
Model-driven prototyping for corporate software
specification

Thomas Memmel1, Carsten Bock2, Harald Reiterer1

1Human-Computer Interaction Lab, University of Konstanz. Germany
{memmel, reiterer}@inf.uni-konstanz.de

2Dr. Ing. h.c. F. Porsche AG, Germany

Abstract. Corporate software development faces very demanding challenges,
especially concerning the design of user interfaces. Collaborative design with
stakeholders demands modeling methods that everybody can understand and
apply. But when using traditional, paper-based methods to gather and document
requirements, an IT organization often experiences frustrating communication
issues between the business and development teams. We present ways of im-
plementing model-driven prototyping for corporate software development.
Without harming agile principles and practice, detailed prototypes can be em-
ployed for collaborative design. Model-driven prototyping beats a new path to-
wards visual specifications and the substitution of paper-based artifacts.

Keywords. Prototyping, model-driven user interface design, UI specification,
corporate software development, agile modeling

1 Introduction

From the authors’ experience with the automotive industry, we see that many compa-
nies strive to further increase their influence on the user interface design (UID) of
corporate software systems. The risk of bad user interface (UI) design and usability is
considerable, and it is an economic risk. But integrating usability engineering (UE)
often causes conflicts with other stakeholders and faces shrinking IT budgets and
pressure of time.
Several ingredients can therefore contribute to development failure: the increasing
importance of the UI in the overall system, the separation of professions, particularly
software engineering (SE) and UE, and consequently a lack of methods, tools and
process models that integrate the UE knowledge of the UI expert with that of the
software engineer and other stakeholders. All issues must be addressed from the very
beginning, when the software systems are defined. Consequently, new approaches to
requirements engineering (RE) and specification practice are necessary.
In this article we introduce a model-driven prototyping approach to the development
of interactive corporate software systems. By employing prototypes as vehicles for
both design and system specification, we are able to bridge existing gaps while mak-

2 Thomas Memmel, Carsten Bock, Harald Reiterer

ing the overall design process more efficient and effective, resulting in lower devel-
opment costs, but improved software quality. Simultaneously we address the different
requirements of stakeholders by offering different levels of abstraction and formality.
In Section 2 we summarize the importance of UID for corporate software develop-
ment and point out the various challenges that automotive engineering processes have
to face. We contrast the demands with the current shortcomings of wide-spread RE
practice and propose a change of applied practice. In Section 3, we show how SE and
UE can be bounded through changing the RE up-front, and how requirement specifi-
cation takes place. We outline the interdisciplinary usage of prototyping and encour-
age an extended role for prototyping during RE. In Section 4, the resulting design
approach is compared with the principles and practice of agile software development.
We discuss in detail why the extension of the RE phase is still compatible with agile
development. Consequently, in Section 5 we present our concept of a model-driven
tailored tool support for developing prototyping-based specifications of interactive
systems. We summarize our experiences and lessons learned in Section 6.

2 Corporate software development

The UI is the part of the software that can help users to work more efficiently and
effectively. When users are unable to perform their tasks, the usage of the software
may be entirely incorrect, slow to make progress, and may finally lead to reduced
acceptance. With corporate software, the UI transports important (emotional) values
such as corporate design (CD) and corporate identity (CI). In the automotive industry,
a wide range of different software systems is available to the customer. For example,
a company website is necessary to create brand awareness, transport product values,
enable product search and configuration, allow contact to nearby retailers, and finally
to increase customer loyalty. But in this article we concentrate on the development of
in-car information systems. Such systems are intended to support the driver during
traveling, e.g. with GPS navigation or dynamic traffic information. Such systems
must never compromise road safety [1] and the respective UIs must be intuitive and
easy to use. Embedded systems play an important role in the market success of an
automotive brand and the customer acceptance of its products [2].

2.1 Challenges for corporate engineering processes

As well as the implementation of pure functionality, corporate software products
demand the integration of usability and design consideration into the development
process. This frequently conflicts with strict timelines, leading to coding being started
prematurely, while system requirements are still vague or unknown. Typical SE and
UE processes lack flexibility and adaptability when facing changing requirements,
which results in increased complexity and costs.

Model-driven prototyping for corporate software specification 3

Consequently, many companies became receptive to agile methods of SE and UE.
Agile methods travel in a light-weight fashion along the software lifecycle and due to
less documentation, more communication, sharing of code and models, and special
programming methods etc., they successfully address many issues of corporate soft-
ware development. On the other hand, agile methods do not provide room for typical
UE and UID and need to be extended by a certain degree of design and usability ex-
pertise that is integrated into the methods and tools applied.

