Web and hopes they will help him. Trying to apply these
patterns he first has to find an appropriate pattern. This is a big problem to overcome, since
matching a specific design problem to the problem descriptions in existing patterns is a
question of interpretation. After the software developer is convinced that the pattern he has
identified matches his problem, he tries to understand the author’s recommendations – how
does the author think this problem can be solved? The software developer might not see the
correlation between the problem statement and the solution described in the pattern: the
problem statement matches his problem, but the solution does not make any sense to him.
After interpreting the recommendation our software designer applies the pattern in the way he
thinks it would be the author’s intention.

Let’s assume that the software developer has another problem and therefore searches for a
fitting pattern a second time: he finds two patterns that are nearly the same – so which one
does he have to apply? How do they relate to each other? Does one specialize the other? Do
they have different conditions when to apply? The software developer might not be a very

patient person, so he stops searching for another pattern and tries his best on his own –
without any guidance or implementation advice. What went wrong? − The pattern
descriptions were not concrete enough. − The developer did not find the right pattern to
apply. − The developer did not understand the pattern idea.

These are just three problems. For us as authors of patterns, this means: Do not repeat
existing defects. Identify the developer’s problems with patterns and fix them!

In our project, we try to identify patterns to enhance business software by elements that
motivate and engage. In writing down these patterns, several challenges had to be mastered–
from setting up a pattern language with all of its elements and relations up to the internal
validation of the patterns and the problem of making it discoverable. When we performed a
search in the literature, we mostly found solutions to the syntax problems of a pattern
language - how to build up relations and designed meaningful elements – but no answers to
our semantic questions, for example, how we can formulate our patterns in an understandable
way. We found the Pattern Language Meta Language (PLML) [8], and we found approaches
that name our challenges – e.g., Meta Patterns [9], patterns for writing patterns – but we did
not find any real solution for our problems (we will discuss this in chapters 3 and 4).

In this paper, we demonstrate our challenges and how we mastered them with an example
pattern. Our contribution consists of defining quality characteristics for pattern languages that
base on our challenges and approaches to master them.

We will first describe our project context to give you an idea of our work: writing engaging
patterns. Then we will describe the challenges that came up while writing these patterns,
which led us to quality elements. Since we think it would be easier to understand how we
mastered the challenges by reading examples, we introduce an excerption of our pattern
language, which is still work in progress. Finally we present our approaches for mastering the
described challenges and what we will be doing next.

2. Project Context

The work presented here is part of a three-year research project funded by the German federal
government entitled ‘FUN’ (acronym for “fun-of-use in Geschäftsanwendungen”)

1
. In the

project, three industrial partners and Fraunhofer IESE deal with the topic of “fun-of-use for
business applications”. One goal of the project is to develop a pattern library that captures
fun-of-use interaction pattern. The

1
 You can find more detailed information about the project at http://www.fun-of-use.de

research work is closely related to the needs of the industrial partners in order to ensure the
usefulness of the results for industry.

The challenges given for the pattern library are motivated by our project context: As part of
the project, a call center software has to be redesigned in order to improve users engagement
with the software. The software helps agents to solve incoming support calls from people
complaining about trouble they have with the product. The work of the agents is kind of
frustrating and monotone, which results in a loss of motivation. As a consequence, agents are
inefficient, make more mistakes, and take fewer calls.

In the first step of the project, we were looking for existing interaction patterns, that might
help us to solve the problems of the call center agents as described above. We found two
promising candidates: the status display [5] (listed in Table 1) and the high score list [10].
While searching for patterns and applying them to the software described above, we start
doubting that a “software engineer” would have been successful in doing this. We are
experienced user interface designers/usability specialists well familiar with the concept of
“interaction patterns”. Would a software engineer have found the high score list or status

display pattern and would he/she have been able to derive an adequate solution for the
software from the description? We turned this impression into a challenge for our project. We
investigated effort in extracting “quality requirements” for the pattern library. These quality
requirements or challenges will be elaborated in the next section.

3. Quality challenges for pattern languages

We set up a list of characteristics that we believe are required to support software engineers in
creating “engaging” user interfaces. To provide valuable support, our pattern collection has to
assist the engineer during the following steps:

Step A - Pattern Discovery: The engineer has to find a pattern to the given user interaction
problem. The library is intended for software engineers respectively requirements engineers,
who design the user interaction as part of the requirements phase. We assume that they follow
a task-oriented approach, which means the requirements for the system to be developed are
stated as “tasks”. In addition, “nonfunctional requirements” or business goals are part of the
requirements.

