
Intelligent Support for End-User Web Interface
Customization

José A. Macías1 and Fabio Paternò2

1 Universidad Autónoma de Madrid. Ctra. De Colmenar, Km. 15,

28049 Madrid, Spain
2 ISTI-CNR. Via G. Moruzzi, 1,

56124 Pisa, Italy
j.macias@uam.es, fabio.paterno@isti.cnr.it

Abstract. Nowadays, while the number of users of interactive software steadily
increase, new applications and systems appear and provide further complexity.
An example of such systems is represented by multi-device applications, where
the user can interact with the system through different platforms. However,
providing end-users with real capabilities to author user interfaces is still a
problematic issue, which is beyond the ability of most end-users today. In this
paper, we present an approach intended to enable users to modify Web
interfaces easily, considering implicit user intents inferred from example
interface modifications carried out by the user. We discuss the design issues
involved in the implementation of such an intelligent approach, also reporting
on some experimental results obtained from a user test.

Keywords: End-User Development, Intelligent User Interfaces, Model-Based
Design of User Interfaces, Programming by Example.

1 Introduction

Very often, customizing software applications implies extra knowledge and effort that
some users cannot simply afford. Providing users with real authoring facilities is not
yet as widespread as one would expect. Most of the existing approaches pay poor
attention to end-users, and the ease of customization of commercial applications is
still barely visible.

In general terms, the explicit customization of interactive applications requires
considerable skill in programming and technology. Some preliminary studies indicate
that these limitations in user development activities are not due to lack of interest, but
rather to the difficulties inherent in interactive development [14]. Some development
tools already offer support for high-level functionality, but most of these tools are not
aimed at non-programmers.

Our research is aimed at addressing such problems by providing end-users with
easy and automatic mechanisms to customize Web applications. Our research
experience is in Model-Based User Interfaces [12] design combined with End-User
Development [6] techniques to help users interact with computers through intelligent

WYSIWYG authoring environments [9], [10]. To this end, one of our main concerns
is end-user development environments oriented to nomadic Web applications [3],
which are Web applications accessible through a variety of platforms, including
wireless devices supporting mobile users.

In this work, our effort is aimed at allowing users to provide modification
examples of nomadic interfaces in such a way that the system be able to learn and
generalize customizations automatically. From this point of view, our system is based
on Programming by Example (PBE) mechanisms. Programming by Example [4], [7]
is one of the most relevant efforts in EUD for obtaining a real trade-off between ease
of specification and expressiveness. In our approach the user provides the system with
an example of what s/he wants to modify by means of a standard authoring tool and
then the system analyses the modifications at the server side for a given user and
platform.

In particular, in the paper we report on some design issues addressed in our
environment, combined with a further analysis of the type of reasoning that our
system is able to apply. We also report on empirical system verification through an
experiment carried out with real users. The paper is structured as follows. Section 2
introduces related work and discusses it. Section 3 describes our approach in further
detail. Next, Section 4 reports on design and architectural issues. Section 5 provides
further detail and introduces rule firing, describing an experiment carried out with real
users with the aim of verifying the proposed approach. Lastly, Section 6 draws some
conclusions and provides indications for future work.

2 Related Work

Intelligent rule-based systems have been traditionally used in Programming by
Example research mostly due to the execution speed and simplicity they supply. Other
complex machine-learning algorithms usually suffer from high error rates and low
generalization in real time interaction with users.

Some early tools developed by Myers’s group, such as Peridot [11] applied a rule-
based approach. Peridot is more oriented to supporting user interface design and uses
about fifty hand-coded Interlisp-D rules to infer the graphical layout of the objects
from the examples. This type of system has the disadvantage of being subjected to
rule-based heuristics that generalize from a single example, which implies that only a
limited form of behaviour can be generalized since the system can only base its guess
on a single example. More complex behaviours are either not treatable or must be
created manually by editing the code generated by the PBE system. These types of
systems are mostly focused on static knowledge and can be considered domain-
dependent. In contrast, our system proposes an approach to build dynamically
knowledge, in which a complete rule structure is created in order to consider different
kinds of conceptual knowledge that can be updated from time to time through an
evolving approach.

Recent systems such as AgentSheets [13] are examples of commercial EUD
approaches for building intelligent interfaces. AgentSheets is a simulation
environment that allows the user to create advanced simulation scenarios by defining

intelligent agents and behaviour separately. AgentSheets combines PBE with
graphical rewrite rules into an end-user programming paradigm. Like AgentSheets,
our approach applies semantic rules for dealing with high-level behaviour. As pointed
out by AgentSheets’ authors, a first step toward creating more usable and reusable
rewrite rules is to move from syntactic rewrite rules to semantic ones, including
semantic meta-information. The lack of semantics not only makes reuse difficult, but
also creates a significant problem for building new behaviours from scratch, reducing
significantly the scalability of a PBE approach as well. Additionally, in our approach
we consider different levels of knowledge and behaviour, dividing rules and facts into
different conceptual levels that will help achieve an in-depth analysis automatically,
inferring with accuracy the user’s intents in order to obtain an evolutionary approach.