2.2 Shortcomings of current requirements engineering practice

UE usually documents design knowledge in style guides that can easily reach a size of
hundreds of pages and require hundreds of hours of effort. But written language is
ambiguous and the lack of visual cues leaves room for misinterpretation. Especially
when interactive behavior has to be specified, a picture is worth a thousand words and
“[…], the worst thing that any project can do is attempt to write a natural language
specification for a user interface” [3].
In a survey of ergonomists, designers and technical experts, we found that a majority
of stakeholders use typical office software products for the specification of automo-
tive software systems [4]. This is caused by the difficulty of customizing or even
building CASE-tools [5] and, more importantly, by their poor usability [6]. But as
with the use of natural language, employing applications such as Microsoft Power-
Point, Word, Excel or Visio does also highlight critical shortcomings for engineering
interactive systems. First of all, stakeholders choose their favorite software applica-
tion independently and according to their individual preferences. This inevitably leads
to a wide variety of formats that often cannot be interchanged without loss of preci-
sion or editability. Secondly, those who are responsible for actually coding the soft-
ware system will use completely different tools during the implementation process.
Consequently, the effort invested in drawing PowerPoint slides or Excel sheets does
not help programming of the final system. Virtual prototypes cannot automatically be
created from such specifications with justifiable effort [4].
But prototyping is necessary to provide rapid feedback and to guide the overall speci-
fication process towards an ultimate design solution [7]. The participation of non-
technical personnel inevitably leads to the demand for a common modeling language
throughout the lifecycle. Otherwise, stakeholders may think they all agree on a de-
sign, only to discover down the line that they had very different expectations and
behaviors in mind. Hence, there is a need to have one common denominator of com-
munication.

3 Prototyping for visual specification

The Volere RE process outlines the most important activities for system specification
[8]. This includes trawling for requirements, and their separation into functional (e.g.

4 Thomas Memmel, Carsten Bock, Harald Reiterer

data structures, data models, algorithms, error handling, behavior) and non-functional
(e.g. reliability, safety, processing time, compliance with guidelines and regulations,
usability, look and feel) requirements. This categorization of requirements also mir-
rors the different competencies of SE and UE.

3.1 The interaction layer: where SE and UE meet

Software engineers are generally trained in topics such as system architecture or data-
base design, while usability engineers are concerned with e.g. ease of use, ease of
learning, user performance, user satisfaction and aesthetics. A usability expert nor-
mally has a black box view of the back-end system, while the software engineer has a
deeper understanding of the architecture and code behind the UI [9]. Although both
disciplines have reached a certain degree of maturity, they are still practiced very
independently [10]. Consequently, usability engineers and software developers, as
well as (interaction) designers, end-users and business personnel express themselves
in quite different fashions, ranging from informal documents (e.g. scenarios) to for-
mal models (e.g. UML).
However, the behavior of the system and the feel of the UI are very much dependant
on each other. The more important the UI component becomes for a software applica-
tion, the more significant is its impact on the back-end system. Hence, SE and UE
need to overlap at the interaction layer in order to develop usable systems. If the col-
laboration at the interaction layer is well defined and working successfully, “the time
to market can be dramatically shortened by (having) well defined interaction points
for the teams to re-sync and communicate” [11].

3.2 Prototyping for the visual specification of interactive systems

The Volere RE process employs (throw-away) prototypes as vehicles for require-
ments elicitation [8]. SE recognizes prototyping as a method for inspections, testing
and incremental development. HCI uses prototypes mainly for participatory design
(PD). Prototypes are an “excellent means for generating ideas about how a UI can be
designed and it helps to evaluate the quality of a solution at an early stage” [12]. Pro-
totypes can therefore be boundary objects for SE, UE and other stakeholders as they
are a common language to which all can relate [11, 12, 13].
With Volere, the purpose of prototypes is restricted to requirements gathering. After
the requirements have been written down and forwarded to the quality gateway, they
are still documented in a paper-based requirements specification. This is exactly
where room for interpretation emerges and where misinterpretations can lead to mi-
sunderstandings and cause expensive late-cycle changes. Hence, the role of prototyp-
ing must be extended and the visual expressiveness of prototypes must be anchored in
corporate software specification processes.

Model-driven prototyping for corporate software specification 5

Track 8
Track 9
Track 10
Track 11

Track 13

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 12

Track 8
Track 9
Track 10
Track 11

Track 13

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 12

Fig. 1. Requirements engineering for visual specification, based on [8]

As the early externalization of design visualizations helps to elicit requirements and
enables a better understanding of the desired functionality (SE), the users and their
tasks (UE), then prototypes of specific fidelity can also be a cornerstone for system
specification (Figure 1). Wherever something can be visually expressed in a more
understandable and traceable way, prototypes should replace formal documents. For
example, in usual UE practice, style guides are developed to be a reference document
for designers, to share knowledge, to ensure consistency with UID standards and to
save experience for future projects [14]. A running simulation also includes and ex-
ternalizes much of this knowledge.
If a visual specification is created and assessed collaboratively, it could ensure that
the final system design satisfies all requirements. Consequently, the responsibility of
designing the UI is pre-drawn to the RE phase. Corporate RE practice must therefore
extend the role of prototypes to visual specifications (Figure 1).
Executable specifications also have to fulfill the quality criteria of paper-based soft-
ware specifications. By sharing and collaboratively discussing prototypes, different
user groups (user roles) can cross-check the UID with their requirements (correctness,
clearness). It is unlikely that certain user groups will be ignored when stakeholders
have access to a UID prototype (completeness). When certain user tasks demand