Step B - Pattern Application: During this step, the software engineer has to apply the
solution given by the pattern, which is often still on a quite abstract level, to a concrete
interaction realization.

Looking at these two steps in more detail, we identified a set of four quality requirements
for our pattern language. Theses requirements consider quality needs stated by other authors
[11, 12], but extend and combine them to address all the problems we investigated. We will
explain them by expanding the problems we faced in our project.
3.1 Problem Fit

The pattern language has to guide the user from the problem to the solution; the pattern
should be stated in a way that the user can match his problem and project context to the
pattern description. This might, on the one hand be a problem of the entire pattern language;
the way the pattern are linked or put into hierarchies might not be useful for the engineer.
And/or it might be a problem of the individual pattern itself – the pattern description does
not give a clue to the real world problem.

The problem in our case was described by the information given in the use case description
of the requirements document and the “undesired” behavior of the agent “losing motivation”
(which is derived from the business goal “improve agents’ job satisfaction”. The existing
description of the “status display” does not give any idea that it might improve the agents’
motivation.

3.2 Understandability

This challenge belongs to steps A and B. The wording and notation of the pattern description
has to be understandable for the engineer; otherwise, he will neither be able to identify nor to
apply the pattern. What does this mean more concretely?

The reader should interpret the words that describe our pattern in such a way, that he
understands the idea behind it and the intention we as authors had in writing this pattern. This
means that we have to write unambiguously, so that the reader will not misinterpret the
content, and we have to write completely and without contradictions, in order to avoid
different interpretations. Here the challenge is: How can we ensure this?

Understandability is also closely related to readability. So another aspect is a syntactical

aspect, which supports the readability and understandability of our patterns: the elements that
describe them. Therefore, we searched in literature and found PLML [8], on which many
people worked for gaining a uniformed, standardized Pattern Language. This is a very helpful
aspect indeed: The reader gets patterns formulated in the same pattern language, so he knows
where to find the context, the problem and the solution. But this approach is not really
finished: Many people are still working on this language. However, although definitions for
elements and how to fill these elements exist, they are not sufficiently defined, leaving out
which kind of content can be found in the “context” element and which in the “problem”
element. What would solve this problem?

3.3 Correctness

We want to describe patterns that will motivate or engage users. How can one ensure that the
desired effect of a user’s engagement or motivation really takes place? Is there any theoretical
background that guarantees that the given solution (such as the status display) encourages
users to continue their task? Does showing status information really influence the users’
motivation? Todd et al. [11] talk about the “internal validity” of an individual pattern. We
define it as the relationship between the description of the problem and the solution: The
solution must solve the problem in the given context.

For a lot of described patterns, the way the patterns are phrased makes this step trivial. For
example, the problem of the status display is expressed as “How can the artifact best show the
state information to the user”, the solution says “Choose welldesigned displays for the
information to be shown….”. The topic of our pattern language covers emotional effects (like
motivation, engagement, fun) and therefore makes it more important to either empirically
prove the evidence between “Problem” and “Solution” of a pattern or relate it to one or more
psychological theories.

3.4 Concretization

Assuming he had found the problem, the task of the developer would be to transfer the pattern
description, which is quite abstract, to a concrete solution for the call center software. How
can one ensure that this concretization still solves the problem? There are often minor
differences in design that make a big difference in the desired effect.

Assuming that while detailing out the user interface for our call center someone had the
idea of putting in a kind of “ranking” that shows the performance of each agent compared to
the others in terms of “time to fix a support call”. At first glance, one can assume that this
kind of ranking would lead to competition between the agents and keeps them motivated. And
on the abstract level of a pattern, this assumption might be right in terms of Correctness.
Unfortunately, this solution destroys the social relationship between agents and enforces the
“Galley Slave Model” [13]. As a consequence dissatisfaction and turn-over of agents increase.
As stated before, the intention of the user interface redesign was to increase agents’
satisfaction. Another problem with concretization is that a software engineer reading the
“status display” as it is might not even have an idea, what range of freedom he has in bringing
it to a concrete solution – showing a “progress bar” is not the only way of representing
“status”, as we will show in the next section.