Another related work is DESK [8], which uses domain knowledge for
characterizing changes from a dynamically generated interface, making minimal
assumptions about the final user’s skills on programming and specification languages.
DESK uses the PEGASUS specification based on domain ontologies in order to
specify explicit knowledge of both presentation and domain information separately
[9]. DESK tracks and records information from user actions and builds a monitoring
model specified in XML. This information is sent to the back-end application, which
processes in turn the monitoring model and applies different heuristics by using
domain knowledge. As a result of the inference process, the underlying models of
PEGASUS (domain, presentation) are modified taking into account each change the
user performs on the Web page. Our approach overcome the DESK’s limitations by
detecting user intents automatically, comparing original and modified interface
logical specifications and with no need of having a specific authoring client
application. In order to get maximal high-level domain independence, changes by
users are obtained through processing directly a logical user interface description
specified in TERESA XML [2]. By contrast, DESK is limited to deal with HTML
code modifications, which are later processed to obtain meaningful information by
means of fixed heuristics. We exploit the information provided by the logical
interface description to obtain semantic information. The knowledge management is
improved by defining different levels of knowledge that are applied to better
characterize and obtain evolving knowledge for future inferences.

To summarise, the work presented in this paper provides a novel solution with
respect to approaches such as DESK and AgentSheets because it applies reverse
engineering tools able to build automatically descriptions at different abstract levels
represented using TERESA XML, which is a domain-independent modelling
language. Such semantic information is then exploited in out intelligent approach to
supporting user customization.

3 Our End-user Approach

Our system supports a EUD framework intended to provide the user with an easy
mechanism to freely customize Web interfaces.

PDA Mobile Desktop

…

Nomadic
Application
Server

Changes
Made by
End-user

HTML
Modif

Updating
User profile
with New
Preferences

Logical Transf,
Comparison
and Inference
Processes

VoicePDA Mobile Desktop

…

Nomadic
Application
Server

Changes
Made by
End-user

HTML
Modif

Updating
User profile
with New
Preferences

Logical Transf,
Comparison
and Inference
Processes

Voice
Fig 1. Our approach can be used to customize user interfaces for different platforms. Users
make changes to express their preferences and then upload the modifications onto the server,
which infers customizations from the changes accomplished.

In particular, our approach supports the following steps (see Fig. 1):

1. The Web server of applications generates an interface adapted to the platform
accessed by the user, so s/he can access the application using a desktop computer,
laptop, mobile, PDA and vocal interface.

2. The end-user navigates through the information and, at some point, s/he decides to
modify something by using a standard Web authoring tool (such as Macromedia
Dreamweaver) that supports modifications by direct manipulation of the interface
elements.

3. Once the user has finished the changes, s/he sends the modified page to the server,
by using a specific Web application in which s/he first needs to login.

4. The server receives the Web page and then starts the inference process to identify
the user’s preferences.

a) First, the server transforms the modified page intro a logical description stored
into a XML file, using the reverse mechanism developed by our group [1]. The
resulting file contains the user interface description of the page in terms of
language-independent elements.

b) Then, the system compares the logical description corresponding to the
modified page with the logical description of the previously generated one.

c) In the comparison process, the system also generates high-level information in
order to find out meaningful information about the user’s intents, and also to
identify general user preferences.

d) At the end of the process, the system builds an End-User Profile taking into
account all this high-level information inferred, as well as others previously
generated.

5. The End-User Profile is then used to generate again the Web interface, taking into
account preferences and personal customization. The system stores an End-User
Profile for each user and platform, controlling which aspects of the generated
interface could be significant for each one.

The most relevant information stored in the End-User Profile is the set of Interface
Rules. Such rules are inferred from the logical descriptions’ comparison and aim to
reflect the knowledge acquired from the user’s changes. The rules are used for driving
the generation of the Web pages after the changes, customizing the Web presentation
and navigation depending on the inferred preferences. The rules are based on
knowledge acquisition algorithms and targeted at obtaining information regarding
user intents in order to characterize some preferences for customization purposes.
Such information can be modelled by means of both a knowledge base and a set of
rules to be applied when new information about user modifications is identified.

<operator id="Grouping_1_33">
<grouping>

<fieldset/>
<position value="column"/>

</grouping>
</operator>
<first_expression>

<interactor id="showText_1_52">
<only_output>

<textual>
…

<operator id="Grouping_1_33">
<grouping>
<fieldset/>

<position value="column"/>
</grouping>

</operator>
<first_expression>

<interactor id="showText_1_52">
<only_output>

<textual>
…

Modified
HTML Pages

Modified UID Original UIDReverse
Engineering

Process

Comparison and
Knowledge

Extraction Process

New Knowledge

Facts {
Interactor ID=1 has changed its position
Interactor ID=2 has been removed
…