6 Thomas Memmel, Carsten Bock, Harald Reiterer

exceptional UID, a visual simulation will be more capable of expressing such com-
plex parts of the system and able to illustrate their meaning and compliance in the
system as a whole (consistency, traceability). Ambiguity, redundancy, missing infor-
mation and conflicts will be also be more obvious. A usability engineer will be able to
identify ambiguity through the evaluation of UI expressiveness, affordance and map-
ping. He will be able to identify redundancy and conflicts when assessing screen
spacing, layout or navigation structure. The absence of specific information will at-
tract attention through “white spots” on the screen or missing visual components.
With interactive and expressive prototypes, interaction and functional issues can be
addressed sooner and the identification of usability requirements can be done as soon
as the early stages of design [15] and before coding starts (Figure 1). Unnecessary
system functionality can be identified through UI evaluation methods rather than by
reading through text. All in all, a visual requirements specification can be assessed
more easily and to some extent the creation of a prototype (pilot system) proves the
convertibility of the UID into a final system.
Prototyping can significantly reduce the effort on the programming side as well: to
build the UI of a system with the help of a running simulation (prototype) is much
easier than doing it from scratch based on textual descriptions. A developer can
quickly look at the simulation in order to get a visual impression of the requirements.
Moreover, when the creation of prototypes takes place in a model-driven engineering
process, this results in further advantages for the RE process. Models can imply con-
straints and can carry forward standards and design rules. Once properly defined, they
can be externalized by different representations and in a different level of abstraction
and formality. On the one hand, this eases access for different stakeholders. On the
other hand, while a running simulation is the visual outcome, the underlying models
capture design knowledge and decisions. Consequently, we encourage a model-driven
approach that employs prototypes as media of communication.

4 Compliance with agile software development

Before presenting our model-driven prototyping approach, we want to outline its
compliance with agile environments. At first sight, adding up-front visual specifica-
tion activity does appear to contradict agile software development: agile software
lifecycles, e.g. their most popular representative Extreme Programming (XP) [16],
encourage coding from the very beginning. However, interdisciplinary research has
agreed that a certain amount of UE and UID up-front is needed in XP, when the UI
has great weight. [17] developed a model-driven, usage-centered UE approach. Simi-
lar to the idea of model-driven SE, the models of usage-centered design (e.g. user role
models, task models, content models) make UID a more traceable and formal activity.
Compared to typical UE practice, the suggested models are more light-weight and
allow the early definition of a minimalist UI specification. In addition, a supplier can
implement the system with less effort, as important parts of the UID are already pre-
defined and evaluated (Figure 1). Consequently, adding an UI spike to agile methods

Model-driven prototyping for corporate software specification 7

delays the overall system implementation, but only to a limited extent. Figure 2 shows
how UID and UI specification can be integrated into XP’s up-front. Additionally, our
adjusted XP lifecycle model also envisages “extreme evaluations” [18] at later stages
of design.

UI Spike

Architectural Spike

Release
Planning Iteration Acceptance &

Usability Tests
Small

Release

User Stories, Usage Scenarios
Model-Based Lo/Hi-Fi Prototyping

Code Spikes
& EstimatesMinimal UI Spec

UI Specification

Architecture
Specification

Enhance
Prototype

Usability Goals & Test Scenarios

(Usability) Bugs

Initial Requirements & Usability Up-Front eXtreme Evaluations
Fig. 2. The XP lifecycle extended by UE methods during up-front and test phase

The bottom-line, using visual specifications will help in cutting down the number of
iteration cycles and decrease software development costs, while simultaneously assur-
ing corporate quality and compatibility with agile principles (Table 1) and practice
(Table 2).

Table 1. Core principles (excerpt) of agile development, and their compatibility with a
model-driven software development approach (http://www.agilemodeling.com)

Agile principle Compatibility with model-driven development
Model With A
Purpose

Switching between different models allows the origin of a re-
quirement to be traced and to understand its design rationale

Multiple Models No single model is sufficient for all software development needs.
By providing different modeling layers, several ways of express-
ing problems are available

Rapid Feedback A model-driven approach allows a fast transformation of models
into assessable, living simulations

Assume Sim-
plicity

Models allow an easy cross-checking with actual requirements.
Unnecessary requirements can be identified visually

Embrace change Models should allow easy enhancement or change. Changes to an
abstract representation layer should have impact on the generation
of prototypes and code

Incremental
Change

Different layers of detail allow domain-specific access for stake-
holders and enable the creation of small models first, more sophis-
ticated models later

8 Thomas Memmel, Carsten Bock, Harald Reiterer

Software Is
Your Primary
Goal

The primary goal of software development is to produce code
rather than extraneous documentation. A model-driven approach
does directly contribute to this goal by enabling fast generation of
prototypes and reusable code

Table 2. Core practices of agile development, and their compatibility with a model-driven
software development approach (http://www.agilemodeling.com)

Agile Practice Compatibility with model-driven development
Active Stakeholder
Participation

When different models are provided for different stakeholders,
everybody can take part in system specification. Prototypes are
a language everybody understands, and the perfect vehicle for
discussion

Apply The Right
Artifacts

Some modeling languages are inappropriate for describing
specific parts of the system. For example, UML is insufficient
for describing the UI, but helps in designing the architecture

Create Several
Models In Parallel

A model-driven approach allows the parallel development of
different models (e.g. regarding disciplines and competencies)

Iterate To Another
Artifact

When a specific artifact is unable to express certain parts of the
system, one should iterate to other methods of expression

Model in Small
Increments

A model-driven approach allows models to be charged with
different levels of detail. Small releases can be provided very
quickly to get rapid feedback and can be refined later

Model with others A model-driven approach allows a break-up of responsibility.
Stakeholders can model according to their expertise. Different
models are combined to simulations and code

Model to commu-
nicate

To some extent, models need to look attractive for showing
them to decision makers. By including a design layer, a model-
driven approach can provide system simulations that can be
used for discussion and release planning

Model to under-
stand

Modeling helps to understand and to explore the problem
space. For exploring alternate solutions, you do not need to
draw UML or class diagrams. A model-driven approach can
provide appropriate modeling languages that support the stake-
holders during early stages of design.