The first two quality requirements (Problem Fit and Understandability) address step 1,
“find a pattern”, whereas step 2 is related to the quality requirements Understandability,
Correctness, and Concretization.

4. Engaging Patterns

We would not have been able to concretize these problems if we did not have the idea of
writing down patterns to support developers in designing and implementing user interfaces
containing motivating elements – elements that help users stay concentrated on their work
tasks. For detecting patterns that engage we looked into existing pattern languages as well as
into the literature for e-learning and game design. Especially in these disciplines, much time
has been spent on developing applications that capture the user, because these applications
depend on the user keep on using them voluntarily. We now try to apply this knowledge to
business application design.

Some of our engaging patterns can be specialized from the existing usability pattern “Status
Display” (see Table 1), established by Jennifer Tidwell in [5]. An overview of the patterns
that could be specialized from Tidwell’s “Status Display” is given in Figure 1. “Status
Display” and “High Score List” are patterns described in the literature, “Task Status Display”,
“Progress Bar”, and “Anonymous Ranking” cover patterns specialized by us, boxes building
the leaves of this tree are examples for concrete implementations.

.

Fig. 1. Hierarchy of Status Display patterns with examples of concrete implementations.

The pattern “Task Status Display” proposes a solution for showing any kind of information
concerning the user’s task. The pattern “Progress Bar” as a specialized “Status Display”
shows this information in relation to a specific goal. The pattern “High Score List” (this
comes out of game design) shows information concerning the work task (for example,
performance data) as a specialized status display in relation to other performance data. This
data can show performance of other people, statistical values, or values that should be
achieved.

A specialized “High Score List” is an “Anonymous Ranking”. Normally, in high score
lists, names mark the presented information. This could cause some group effects or
discouraging effects, so in some applications, names should not be mentioned. The idea of this
pattern can be specialized in a personal ranking – a personal orientation from which the user

gets information about his personal performance data related to an average value or related to
personal or group-wide best marks.

To give a better idea of how these patterns can be implemented, we display some concrete
examples: In the first example, an “Anonymous Ranking” is implemented as a traffic light
(see Figure 2a). A “Progress Bar” could be implemented as increasing or decreasing volume,
for example as a card stack (see Figure 2b). The picture originates from an application where
the user has to fill in an address database. Every time he enters an address, the set of cards in
the picture is reduced by one card. Another example is the idea of a puzzle, like the example
in Figure 2c), which originates from a computer configuration tool. The puzzle completes a
little more every time a user adds one part to a computer. In some companies the employees
receive certain incentives – extrinsic motivating values – which can be visualized by a
progress bar (see Figure 3).

Fig. 2. Different solutions for the “Progress Bar” to display the task status: a) as traffic light, b) as card
stack c) as a puzzle.

Fig. 3. The Progress Bar displays the status plus the rewards that can be expected when reaching certain
degrees of completion.

In the following, you will read more about approaches we found to master the challenges
encountered while writing down these patterns.

4.1 Problem Fit

To guide the engineer from his “real world” problem to the pattern solution, our pattern
library followed two strategies:
− The hierarchy of patterns (given by the relationship between them) within the

pattern language and − The pattern description of individual patterns.
The hierarchy of patterns guides the engineer from more general patterns to more specific

patterns. This helps to “narrow down” the appropriate patterns by matching them to the
various context/problem fields of more specific patterns. Figure 1 illustrates this hierarchy for
an excerpt of our pattern language.

The second strategy to improve “problem fit” covers the pattern description of individual
patterns. By giving the descriptions of single pattern elements a more specific semantic

pattern can be integrated into a task-oriented requirements approach. This facilitates the
“detection” of the appropriate pattern in a natural way. The engineer matches the requirements
given by the project to the problem and context section of the pattern descriptions. This means
in more detail: − Individual pattern state the non-functional requirement they contribute to. −
The engineer should be able to mach these non-functional requirements to the

business goals that characterize his project. − The context of a pattern contains fields
characterizing the user type, the task, the

environment, all the elements that belong to a contextual design. By specifying the
context as “completely” as possible, we try to prevent the engineer from applying a
pattern that does not fit the “real world” problem.