}

Expert Knowledge
Base

End-User
Profile

Rules + Facts

<operator id="Grouping_1_33">
<grouping>

<fieldset/>
<position value="column"/>

</grouping>
</operator>
<first_expression>

<interactor id="showText_1_52">
<only_output>

<textual>
…

<operator id="Grouping_1_33">
<grouping>

<fieldset/>
<position value="column"/>

</grouping>
</operator>
<first_expression>

<interactor id="showText_1_52">
<only_output>

<textual>
…

<operator id="Grouping_1_33">
<grouping>
<fieldset/>

<position value="column"/>
</grouping>

</operator>
<first_expression>

<interactor id="showText_1_52">
<only_output>

<textual>
…

<operator id="Grouping_1_33">
<grouping>
<fieldset/>

<position value="column"/>
</grouping>

</operator>
<first_expression>

<interactor id="showText_1_52">
<only_output>

<textual>
…

Modified
HTML Pages

Modified UID Original UIDReverse
Engineering

Process

Comparison and
Knowledge

Extraction Process

New Knowledge

Facts {
Interactor ID=1 has changed its position
Interactor ID=2 has been removed
…

}

Expert Knowledge
Base

End-User
Profile

Rules + Facts

Fig. 2. Comparing both modified and original user interface descriptions, the system
automatically extracts information in order to feed the expert system, generates the information
to reason about and updates the user profile.

 The intelligent approach is implemented by using an expert system, where the
knowledge can be modelled conveniently and the inference takes place more
efficiently. Particularly, it supports a framework able to deal with facts and rules, as
well as the capability to populate the knowledge base with new information from time
to time (i.e. evolutionary approach). In our approach, the facts represent the
information coming from the user’s modifications. This information is extracted by
comparing both modified and original logical interface descriptions (see Fig. 2). On

the other hand, the rules are conditions used to get semantic information from the
facts, that is, from the syntactical changes the user makes to the presentation and from
other high-level information available in the expert knowledge base. The rules will
reflect not only user changes but user information about the platform (Desktop,
Mobile, and so on). By means of an evolutionary approach, continuous production
and modification of facts helps the system refine the user’s preferences and extract
accurate information as interaction evolves.
 In order to obtain greater precision and accuracy in the inference process, we use
Jess [5], a Java framework which includes the Rete pattern matching algorithm for
implementing rule-based (expert) systems. This algorithm was originally designed by
Forgy at Carnegie Mellon University. It provides the basis for an efficient
implementation of an expert system and is designed to sacrifice memory for increased
speed.

3.1 Interface Knowledge Modelling and Construction

We base on TERESA XML language [2] for detecting changes on logical user
interface descriptions. In this specification language, a user interface can be described
at different abstraction levels. The concrete level is platform-dependent but
implementation-language-independent, while the abstract level is also platform-
independent. In both cases the user interface is composed of interactors and
composition operators, indicating how to structure their composition. There are
different one to many relationships between interactors at the abstract and the
concrete level (e.g. a navigator can be a text link, an image link or a button), which
indicate how an abstract interaction can be supported in a given platform at the
concrete level. Modifications affecting the concrete level provide syntactical
knowledge, while those that effect the abstract level provide semantic knowledge as
the abstract level identifies the type of basic task associated with the interface
element. We consider both kinds of modifications in order to construct a knowledge
structure aimed to feed the expert system with suitable facts, activate expert rules and
produce user customizations efficiently.

The conceptual levels in which the knowledge is structured is crucial. Thus, we
need to consider the following steps in defining that knowledge:
• Defining base knowledge containing basic definition about user, platform and the

previous knowledge on user modifications. This is the information that always
remains in the expert system and is updated from session to session.

• Defining syntactic knowledge that contains facts and rules triggered by
syntactical modifications to presentation elements such as concrete interactors and
concrete composition operators. (e.g. when a concrete interactor changes the value
of its attributes). Furthermore, this level of knowledge deals with the syntactic
context associated with the concrete composition operators, detecting for instance
when a concrete composition operator has changed its colour, alignment,
justification and so on.

• Defining semantic knowledge for dealing with semantic information by taking
into account the syntactic information already created. The semantic level uses the

abstract platform-independent elements associated with interactors and
composition operators. For instance, it identifies when the number of interactors
changes in one possible composition (i.e. ordering, hierarchy relation or grouping).
The semantic level also constructs presentation context, that is, contextual
information extracted from the surrounding elements where a change took place in
the graphical interface. Presentation context allows the creation of expert rules
based on contextual information that can be applied more than once.

• Defining expert rules for dealing with further semantic aspects and characterizing
user intents. The main goal of this level is to define both syntactic and semantic
customization rules that will be deployed using the underlying knowledge available
for the previous levels. Syntactic customization rules detect changes concerning
concrete interactors and concrete composition operators, whereas semantic
customization rules detect high-level changes affecting interactors and composition
operators. For dealing with semantic customization rules, presentation context
needs to be considered.