Prove it with code A model is an abstraction of whatever you are building. To
determine whether it will work, a model-driven approach al-
lows the easy generation of prototypes and running code.

Formalize Contract
Models

The code that is exported on the basis of the description models
can be supported by e.g. an XML DTD. As other design know-
ledge and guidance is included as a running simulation, a visual
specification is a detailed contract model.

Model-driven prototyping for corporate software specification 9

5 A model-driven tool-chain for visual specification

Based on our experience in corporate RE processes, we have developed a tool-chain
for the agile and interdisciplinary specification of interactive automotive in-car infor-
mation systems. Our tool-chain helps to bridge identified gaps and links up with the
idea of model-driven software development.

5.1 Model-driven concepts as a cornerstone for structured RE

The synchronization of models and code is, above all, a regular source of serious
problems in model-based development processes [19]. With its core concepts, the
Model Driven Architecture (MDA) aims at overcoming the flaccidities of model-
based software development by taking code as a by-product. As Figure 3 shows, this
is possible since the code can be automatically generated in ideal model-driven devel-
opment processes, and it results from model transformations (AM: Model With Pur-
pose, Software Is Your Primary Goal).

Implementation
Specific Model (ISM) 1

…

Transformation

Transformation

+ TrebleFM
+ Balance
+ Fader : State

: State
+ select_menuitem(nr_of_menuitem)

<<Function Sound>>

+ Bass FM : Numeric

+ Balance
+ Fader
+ Dyn. Loudness

: Numeric
: Numeric

Platform Independent Model (PIM)

Platform Specific Model (PSM) 1

+ TrebleFM
+ Balance
+ Fader : Boolean

: Boolean
+ select_menuitem(menuitem_nr)

<<Function Sound>>

+ Bass FM : Integer

+ Balance
+ Fader
+ Dyn. Loudness

: Integer
: Integer

Platform Specific Model (PSM) n

+ TrebleFM
+ Balance
+ Fader : Boolean

: Boolean
+ select_menuitem(menuitem_nr)

<<Function Sound>>

+ Bass FM : Long Integer

+ Balance
+ Fader
+ Dyn. Loudness

: Long Integer
: Short Integer

Code Platform A

Implementation
Specific Model (ISM) 2

Code Platform B

Implementation
Specific Model (ISM) n

Code Platform m… Real world
(M0)

Model
(M1)

Metamodel
(M2)

OMG
Architecture

<<instance
of>>

<<instance
of>>

Fig. 3. Core models of MDA

10 Thomas Memmel, Carsten Bock, Harald Reiterer

The starting point for such model transformations is a platform-independent model
(PIM) providing an abstract description of the system under development. By means
of transformations a platform-independent model can be derived, holding additional
information about a specific target platform. Finally, from this implementation we can
generate specific model target code. Since this concept clearly resembles the Object
Managements Group’s (OMG’s) four layer meta-model hierarchy [20] the MDA
offers modularization and abstraction throughout software development processes.
Although the UML was established as an industry standard, its broad acceptance in
many industries is hindered due to its general-purpose graphical language representa-
tions mapping only poorly onto the architecture of underlying platforms [21]. Despite
UML profiles and many attempts for improvements [22, 23] the UML is still particu-
larly unsuitable for modeling UIs [24]. UML is visually too awkward as it can not
(visually) express the look and feel of an UI. Apart from software engineers, other
stakeholders usually cannot understand UML. Moreover, even system developers find
“CASE diagrams too dry, notations and editors too restrictive, impeding rather than
helping in their work” [6].
This leads to the conclusion that, especially for RE in interdisciplinary teams, simul-
taneously interfacing with the realms of UE and SE, appropriate tool support is badly
needed (see Section 3).

5.2 Modularization and Abstraction as a key for interdisciplinary cooperation

When developing interactive graphical systems, close cooperation between team
members with different backgrounds, knowledge and experiences is one of the key
success factors [25, 26, 27, 28]. As stated in Section 3, a common language is missing
today. Although prototypes can be a common denominator for UID at the interaction
layer each discipline still needs to employ other (more abstract) modeling languages
during development (AM: Iterate To Another Artifact).
Therefore, one approach for coping with the inherent technical complexity of interac-
tive systems [29] and the organizational complexity stemming from the indispensable
interdisciplinarity is a strict separation of concerns [30], i.e. the modularization of
development tasks (Figure 4). This is also consistent with the well-known Seeheim
model [31]. The following categories are integral parts of UI development and thus
constitute the intersecting domain of RE, UE and SE:

• Layout: relates to screen design and the ergonomic arrangement of dialog objects.
• Content: refers to the definition of information to be displayed.
• Behavior: describes the dynamic parts of a GUI with respect to controls available

on a specific target platform and a system’s business logic.