4.2 Understandability

The first question is: How can we formulate patterns unambiguously? Meszaros and Doble
propose to find out who the audience is and to focus on it with wording and notation [9]. This
is a helpful approach, but it is not sufficient for solving our problem: We have software
developers who (hopefully) will implement our patterns as well as psychologists or graphic
designers. By describing several interactions through the use of UML activity diagrams, the
software developer gets an exact idea of how to solve the problem, whereas the graphic
designer just reads some strange symbols. Thus, for usability aspects we have a broad
audience. To ensure that every reader will understand our ideas behind the patterns, we will
have to use natural language, which is often ambiguous or badly structured.

The solution of the “Status Display” pattern starts with a sentence in natural language:
“Choose well-designed displays for the information to be shown”. What is meant by
“well-designed” and which information should be displayed? This example was just the first
sentence of the pattern’s solution.

In software engineering, the same problem of a broad audience exists at the beginning of a
software project: Requirements for this project have to be defined and written down in a way
that guarantees understandability for the software developer as well as for the customer. And
this customer might be a dentist or a mechanic, with totally different knowledge and
background. Rupp and Götz [14] dealt with this topic in requirements engineering and
identified three main problems of natural language used for defining requirements: distortion,
generalization, and deletion.

A whole process described as a single event in the textual description leads to distortion
and misinterpretation. The problem of generalization can be described as trying to derive a
more general description based on your experience while neglecting exceptions. Deletion
often occurs when information expected to be well-known by everyone is left out. Therefore,
Rupp and Götz propose rules to detect these problems and delete them. One way to keep it
simple from the beginning is to use some structured sentences, a pattern for building
sentences, which aids readability. Now we propose to use these rules and structured methods
that exist for writing down requirements to write down the content in our patterns
unambiguously, completely, and without contradictions.

Coming back to the “Status Display” example, we would formulate the solution a little bit
more concretely (see “Task Status Display” in Table 3): “Display the task’s state information.
[…]. Display the information the user needs at a glance.”

Another helpful thing to prevent misinterpretation is to keep the vocabulary constant and
simple. Sure, normally it is good style to call the user “user” the first time, “driver” the second
time, and else third time something to avoid repeating the words too often. But the reader may
ask, whether there are three different users. So why don’t we call our user – if he is a driver –
a driver every time we talk about him? It does not sound very nice, but it increases readability.
This is why the sentences in our pattern descriptions always look the same:
“Display…Display…Display…” instead of “show… paint… draw…display…”

Let us now proceed from the vocabulary aspect to the syntactical aspect that assists
readability and understandability of our patterns: The elements described in PLML [8] should
be defined more exactly. They should be differentiated to make clear which content can be
found in a specific element - especially the element “context” and “problem”. For finding a
pattern, both elements have to be read, but the first look should be focused on the problem.
This semantic lack in document based pattern is a reason to push ontology based
infrastructures for patterns (e.g., BORE [15]).

4.3 Correctness

We want to ensure that our patterns are correct, meaning the solution described as part of the
pattern solves the problem given in the problem field. We try to achieve this quality
characteristic by rationalizing the pattern with psychological theories. Most of these theories
describe relationships between triggers and effects. We conducted a literature survey as part of
our project, scanning theories that describe triggers for positive emotional reactions like
motivation, creativity, and fun. The triggers specified by such theories have to be related to
the “solution” part of the patterns. If pattern solutions are design examples for such triggers,
they might lead to the desired effect specified in the theory. For our engaging patterns this
means: If the pattern covers a theory which is validated, we know that a software system
which includes this pattern is more engaging than without. As a consequence of the effect, the
problem stated in the pattern is solved. Figure 5 illustrates this in an abstract way. Effect and
problem are related (indicated by circles but in different colors, because the problem is the
“negation” of the effect) and the trigger and solution are associated (indicated by the star),

To guarantee correctness in the case of the (task) status display, we will consult two
different theories that back this approach with psychological reasoning.

Herzberg’s two-factor theory proposes that after having compensated for all the
unmotivating factors at the workplace (like uncomfortable workspace, bad relationship with
the boss etc.) a person will be in an equilibrium, a neutral state [16]. Beginning in that state,
one might try to gain satisfaction through ‘motivators’ while at work (this is the desired
“effect”). Some of these motivators are: performance, being responsible, pay, or promotion
(these are the “triggers”).