Knowledge construction is carried out progressively from the lowest levels to the

highest ones. The knowledge constructed at lowest levels is basically composed of
syntactic information automatically generated by the system. This information comes
from the comparison of the specification of the concrete user interfaces before and
after the user’s changes and is related to the elements that the user implicitly
manipulates when authoring a nomadic presentation. These elements are the concrete
interactors and mostly indicate platform-dependent interaction techniques of different
type (for instance, in a graphical desktop system concrete interactors can be Radio
Button, List Box, Test Link, Button, Input Text and so on). All the changes
concerning concrete interactors are added as syntactic knowledge in order to populate
the expert system with detailed information about the type of concrete interactor, its
implicit properties and so on. In concrete interface specifications, concrete interactors
are composed through specific operators, in order to create relationships between
different elements that will be presented for a platform and user. The concrete
composition operators implement the abstract operators (grouping, hierarchy,
ordering and relation) through constructs such as Fieldset, Unordered List, Ordered
List, Table, Form, and so on.

On the other hand, the system extracts presentation context that is based on the
abstract specification of the interface, which is platform-independent and hence useful
in order to get high-level contextual information about the presentation. This allows
defining more general rules that can be applied to similar presentation contexts more
than once. The abstract information of both interactor and composition interactor is
managed by the semantic level of the expert system. Actually, this information can be
regarded as a knowledge add-on that is based on the syntactic information already
added by the syntactic level. The semantic level is responsible for detecting when an
interactor is moved from a composition operator to another, or when it is deleted or
removed, generating knowledge that can even affect the task model of the application.
The semantic level is also responsible for extracting presentation context, and then
adding it to the system as semantic knowledge. However, the first and foremost goal
of the semantic level is to populate the system with information that will be deployed

by the expert level, in order to carry out generalization in applying advanced
customization rules.

4 The Software Architecture

Our system was originally conceived as a client-server architecture, where two
principal processes run on the client and the server side and communicate one another
to carry through the approach here presented.

ServerClient

Internet
HTTP ServerNotorious

JdomReverseVmtools Jess

Apache
Tomcat 5.5

Notorious

Servlet

Client Process Server Process

Programming
Modules and
Libraries

ServerClient

Internet
HTTP ServerNotorious

JdomJdomReverseReverseVmtoolsVmtools JessJess

Apache
Tomcat 5.5

Notorious

ServletServlet

Client Process Server Process

Programming
Modules and
Libraries

Fig. 3. The architecture of the system is mainly composed of a client and a server side, where
two different processes run and communicate one another. The front-end sends to the server
process the changes to be processed at the back-end of the application.

Fig. 3 depicts how the system is structured. At the client side, a Macromedia Web
application called Notorious is executed. This application communicates with a server
process, which is exported as a HTTP service by means of the Apache Tomcat Web
Server 5.5. The process is a Java Servlet that is installed on the port 8080 of the
server. The client application mainly consists of a user interface intended to identify
the user when s/he connects to the server and uploads the modified Web pages. It also
manages the feedback coming from the server process and visualizes the information
reported (i.e. rules inferred and also the user interface descriptions). This application
processes, by means of a XML connector, the user model from the server, and
visualizes and stores such information properly. When the user decides to send Web
pages using Notorious, this client application accesses the server. Then, the server
takes up the request from the client application and in turn processes it, storing the
Web page and generating the Concrete User Interface corresponding to the file that
has been sent. Additionally, the Server routine compares both Concrete User Interface
files (the original and modified one) and calls the expert system module to create new

knowledge and obtain feedback to be sent to the client application. In doing so, the
Server comprises the following modules:

• Vmtools is a library used to compare and obtain the differences from two XML

files. The library comprises different classes and objects that can be used from a
Java program. In our approach, this library was useful in order to compare the
logical descriptions of the interface (the modified and the original one) and easily
process the modifications by which the expert system is fed.

• Reverse is a Java library developed by our group which concerns the reverse-
engineering routines for transforming HTML code into a logical user interface
description called Concrete User Interface. Different methods are used to tidy and
transform the code properly.

• Jdom is a Java library that comprises the routines used by Vmtools library. It is
used to manipulate XML code and deal with XML-tree operations easily.

• Jess is the Java library used to deal with the expert system implementation. This
library includes classes and objects to manipulate the inference engine called Rete
algorithm, as well as the methods to activate, trace and deal with facts and rules in
a nondeterministic way.

Additionally, the system uses the standard Java and Servlet libraries included in the

standard edition of Java. Servlet routines are used to program different Web services
in Apache Tomcat, so they can be regarded as a library as well.

5 Verification and Experimental Results

After the design of the system, one of our principal aims was to test the approach
implemented. To this end, we carried out an experiment in order to check and obtain
feedback on the methodology here proposed.

This experiment was mainly motivated by the need to measure the proposed rule-
based approach. The test was aimed at detecting meaningful reactions of the system
according to the user’s modifications for a specific nomadic application. We recruited
11 participants from our institution, with heterogeneous scientific backgrounds, and
asked them to freely customize a desktop Web museum application.