Accordingly, in the case of embedded UIs such as automotive driver-information
systems, GUI layout is specified by designers and ergonomists. Consequently, con-
tents in the form of menu items are provided by technical experts responsible for

Model-driven prototyping for corporate software specification 11

functional (i.e. hardware) specifications as well as by ergonomists defining menu
structures. Finally, system architects or programmers define a system’s behavior,
again in close coordination with ergonomists. To some extent, these activities will
always take place in parallel (AM: Multiple Models, Model In Parallel). Altogether,
ergonomists are propelling and controlling the development process. Furthermore,
they are responsible for integrating all artifacts and function as human interface be-
tween the competencies and professions of all stakeholders.

Track 8
Track 9
Track 10
Track 11

Track 13

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 12

Track 8
Track 9
Track 10
Track 11

Track 13

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 12

Technical
Experts

Programmers

Ergonomists

Behavior

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Main
ANTENNE1
D1-Telefon
22°C
18.04.05

13:12

Main
ANTENNE1
D1-Telefon
22°C
24.01.07

13:12

Nächste 12km

Header

Footer

Menu item 1
Menu item 2
Menu item 3
Menu item 4
Menu item 5
Menu item 6

Designers

Ergono-
mists Ergono-

mists

Layout Content

Human-Machine-Interface

Track 8
Track 9
Track 10
Tack 11
Track 12

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 8
Track 9
Track 10
Tack 11
Track 12

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 8
Track 9
Track 10
Tack 11
Track 12

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 8
Track 9
Track 10
Tack 11
Track 12

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Fig. 4. Layout, content and behavior as constituent parts of interactive graphical systems

In the realm of UI development, the separate specification of layout, content and be-
havior must not take place completely independent and needs to follow certain con-
straints (meta-model, Section 5.3) to guarantee compatibility. Changing a specific
model (e.g. an abstract one) must consistently affect dependent models (e.g. a more
detailed one) and consequently the prototype as well (AM: Embrace Change). For the
generation of the UI prototype, the different parts finally have to be integrated (Figure
4, compare Figure 1).
As well as modularization, abstraction also offers further means for coping with tech-
nical and organizational complexity. By presenting information at different levels of
abstraction, it is possible to provide developers with only the relevant information for
their specific development tasks (AM: Apply The Right Artifacts). Thus, for working

12 Thomas Memmel, Carsten Bock, Harald Reiterer

collectively on high-level specifications where contents and the overall system behav-
ior is specified, developers are provided with a very abstract representation of a state
machine by means of visual state charts [32]. These charts only reveal the details
necessary for specifying the high-level interaction with the system, the “macro logic”.
Developers can therefore connect different menu screens with interaction objects (e.g.
rotary knobs, buttons) corresponding to transitions in UML state charts. This presen-
tation must be extraordinarily abstract so that all the developers involved – and, if
necessary, even project managers – can understand such high-level specifications
(Figure 5).

public classPCMSimulation extends JFrame {
private static final long serialVersionUID =
-7525227671936685537L;

private static PCMSimulation instance;
private HashMap PCMScreenPanels = new HashMap();
private JPanel jContentPane = null; // Container for main
//drawing area

private JPanel screen = null; // Container for a JFormDesigner
//screen

private JButton jButton = null;

public static PCMSimulation getInstance() {return instance;}
public HashMap getPCMScreenPanels() {return this.PCMScreenPanels;}
public JPanel getMyJContentPane() {return this.jContentPane;}
public PCMSimulation() {
super();
this.instance = this;
this.initialize();

}
/*** This method initializes jButton
** @return javax.swing.JButton */

private JButton getJButton() {
if (jButton == null) {
jButton = new JButton();
jButton.setBounds(new Rectangle(520, 269, 208, 127));
...

Zustand 3 Zustand 4

Zustand 2

Start

Zustand 5

State 3 State 4

State 2

Start

State 5

Zustand 3 Zustand 4

Zustand2

Start State 3 State 4

State 2

Start

Platform
independent

model

Platform
specific

model (PSM)

Implemen-
tation specific
model (ISM)

High-level specification

Low-level
specification

Program-
mers

Code

Program-
mers

Code

Technical
Experts

Programmers

Designers

Ergono-
mists

Technical
Experts

Programmers

Fig. 5. Problem- and target group-specific presentation of information

Accordingly, low-level specifications are meant for smaller target groups such as
technical experts and programmers. These specifications contain a more detailed
system specification. At this level, the behavior of specific widgets (“micro logic”)
such as a speller for inputting a navigation destination can explicitly be defined with
fully featured state charts and class diagrams. Finally, the code level allows for a
rigorous analysis of system features and their implementation, which can only be
conducted by programmers. These abstraction levels correspond to the MDA concepts

Model-driven prototyping for corporate software specification 13

of PIMs, PSMs and ISMs respectively. Despite this equivalence, model-driven tool
support for creating UI specifications at different levels of abstraction is still missing
in corporate software development. An approach for creating tailor-made CASE-tools
is therefore presented subsequently. This enables clients to take full advantage of
model-driven concepts during UI development with interdisciplinary development
teams.