The second supporting theory is the goal setting theory [17]. The central statements of this
highly recognized and empirically proven theory are as follows: − Setting goals that are
difficult to achieve leads to higher performance than the

setting of easy goals. − Setting specific goals leads to higher performance than the setting
of vague,

unspecific or no goals.
Both statements have been supported widely by other researchers and are known to have

high external validity, i.e., findings can be transferred to diverse settings, like groups and
single persons, different task types, and different cultures [17, 18]. The most important factor
in this respect is the complexity of the task. The completion of an easy task can be more
successfully supported by goal setting than that of a difficult task. This results from different
effects. One is that complex tasks need more efforts and take longer so that the effect of the
single effort is not directly visible as performance.

Complementing the goal setting, giving feedback is recognized as an important factor [19].
Feedback transfers information back to the user, so that he knows what he has achieved and
how he might possibly adjust his actions. Feedback can motivate because the person notices
that earlier set goals have been achieved and this tendency will hopefully last. This results in
ongoing or even increase motivation.

Applying either goal setting or feedback might not necessarily result in any performance
increase. The maximum effect is reached when combining compulsory goals and related
feedback [20].

4.4 Concretization

The challenge of concretization is addressed by two contributions:
The problem is on a higher level of abstraction than the solution description. This means

the solution summarizes design decisions and is therefore closer to the final solution than the
given problem. We show a large variety of different concretizations for a given pattern. As
one possible concretization for the “progress pattern”, we have several very different
examples as shown in Figures 2-5. This should open the engineer’s thinking to further creative
concretizations of the same problem. At the same time, it already provides such a wide range
that it might be easy to simply pick one of the solutions − By working out a variety of
different concretizations, we were able to state the

commonalities between the variants more clearly. This helped us to make the description of
the solution more precise. For the solution part of the “progress pattern” is very precise in
listing the user interface elements that have to be defined. It lists elements like “task”,
“goal”, “stating point” etc. All these are variables the engineers has to define through
concrete values when developing a concrete user interface solution. The likelihood that a
engineer derives a solution from this description, which is not a correct concretization of
the “progress bar”, is very small.

− While building the pattern collection we order pattern in a hierarchical manner from more
abstract “task levels” down to detailed “user interface levels”. Beside the problem of
concretization this facilitates the linkage from the requirements phase (which is task or use
case oriented) to the concrete user interface design solution. With this approach we built on
concepts introduced by Mahemoff and Johnston [21] and the PSA-Framework [22].

Table 1. The pattern “status display” as found in [5].

Name Status Display
Context The artifact must display state information that is likely to

change over time, especially if that state information represents
many variables.

Problem How can the artifact best show the state information to the
user?

Forces − The user wants one place where he knows he can find this
state information. − The information about it should be
organized well enough so that the user can find what the needs
at a glance, and can interpret it appropriately. − It needs to be
unobtrusive if the information is not critically

 important, but... − It does need to be obtrusive if something

important happens.
Solution Choose well-designed displays for the information to be shown.

Put them together in a way that emphasizes the important
things, deemphasizes the trivial, doesn't hide or obscure
anything, and prevents confusing one piece of information with
another. Never rearrange it, unless the user does it himself. Call
attention to important information with bright color, blinking or
motion, sound, or all three -but use a technique appropriate for
the actual importance of the situation to the user

Resulting Context If there is a large set of homogeneous information, use High-
density Information Display and the patterns that support it
(Hierarchical Set, Tabular Set, Chart or Graph); if you have a
value that is binary or is one of a small set of possible values,
use Choice from a Small Set. Visually group together discrete
items that form a logical group (Small Groups of Related
Things), and do this at several levels if you have to. For
example, date and time are usually found in the same place.
Tiled Working Surfaces often works well with a Status Display,
since it hides nothing -- the user does not need to do any
window manipulation to see what they need to see. (You
might even let the users rearrange the Status Display to suit
their needs, using Personal Object Space.) If you don't have the
space to describe what each of the displayed variables are (e.g.,
Background Posture), or if your users are generally experts who
don't need to be told (e.g., Sovereign Posture), then use Short
Description to tell the users what they are.

Table 2. The “Status Display” pattern explicated for one task. Table 3. The „Progress Bar“ pattern [23].

Name Task Status Display
Context The user wants to fulfill a task. The artifact must display state

information that is likely to change over time, especially if that
state information represents many variables.

Problem The user needs an orientation on how far he has come with his
task.

Forces − The user wants to see the task’s state information. − The
state information should display information the user needs at a
glance. − The state information should be appropriately
interpretable. − If the information is not critically, the state
information should be too unobtrusive. − If the information is
critically, the state information should be obtrusive. −
Information is critically, if something important happens.