Based on different cases of use previously studied and analyzed, the expert system
was programmed containing different kinds of expert rules, which can be divided into
syntactic customization rules and semantic customization ones, as explained in
Section 3.1. Furthermore, each rule has to be triggered at least three times to be
considered a permanent customization, which the user can still turn on or off for
future applications. In particular, a total of 14 syntactic customization rules and 10
semantic ones were created, with the intention of activating them according to the
modifications performed by end-users. These included syntactic customization rules
for detecting changes in text style preferences, interaction widgets and composition
structures such as forms and fieldsets. On the other hand, semantic customization
rules were also defined in order to deal with changes involving transformation,
deletion and insertion of interactor groupings, as well as changes affecting

composition operators that involve interactor repositioning. These reflect end-user
preferences in navigation, ordering and hierarchical structure customization.

Additionally, the system was programmed to detect both user-dependent and user-
independent customization. The user-dependent rules concern preferences associated
with a specific user and have been described previously. As for detecting user-
independent preferences, the system checks whether the same rule is triggered by
more than one user. User-independent tailoring helps define general changes to
presentations for all users whenever the same rule is triggered by at least more than 5
users. At this point, the rule appears in every user profile and can be individually
turned off whenever one user does not accept the changes.

Changes by Users, Rules Activated and Facts Created by the System

0
10
20
30
40

50
60
70
80

1 2 3 4 5 6 7 8 9 10 11

User #

Changes Made Rules Activated Facts Created

Fig. 4. The system’s response to user changes, where the number of changes made and rules
activated are shown, along with the facts automatically created by the system throughout the
experiment with 11 users.

Fig. 4 shows the relation between the number of changes, the facts generated and

the rules activated for each user during the experiment. At first sight, it seems clear
that the more the changes made, the more facts and rules are activated. However, this
relation is not always as linear as one might expect, since it mostly depends on the
complexity of the changes performed. In the case of user #2, for instance, one can see
that the number of changes is lower with respect to other users, but the number of
facts and rules activated is instead higher. This is due to the fact that user #2 made a
total of 9 changes, but all involved complex effects. These entail moving interactors,
changing the navigational structure of the page, transforming composition operators
and so on. This produced a high number of facts that had to be specified in terms of
syntactic information and presentation context. In addition, the rules that had to deal
with such changes were even more complex than simple syntactic ones, so that a
chain of rules had to be activated to correctly detect the changes made by this user. In

contrast, users #8 and #11 carried out a high number of changes (23 and 26,
respectively) that generated a higher number of facts (57 and 72, respectively) created
by the system, as well as a high rate of rule activations (32 and 42, respectively). In
these cases, most changes were syntactical, so the response of the system was quite
proportional to the type and number of changes carried out by these users. In
conclusion, it is possible to affirm that the response of the system is linear as long as
the user’s changes do not involve complex structural aspects. In any case, such
complexity does not at all affect the system’s performance and throughput.

In addition to semantic and syntactic rules, we also considered the number of times
each type of change was made by the user. A customization is applied when a rule is
triggered three or more times. Otherwise, the customization is considered pending for
the time being. This mechanism helped us to classify pending and permanent
customizations depending on their rule-activation frequency. From the total rule
activations measured during the user sessions and depicted in Fig. 4, 80%
corresponded to syntactic customization rules, whereas only 20% corresponded to
semantic customization ones. Regarding syntactic customization rule activations, 64%
can be considered pending, whereas only 36% were permanent. With respect to
semantic customization rules, only 9% of activations were permanent, whereas 91%
were considered pending.

5.1 Rule Activation

In the experiment, rules were activated by following different steps. Let us examine a
piece of the output extracted from the expert system for one of the user tests,
illustrating how rules are activated and detected by the system.

1)Change detection
and contextualization

==> f-1 (MAIN::change (ID C1)
(concrete_interactor Text
Show_museum_info2) (change_type
font_style_change bold)

==> f-2 (MAIN::syntactic_context (ID
SC1) (change C1) (from Presentation 2
FieldsetColumn 1) (above null) (below
GraphicalLink 1) (user andrea)
(platform Desktop))

==> Activation: MAIN::syntactic_change :
f-2 ...

2)Syntactic
customization rule
activation

FIRE 19 MAIN:syntactic_change f-2

==> f-57 (syntactic_change_fact
(syntactic_customization_rule6) (change
C1) (syntactic_context SC1))

==> Activation: MAIN::
syntactic_customization_rule6 : f-57, f-
54, f-51, f-44, ...

3)Pending and FIRE 20 MAIN:

permanent rule
activation

syntactic_customization_rule6 : f-57

Pending Syntactic Customization (fired 1
times): Text style for Description
Interactor will be bold

FIRE 21 MAIN:
syntactic_customization_rule6 : f-54

Pending Syntactic Customization (fired 2
times): Text style for Description
Interactor will be bold

FIRE 22 MAIN:
syntactic_customization_rule6 : f-51

Permanent Syntactic Customization
(triggered more than twice): Text style
for Description Interactor will be bold