5.3 Developing a Model-Driven Tool Chain for UI Specification

In the following, domain-specific modeling is used for creating an individual tool
support for UI specification. By leveraging current meta-CASE-tools, for instance
MetaEdit+ 4.5, Generic Modeling Environment 5 or Microsoft DSL Tools, this mod-
eling approach enables clients to utilize model-driven concepts at affordable time and
budget for building tailor-made CASE-tools for any company- and/or project-specific
domain. Thus, the procedure for developing a visual domain-specific language
(VDSL) that fulfils the aforementioned requirements is described.
The creation of a domain meta-model by the mapping of domain concepts constitutes
the starting point for developing a specific CASE-tool. Beyond the identification and
abstraction of domain concepts, the development of a visual DSL comprises the defi-
nition of notations for the graphical representation of domain concepts and the defini-
tion of constraints underlying the specification process. For these tasks meta-CASE
tools provide a meta-modeling environment that can subsequently also be used as a
graphical modeling environment and thereby as a specification instrument for product
development in a specific problem domain.
At the beginning, a small team of domain experts collaboratively identifies the essen-
tial concepts of the problem domain. At this stage, existing requirements documents
such as style guides, and particularly the terminology used in daily project work, are
analyzed (Figure 1). For instance, in the case of automotive driver-information sys-
tems, single menu screens and controls like rotary knobs and pushbuttons represent
the main concepts of the problem domain.
The domain experts can quickly identify these concepts since they are frequently used
for product specification. Additionally, the events to which the system should react
are included, such as turning and pressing a rotary knob, or pressing and holding a
pushbutton. Similarly, all the properties of every single domain concept necessary for
specifying driver-information systems are defined.
Later, constraints are added to the meta-model in order to restrict the degrees of free-
dom for developers in a reasonable way. For instance, the use of some controls is
limited to special circumstances. Moreover, constraints are defined that limit the
number of subsequent menu screens after selecting a menu item to at most one, en-
suring that specifications will be non-ambiguous. Additional constraints could pre-
scribe a fixed pushbutton for return actions, for example. It must be stated that the
definition of the meta-model therefore determines the overall design space. Conse-
quently, the exploration of challenging design alternatives and innovative UID ap-
proaches must take place before the meta-model is fixed by the domain experts.

14 Thomas Memmel, Carsten Bock, Harald Reiterer

High-level specification

Low-level specification
Fig. 6. Individual CASE-tools for specifying content and behavior of driver-information

systems (implemented with MetaEdit+ 4.5)

In a final step, meaningful pictograms are defined for domain concepts in the meta-
model, thus allowing for intuitive use by developers during system specification.
These self-made symbols clearly resemble the modeled domain concepts. Our expe-
rience from a comparison of different specification tools and interviews with develop-
ers reveals that especially these individual, domain-specific symbols lead to a very
small semantic distance between the specification language and real-word objects of
the driver-information system domain. Most notably this strongly increases develop-
ers’ acceptance of tailor-made CASE tool [33].
With this DSL, the content and the macro logic of driver-information systems can be
specified. In order to also describe the micro logic (see Section 5.2) of widgets,

Model-driven prototyping for corporate software specification 15

another DSL is developed in exactly the same way as previously illustrated. This DSL
enables IT-experts to create UML state charts for detailed UI specifications. These
individual CASE tools are shown in Figure 6.
Besides the domain-specific CASE-tools (for modeling the dynamic parts of interac-
tive systems, i.e. content and behaviour) a domain framework provides the static parts
(i.e. a state machine and base widgets) for virtual simulations. Thus for creating vir-
tual simulations from specifications the content and behavior needs to be extracted
from the models and linked to the (static) framework. This is done with the help of a
code generator enabling developers to create simulations from a specification on the
push of a button.

Code generator

Domain-specific
CASE-tool:

content

Domain-specific
CASE-tool:
behaviour

GUI-Builder:

layout

Domain framework

Virtual prototype

Main

ANTENNE1

D1-Telefon

22°C
18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C
18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C
18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C
18.04.05

13:12

Formal
specifi-
cation
(XML)

Formal
specifi-
cation
(XML)

Track 8
Track 9
Track 10
Track 11

Track 13

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 12

Track 8
Track 9
Track 10
Track 11

Track 13

Track List

Track Seq.
Scan
Traffic Prog.

CD Name

CDS Track 10

Audio CD Single – Track List

12,5°C 19.11.06
Mute

Track 12
Formal
specifi-
cation
(XML)

Designers

Ergonomists
Technical

Experts

Programmers
Technical

Experts

ErgonomistsErgonomists

Fig. 7. Architecture of model-driven UI tool-chain

Finally, for specifying GUI layout designers and ergonomists ideally have to create
specifications with a GUI-builder such as JFormdesigner, Expression Interactive
Designer (Microsoft) or Aurora XAML Designer (Mobiform) capable of producing
GUI descriptions in a XML format. These descriptions can also easily be integrated in
the simulation framework by the code generator. The architecture of this tool chain is
outlined in Figure 7.