Solution − Display the task’s state information. − Always display the

information in the same place. − Display information the user
needs at a glance. − Display the state information in an
appropriately interpretable way. − If the information is not
critical, display the state information unobtrusively. − If the
information is critical, display the state information
obtrusively.

Rational Herzberg’s two-factor theory [16]; Goal setting theory
(Schmidt & Kleinberg 1999)

Resulting Context The user gets orientation on how far he has come with his task.
The user is able to estimate his task status.

Name Progress Bar
Context The user is working on a task. The user knows the task’s goal.

An employee has to achieve different goals at work. The work
has one or more defined goals. The work can be dreary or
long lasting. An employee has to fulfill different tasks at work.
The task has one ore more defined goals. The task can be
dreary or long lasting.

Problem The user loses sight of the goal. The user needs to be reminded
what the goal is about.

Forces See forces from the pattern “Status Display”. Additionally: −
The displayed information should contain the goal. − The
displayed information should contain the distance to the goal. −
The displayed information should contain the scale of the
movement into a direction. − The displayed information should
contain the starting point. − The displayed information should
contain the distance to the starting point. − The information
should contain if the user draws nearer to the goal.

Solution See the solution from pattern “Status Display”. Additional: −
Display the task. − Display goal. − Display the starting point.
− Display the distance from the starting point. − Display the
distance to the goal. − Display the scale of the movement into
a direction (step width).

− Display the direction of the movement (if the

user draws nearer to the goal) Resulting
Context

The user won’t lose track of the goal.
The user can see if he draws nearer to this goal.
The user can see how far he is away from the goal.
The user can see how far he is away from the starting point.
The user is able to estimate his work progress from this
data.
The user is able to estimate the remaining time.

5. Next Steps

After having identified promising approaches from other disciplines that have proven to
engage users, we will conduct empirical studies that investigate how well these ideas were
transformed into effective means for motivating in the particular context – into high quality
patterns that work.

With each specific implementation of an idea, we will undergo a thorough validation
process. The process will consist of two phases: First, we are going to check in a laboratory
setting if the result of the particular implementation of a pattern satisfies the “intended
outcome” section of the pattern description. If the result is as intended the pattern can be
viewed as valid (for this context). Second, the pattern will be tested in a field study with a
group of real users. These users will be from the target audience of the enhanced application
and will be trained to work with a basic version of the application. Thus we want to avoid
effects of curiosity or learning effects that might distort or spoil the result of the analysis. In
the field study, we want to learn if the application can transfer its motivational nature to the
target audience. It will show whether the realizations of patterns are understood and up to
what level of abstraction (as some patterns are very basic - e.g. the status pattern - others are
more high-level).

With the results from the first evaluation, we are planning to try out other patterns
originating from the games context or e-learning context. We expect that not all ideas from
those specific contexts will be beneficial in the target domain. As a result, a pattern language
with multiple relations like “contributes to”, “is supported by” or “is suspended by” will
evolve for the domain of information services.

Having learned about patterns in one domain it will be challenging to look for possible
transfer into other domains in the same way as interaction patterns [7, 24] can be found in
different domains like the Web [25, 26] or mobile devices [27]. That question will be a topic
of future research.

One practical aspect of our research – current and upcoming – is the process integration of
the present and future patterns into the daily work of software engineers. We strive for a
beneficial, yet easy, handling of patterns in the context of use. To support developers, we have
started the development of a plug-in for the Eclipse Framework (www.eclipse.org). As an
open source platform with a thriving community, it is highly suitable for an effort such as
deploying and actively developing a pattern library. Let developers and users of software be
engaged by patterns that engage!
Acknowledgements

This work is supported by the German Federal Ministry of Education and Research (BMBF)
within the project FUN (Grant: 01 IS E06 A). For more information see the project website
http://www.fun-of-use.de. We wish to acknowledge the contribution of our project partner a3
systems GmbH (www.a3systems.com). Some of the patterns presented were conceptually
designed with them. They also contributed the pattern implementation in a real-world business
application.

References

[1] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language : Towns,
Buildings, Construction: Oxford University Press, 1977.

[2] C. Alexander, The Timeless Way of Building: Oxford University Press, 1979.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of

Reusable Object-Oriented Software. Boston: Addison Wesley, 1994.
[4] E. Gamma, "Design patterns: ten years later," in Software pioneers:

contributions to software engineering: Springer-Verlag New York, Inc., 2002,
pp. 688-700.