The output above has been divided into 3 different parts. The first part corresponds
to the change detection process. This information is directly supplied by an algorithm
that compares the logical descriptions of the interface (original and modified Concrete
User Interface files) and extracts information about what has changed. Consequently,
the first fact is added to the system (f-1), reflecting the change (font text style has
changed to bold) as well as the concrete interactor affected (Text element called
Show_museum_info2). In addition, the syntactic information about the change is also
created as fact number 2 (f-2), reflecting the context of the change (in Presentation 2,
in FieldsetColumn 1, where above there is nothing and below there is the
GraphicalLink 1 element) and the platform and user who made the change (user
Andrea on platform Desktop). This change activates an internal rule called syntactic
change that deals with the previous information and tries to find a suitable match for
the rule to be applied (either syntactic or semantic customization rule). For this case,
the second part of the output shows that the system has detected a syntactic
customization since the change made is likely to be considered syntactic (a text style
has changed). Thus, a new fact has been created (f-57) that relates the change (C1),
the syntactical context (SC1) and the syntactic customization rule to be activated
(customizaton_rule6). The syntactic customization rule number 6 deals with text style
changes, and will be activated for the current fact (f-57) as well as for others which
correspond to the same change and syntactic context (f-54, f-51, f-44, …). The third
part of the output depicts the activation of customization rule number 6 for each
change (fact) previously specified in the expert system. In this way, fact f-57 triggers
a pending syntactic customization rule for a description interactor (the Text concrete
interactor). This pending rule is triggered again for a different fact (f-54). Then, at the
third matching (fact f-51), the pending customization rule was turned into a
permanent one. This means that the description interactor, in the context observed (in
this case the first occurrence at the beginning of a page), will appear in bold style.
Consequently, this preference will be included in the user profile and can be turned
off later on by the user.

The detection of semantic rules implies a similar sequence of facts creation and
rules activations. In contrast, semantic rules require identification of the presentation
context. The following output shows an example extracted from the user test.
FIRE 5 MAIN:syntactic_change f-14

==> f-27 (syntactic_change_fact (presentation_context
PC1) (change C7) (syntactic_context SC7))

==> Activation: MAIN::semantic_change : f-27 ...

FIRE 22 MAIN:semantic_change : f-27

==> f-36 (Presentation_Context (ID PC1) (Change_type
Insertion) (From Grouping FieldSet Grouping FieldSet)
(Above Navigator GraphicalLink Navigator GraphicalLink)
(Below null))

==> Activation: MAIN::semantic_customization_rule1: f-36

FIRE 23 MAIN: semantic_customization_rule1 : f-36

Pending Semantic Customization (fired 1 times):
Navigational Preferences have been changed by user
(inserted Navigator)

The piece of output above shows how initially the system mapped (f-14) a
syntactic change (C7) to the context (SC7). Later on (FIRE 22), the system realised
that such change regards the insertion of a navigational element, which is an
interactor, and has semantic implications for the system. To this end, a new element
appears (presentation_context PC1), identifying that a presentation context is needed
in order to correctly identify this change. This causes the creation of a new fact (f-27)
that involves semantic changes. Next, an internal rule (semantic_change) is called in
order to extract the presentation context for such change. The presentation context is
created in the form of a new fact (f-36), which reflects the context of the change in
terms of abstract elements (Grouping, Navigator, and so on). Lastly, semantic rule
number 1 is activated by means of the creation of the previous fact (FIRE 23), and
thereby activates a pending rule once the presentation context has been successfully
matched. It is worth noting that this customization reflects the fact that the user
decided to change the navigational structure by adding a new navigator (a link).

5.2 Comparative example

Fig. 5 shows one of the pages of the marble museum used in the user test (window at
the top), as well as three pages (at the bottom) corresponding to three different
modifications made by three different users. Although there are some similarities
between some of the changes, the modifications differ from one another significantly.
The dotted text box near each window describes the most important changes effected
by each of the three users. Let us see in detail how the system reacts to each change
for each modified page in Fig. 5.

Modified Page #3
1) Page Background Changed
2) Navigator Centered
3) Title Size and Justification Changed

Modified Page #2
1) Navigational

Grouping Added
2) Title Size and Justification

Changed
3) Page Layout Changed

Modified Page #1
1) Navigational

Grouping Added

The artworks displayed in the museum are classified into several categories.
There are artworks dating back the Roman period, as well as
Examples of modern art such as the ones that have been donated by the Vatteroni Family

Select the section you wish to visit:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

The artworks displayed in the museum are classified into several categories.
There are artworks dating back the Roman period, as well as
Examples of modern art such as the ones that have been donated by the Vatteroni Family
Select the section you wish to visit:

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

The artworks displayed in the museum are classified into several categories.
There are artworks dating back the Roman period, as well as
Examples of modern art such as the ones that have been donated by the Vatteroni Family

Select the section you wish to visit:

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Select the section you wish to visit:

Section’s Information:

The artworks displayed in the museum are classified into several
categories. There are artworks dating back the Roman period, as
well as Examples of modern art such as the ones that have been
donated by the Vatteroni Family

Modified Page #3
1) Page Background Changed
2) Navigator Centered
3) Title Size and Justification Changed

Modified Page #3
1) Page Background Changed
2) Navigator Centered
3) Title Size and Justification Changed