16 Thomas Memmel, Carsten Bock, Harald Reiterer

6 Lessons Learned and Conclusion

Our experience reveals that model-driven approaches provide promising concepts for
overcoming today’s urgent problems in development processes for corporate software
systems. Thus, visual domain-specific languages explicitly capture experts’ know-
ledge and experience, since this is used for identifying and modeling essential domain
concepts. With the help of languages created this way, new team members can be-
come acquainted with company-specific standards more easily and can thus be inte-
grated in interdisciplinary development teams significantly more easily. Moreover,
domain-specific modeling, together with the tool chain architecture presented, enables
clients to create tailor-made tool support that offers all developers the appropriate
level of abstraction for their individual development tasks. Furthermore, problems
have to be solved only once at a high level of abstraction and not – as before – once in
the implementation level and a second time for documentation. Specifications i.e.
requirements engineering can therefore be established as the central backbone of
model-driven development processes, with significant potential for clients and their
collaboration with suppliers. If formal, electronic – and thus machine readable – spe-
cifications can be exchanged between all stakeholders, the specification problem as
well as the communication problem in traditional development processes [27] can be
overcome.
In principle, the concepts presented can be adopted for any other domain besides the
UID of automotive embedded systems. For instance, a visual domain-specific lan-
guage could be created for specifying the structure of corporate websites or the infor-
mation flow in a business process. Despite this flexibility and the potential benefits,
experience from a pilot project shows that current meta-CASE-tools can be improved.
In particular, developers would expect interaction patterns from standard office appli-
cations e.g. auto layout, grids, object inspectors and tree views for object hierarchies.
Additionally, if these tools provided better graphical capabilities, the GUI builder
would not have to be integrated via the domain framework and layout could also be
specified with a domain-specific language. This would be another important step in
reducing complexity in usually heterogeneous IT landscapes.
Overall, meta-modeling offers promising beginnings for a unification of engineering
disciplines. As demonstrated with the tool chain presented, this modeling approach is
consistent with agile principles and practice. This offers an opportunity for bringing
RE, SE and UE closer together, a convergence that is badly needed for coping with
the technical and organizational complexity of interdisciplinary and networked devel-
opment processes for corporate software systems.

References

1. C. Rudin-Brown, Strategies for Reducing Driver Distraction from In-Vehicle Telematics
Devices: Report on Industry and Public Consultations, Technical Report No. TP 14409

Model-driven prototyping for corporate software specification 17

E,Transport Canada, Road Safety and Motor Vehicle Regulation Directorate, 2005. Avail-
able from: www.tc.gc.ca/roadsafety/tp/tp14409/menu.htm [cited: 21.5.2006].

2. H. P. Becker, Der PC im Pkw: Software zwischen den Welten, automotive electronics
systems, 2005(3-4), 42-44.

3. I. Horrocks, Constructing the user interface with statecharts (Harlow: Addison-Wesley,
1999.)

4. C. Bock, D. Zühlke, Model-driven HMI development – Can Meta-CASE tools relieve the
pain? Proceedings of the First International Workshop on Metamodelling – Utilization in
Software Engineering (MUSE), Setúbal, Portugal, September 11, 2006, 312-319.

5. H. Isazadeh, D. A. Lamb, CASE Environments and MetaCASE Tools, Technical Report
No. 1997-403, Queen’s University. Available from:
http://www.cs.queensu.ca/TechReports/ reports1997.html [cited: 25.10.2006].

6. S. Jarzabek and R. Huang, The case for user-centered CASE tools, Communications 41(8),
ACM Press, 1998, 93-99.

7. D. Fitton, K. Cheverst, C. Kray, A. Dix, M. Rouncefield, G. Saslis-Lagoudakis, Rapid
Prototyping and User-Centered Design of Interactive Display-Based Systems, Pervasive
Computing 4(4), IEEE, 2005, 58-66.

8. S. Robertson, J. Roberston, Mastering the Requirements Process (Addison-Wesley 2006)
9. J. Creissac Campos, The modelling gap between software engineering and human-

computer interaction. In Rick Kazman, Len Bass and Bonnie John, editor(s), ICSE 2004
Workshop: Bridging the Gaps II, The IEE, pages 54-61. May, 2004

10. P. S. Pyla, M. A. Pérez-Quiñones, J. D. Arthur, H. R. Hartson, Towards a Model-Based
Framework for Integrating Usability and Software Engineering Life Cycles, in IFIP Work-
ing Group 2.7/13.4, editor, INTERACT 2003 Workshop on Bridging the Gap Between
Software Engineering and Human-Computer Interaction, 2003.

11. J. Gunaratne, B. Hwong, C. Nelson, A. Rudorfer, Using Evolutionary Prototypes to For-
malize Product Requirements. Proceedings of ICSE 2004 Bridging the Gaps Between
Software Engineering and HCI, Edinburgh, Scotland, May 2004, 17-20.

12. D. Bäumer, W. R. Bischofberger, H. Lichter, H. Züllighoven, User Interface Prototyping -
Concepts, Tools, and Experience, Proceedings of the 18th International Conference on
Software Engineering (ICSE), Berlin, Germany, March 1996, 532-541.