[5] J. Tidwell, "COMMON GROUND: A Pattern Language for
Human-Computer Interface Design," vol. 2006, 1999.

[6] M. van Welie, "The Amsterdam Collection of Patterns in User Interface
Design," vol. 2006, 1999.

[7] J. Borchers, A Pattern Approach to Interaction Design. Chichester, England: John
Wiley & Sons, Ltd, 2001.

[8] S. Fincher, "CHI 2003 Workshop Report - Perspective on HCI Patterns:
Concepts and tools (introducing PLML)," Interfaces, vol. 56, pp. 27-28, 2003.

[9] G. Meszaros and J. Doble, "Metapatterns: A pattern language for pattern
writing," presented at The 3rd Pattern Languages of Programming conference,
Monticello, Illinois, 1996.

[10] S. Björk and J. Holopainen, Patterns in Game Design: Charles River Media, 2004.
[11] E. Todd, E. Kemp, and C. Phillips, "What makes a good user interface pattern

language?," presented at Proceedings of the fifth conference on Australasian
user interface - Volume 28, Dunedin, New Zealand, 2004.

[12] W. Cunningham, "Tips for writing Pattern Languages," 1994.
[13] N. Kjellerup, "The Galley Slave Model," in Call Centre Know How Essays:

Productivity, Measurements & Benchmarks, vol. 2006, N. Kjellerup, Ed. Ashgrove,
Queensland, Australia: Resource International Pty Ltd, 2005.

[14] C. Rupp and R. Goetz, "Linguistic Methods of Requirements-Engineering
(NLP)," presented at Proceedings of the European Software Process Improvement
Conference (EuroSPI), Denmark, 2000.

[15] S. Henninger and P. Ashokkumar, "An Ontology-Based Infrastructure for
Usability Design Patterns," Semantic Web Enabled Software Engineering
(SWESE), pp. 41-55, 2005.

[16] F. Herzberg, The motivation of work: John Wiley & Sons, 1959.
[17] K.-H. Schmidt and U. Kleinbeck, "Funktionsgrundlagen der Leistungswirkungen

von Zielen bei der Arbeit," in Emotion, Motivation und Leistung, M. Jerusalem and
R. Pekrun, Eds. Göttingen: Hogrefe, 1999, pp. 291-304.

[18] G. P. Latham and T. W. Lee, "Goal setting," in Generalizing from laboratory to field
settings, E. A. Locke, Ed. Lexington, MA: Lexington Books, 1986, pp. 101-117.

[19] K.-H. Schmidt, Motivation, Handlungskontrolle und Leistung in einer
Doppelaufgabensituation. Düsseldorf: VDI-Verlag, 1987.

[20] E. A. Locke and G. P. Latham, A theory of goal setting and task
performance. Englewood Cliffs, NJ: Prentice-Hall, 1990.

[21] M. J. Mahemoff and L. J. Johnston, "Pattern Languages for Usability: An
Investigation of Alternative Approaches," presented at Asia-Pacific Conference on
Human Computer Interaction (APCHI) 98, Shonan Village, Japan, 1998.

[22] Å. Granlund, D. Lafrenière, and D. A. Carr, "A Pattern-Supported Approach to the
User Interface Design Process," presented at International Conference on
Human-Computer Interaction, HCI International 2001, New Orleans, USA, 2001.

[23] S. Niebuhr, C. Graf, and D. Kerkow, "Pattern für Fun-of-Use im Kontext einer
Service-Center-Anwendung," Fraunhofer-IESE, Kaiserslautern, Germany,
IESE-Report 154.06/D, 2006.

[24] M. van Welie and H. Trætteberg, "Interaction Patterns in User Interfaces,"
presented at 7th. Pattern Languages of Programs Conference, Allerton Park
Monticello, Illinois, USA, 2000.

[25] M. van Welie, "Patterns in Interaction Design - Web Design Patterns," vol. 2006,
2006.

[26] I. Graham, A Pattern Language for Web Usability: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[27] M. van Welie, "Patterns in Interaction Design - MobileUI Design patterns," vol.
2006, 2006.

Questions

Peter Forbrig:

Question: Do you think a basic training in HCI and overview knowledge of the
patterns in the collection is required to affectively and correctly apply patterns?

Answer: Yes, I agree.