Modified Page #2
1) Navigational

Grouping Added
2) Title Size and Justification

Changed
3) Page Layout Changed

Modified Page #2
1) Navigational

Grouping Added
2) Title Size and Justification

Changed
3) Page Layout Changed

Modified Page #1
1) Navigational

Grouping Added

Modified Page #1
1) Navigational

Grouping Added

The artworks displayed in the museum are classified into several categories.
There are artworks dating back the Roman period, as well as
Examples of modern art such as the ones that have been donated by the Vatteroni Family

Select the section you wish to visit:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

The artworks displayed in the museum are classified into several categories.
There are artworks dating back the Roman period, as well as
Examples of modern art such as the ones that have been donated by the Vatteroni Family
Select the section you wish to visit:

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

The artworks displayed in the museum are classified into several categories.
There are artworks dating back the Roman period, as well as
Examples of modern art such as the ones that have been donated by the Vatteroni Family

Select the section you wish to visit:

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Select the section you wish to visit:

Section’s Information:

Roman Archeology
Modern Sculpture
Vatteroni’s Donation
Technical Applications

Select the section you wish to visit:

Section’s Information:

The artworks displayed in the museum are classified into several
categories. There are artworks dating back the Roman period, as
well as Examples of modern art such as the ones that have been
donated by the Vatteroni Family

Fig. 5. Screenshots of 3 different pages modified by users during the test. The original page is
at the top, whereas the other three windows depict the diversity of modifications made by users.

In the first modified page (#1), the main change is the addition of a grouping
consisting of a new navigational set inserted on the top of the page. This action stems
from the fact that the user copied and pasted a fieldset, containing the navigational
links of the home page of the museum, into each page with the idea of navigating
everywhere from every page without the need to go back to the home page. In this
case, the system activates different pending semantic customization rules, since the
change mainly affects a grouping composition operator and thus can be considered a
semantic change rather than a syntactic one. The system’s reaction to such change
appears automatically specified by the system as rule firing numbers 9, 13 and 17.
These can be summarized as follows:
FIRE 9 MAIN:semantic_customization_rule6 : f-22

Pending Semantic Customization (fired 1 times): New
Interactors have been added to an existing Grouping by
user (Grouping Add-on) ...

FIRE 13 MAIN:semantic_customization_rule6 : f-24

Pending Semantic Customization (fired 2 times): New
Interactors have been added to an existing Grouping by
user (Grouping Add-on) ...

FIRE 17 MAIN:semantic_customization_rule6 : f-26

Permanent Semantic Customization (triggered more than
twice): New Interactors have been added to an existing
Grouping by user (Grouping Add-on)

The above output describes how the system detected a semantic customization rule
related to a grouping change (customization_rule6). This process is carried out after
analysing the change in the grouping composition operators and obtaining the
presentation context involved in each change. Lastly, the system converted the
pending rule into a permanent one. This is due to the fact that the user decided to
make the same change three times to more than one Web page, as shown in firing
numbers 9, 13 and 17.

In the second modified page (#2), the user made different changes, some involving
semantic changes and others only syntactic ones. The semantic changes were related,
once again, to the movement of elements as well as changes in grouping composition
operators. In this case, one can see how the user decided to copy and paste the
navigational set from the home page into the modified one, and then made changes to
the page layout as well. Three different semantic customization rules were activated.
These rules were applied to changes associated with modification, movement and
distribution of interactor groupings. Additionally for this user and presentation, some
syntactic changes were detected, meaning that the user also decided to change the text
size and justification for the description element. The following rules were eventually
activated:
FIRE 16 MAIN::semantic_customization_rule4 : f-43

Pending Semantic Customization (fired 1 times): Grouping
movement into another by user (Grouping Movement) ...

FIRE 18 MAIN::semantic_customization_rule5 : f-44

Pending Semantic Customization (fired 1 times): Grouping
layout has been set to horizontal by user (Grouping
Distribution) ...

FIRE 22 MAIN::semantic_customization_rule6 : f-46

Pending Semantic Customization (fired 1 times): New
Interactors have been added to an existing Grouping by
user (Grouping Add-on)

In this case, three different semantic customization rules were activated (4, 5 and
6). These rules deal with detecting changes in, and movement and distribution of,
groupings. Like in the first modified page, the system firstly detected the change,
obtained the syntactic and presentation context and then detected a matching in the
presentation context that triggered this pending rule multiple times. This time, no
pending rule was turned into a permanent one since the user only decided to make the
change more than twice on different contexts, hence the system did not consider it to
be the same change.

Additionally for this user, some syntactic changes were also performed, leading to
the following output from the system:
FIRE 31 MAIN:syntactic_customization_rule6 : f-36

Pending Syntactic Customization (fired 1 times): Text
Font justification for Description Interactor will be
centred

FIRE 33 MAIN: syntactic_customization_rule1 : f-35

Pending Syntactic Customization (fired 1 times): Text
Size for Description Interactor will be 14

The output above reflects that the user also decided to change the text size (to 14
points) and justification for the description interactor (Text) on the top of the page. In
this case, two syntactic pending customization rules were activated (6 and 1) that deal
with text justification and size, respectively. As before, no permanent execution was
considered for such changes either.