13. J. Rudd, K. Stern, S. Isensee, Low vs. high fidelity prototyping debate, Interactions 3(1),
ACM Press, 1996, 76-85.

14. D. J. Mayhew, The usability engineering lifecycle - A Practicioners Handbook for User
Interface Design (San Francisco: Morgan Kaufmann, 1999).

15. E. Folmer, J. Bosch, Cost Effective Development of Usable Systems - Gaps between HCI
and Software Architecture Design, Preceedings of ISD'2005, Karslstad, Sweden, 2005.

16. K. Beck, Extreme Programming Explained. (Addison-Wesley, 1999).
17. L. L. Constantine, L. A. D. Lockwood, Software for Use: A Practical Guide to Models and

Methods of Usage-Centered Design (Reading, MA: Addison-Wesley, 1999).
18. M. Gellner, P. Forbrig, Extreme Evaluations – Lightweight Evaluations for Soft-ware

Developers, in IFIP Working Group 2.7/13.4, editor, INTERACT 2003 Workshop on Bridg-
ing the Gap Between Software Engineering and Human-Computer Interaction, 2003.

19. T. Stahl, M. Völter, Model-Driven Software Development: Technology, Engineering,
Management (San Francisco, Wiley, 2006).

20. Object Management Group,UML 2.0 Infrastructure Specification, 2003. Available from:
http://www.omg.org/docs/ptc/03-09-15.pdf [cited: 4.12.2006].

21. D. C. Schmidt, Guest Editor's Introduction: Model-Driven Engineering, Computer 39(2),
IEEE Press, 2006, 25-31.

18 Thomas Memmel, Carsten Bock, Harald Reiterer

22. N. J. Nune,s Object Modeling for User-Centered Development and User Interface Design:

The Wisdom Approach, PhD Thesis, Universidade Da Madeira, 2001. Available from:
http://xml.coverpages.org/NunoWisdomThesis.pdf [cited: 12.8.2006].

23. K. Blankenhorn, M. Jeckle, A UML Profile for GUI Layout, Proceedings of the 5th An-
nual International Conference on Object-Oriented and Internet-Based Technologies, Con-
cepts and Applications for a Networked World, Net.ObjectDays 2004, Erfurt, 110-121.

24. P. P. da Silva and N. W. Paton, User Interface Modelling with UML, Proceedings of the
10th European-Japanese Conference on Information Modelling and Knowledge Represen-
tation, Saariselkä, Finland, May 8-11, 2000, 203--217

25. Y. Y. Wong, Rough and ready prototypes: lessons from graphic design, CHI '92: Posters
and short talks of the 1992 SIGCHI conference on Human factors in computing systems,
Monterey, California, 1992, 83-84.

26. F. E. Hardtke, Where does the HMI end and where does the Systems Engineering begin?,
Proceedings of the Systems Engineering, Test & Evaluation Conference (SETE), 2002.
Available from: http://www.seecforum.unisa.edu.au/Sete2002/ProceedingsDocs/09P-
Hardtke.pdf [cited: 27.10.2006]

27. M. Rauterberg, O. Strohm, C. Kirsch, Benefits of user-oriented software development
based on an iterative cyclic process model for simultaneous engineering, International
Journal of Industrial Ergonomics, 16(4-6), 1995, 391-410

28. J. O. Borchers, A pattern approach to interaction design, Proceedings of the conference on
Designing interactive systems (DIS '00), New York City, New York, 2000, 369-378.

29. P. Szekely, User Interface Prototyping: Tools and Techniques, Intelligent Systems Divi-
sion, Technical Report, Intelligent Systems Division, University of Southern California,
1994.

30. E. W. Dijkstra, A Discipline of Programming, (Englewood Cliffs, NJ: Prentice Hall, 1976.
31. M. Green, A survey of three dialogue models, Transactions on Graphics 5(3), ACM Press,

1986, 244-275.
32. D. Carr, N. Jog, H. Kumar , M. Teittinen, C. Ahlberg, Using Interaction Object Graphs to

Specify and Develop Graphical Widgets, Technical Report No. UMCP-CSD CS-TR-3344,
Human-Computer Interaction Laboratory, University of Maryland. Available from: http://
citeseer.ist.psu.edu/carr94using.html [cited: 17.11.2006]

33. C. Bock, Model-Driven HMI Development: Can Meta-CASE Tools do the Job? In: Pro-
ceedings of the 40th Annual Hawaii International Conference on System Sciences
(HICSS'07), Waikoloa, USA, January 3-6, 2007, 287b.

Questions

Ann Blandford:
Question: How mature is this approach – are you evaluating it in context of use?
Answer: Porsche are using it in their food chain. Porsche is now close to VAG –
VAG using the tree soft tool – so they are looking at comparing approaches and fin-
ding that the techniques described are better and cheaper.

Morten Borup Harning:
Question: You distinguish between layout and content, could you please elaborate?
Answer: Layout is what the screen looks like, content is about the frequency of the
radio, the station that is visible etc.

Michael Harrison:
Question: How do these representations relate to the evaluation of the system?
Answer: Prototypes can be generated at any stage in the process, either in the car or
on the screen.

Nick Graham:
Question: In practice in-car systems involve huge amounts of code, can you comment
on issues of scale?
Answer: Only 20 or so functions are frequently used – we work on the core functions
before putting them in the car.