The last page (#3) modified by the user contained mostly syntactic changes: only
one navigator that the user centred, the description element at the page top, which the
user also centred and enlarged in size, and a change to the page background colour.
For these, the reaction of the system was to activate syntactic customization rules as
follows:
FIRE 10 MAIN:syntactic_customization_rule5 : f-27

Pending Syntactic Customization (fired 1 times): Page
Background will be #FCF4CD ...

FIRE 11 MAIN:syntactic_customization_rule5 : f-26

Pending Syntactic Customization (fired 2 times): Page
Background will be #FCF4CD ...

FIRE 12 MAIN:syntactic_customization_rule5 : f-22

Permanent Syntactic Customization (triggered more than
twice): Page Background will be #FCF4CD ...

FIRE 13 MAIN:syntactic_customization_rule1 : f-25

Pending Syntactic Customization (fired 1 times): Back
Graphical-Link Navigator alignment will be centred ...

FIRE 14 MAIN:syntactic_customization_rule1 : f-24

Pending Syntactic Customization (fired 1 times): Text
size for Description Interactor will be 18 ...

FIRE 16 MAIN:syntactic_customization_rule4 : f-23

Pending Syntactic Customization (fired 1 times): Text
font justification for Description Interactor will be
centred

As the previous cases, the system firstly processed the changes and then triggered
the syntactic customization rules for this case (5, 11, 1 and 4). The first syntactic
customization rule concerned the change in the background, as the user decided to set
another colour. As one can see, this pending rule became permanent since the user
carried out this same change to more than two pages. This means this customization
was stored in the user profile. Additionally, the user decided to centre the back
navigational link at the bottom, which triggered the syntactic customization rule 11.

Some other temporary customization activations were carried out as well: these
affected text style and justification and concerned the description interactor at the
page top. These last changes were not considered permanent, since the user decided to
perform them less than three times.

6 Conclusions and Future Work

Customization of software artefacts is commonly considered as an activity that
requires specialized knowledge that most end-users do not have. This is mainly due to
the fact that authoring environments require manipulating programming languages
and abstract specifications. Although much progress has been made by commercially
available development tools, most of them lack not functionality, but rather ease-of-
use [15].

Our approach overcomes such limitations and provides easy and efficient
mechanisms based on Programming by Example techniques, where the user provides
the system with example changes and the system generates customizations that will
be applied automatically in future interaction. More concretely, the user carries out
changes to applications generated by a server for a specific platform using any
commercial authoring tool, and then s/he sends the modified pages to the server.
Lastly, the system processes all the pages and tries to infer meaningful customizations
to be applied in the future. Instead of forcing end-users to learn programming
languages and complex specifications, our system carries out Web customization
automatically by extracting meaningful information from the user’s changes that will
be stored in a profile and used to support future sessions.

We report on a detailed example of activations extracted from a user test, which
has been introduced and further commented. Although only permanent activations
were taken into account for a specific user and platform, more general information
can be extracted. Collective knowledge can be deployed to detect general preferences
by simply matching coincidences from more than one user. In the previous examples
some changes can be understood to be general semantic customizations when the
same rule is activated consistently by different users. For instance, as depicted in Fig.
5, modifications #2 and #3 reflect that both users made changes affecting the
description element located at the page top, specifically changes concerning font size
and justification. Independent of the user and platform, this information can be used
to activate more general rules that can be triggered when the same modifications
occur for more than one user. Moreover, general rules could be defined, for example
“If activation X is converted from pending into permanent for at least N users, then
this rule can be included in every user profile as a general preference”. This
information is easy to obtain by our approach, since the expert system can be regarded
as a database where queries can be executed in order to mine the desired information
from the knowledge stored. Additionally, other high-level rules can be defined to
detect problems concerning page design. We are carefully studying and analysing
such issues in order to further improve our system.

Acknowledgments. The work reported in this paper ha been supported by the
European Training Network ADVISES, project EU HPRN-CT-2002-00288, and by
the Spanish Ministry of Science and Technology (MCyT), projects TIN2005-06885
and TSI2005-08225-C07-06.

References

1. Bandelloni, R., Mori, G., Paternò, F.: Reverse Engineering Cross-Modal User Interfaces for
Ubiquitous Environments. Proceedings of Engineering Interactive Systems. March 2007,
Salamanca.

2. Berti, S., Correani F., Paternò, F., Santoro, C.,: The TERESA XML Language for the
Description of Interactive Systems at Multiple Abstraction Leveles, Proceedings Workshop
on Developing User Interfaces with XML: Advances on User Interface Description
Languages, May 2004 (2004) 103-110

3. Berti, S., Paternò, F., Santoro, C.: Natural Development of Nomadic Interfaces Based on
Conceptual Descriptions. Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User
Development. Human Computer Interaction Series. Springer Verlag, (2006) 143-160

4. Cypher A.: Watch What I Do: Programming by Demonstration. The MIT Press (1993)
5. Jess. The Rule Engine for the JavaTM Platform. Http://herzberg.ca.sandia.gov/jess/.
6. Lieberman, H., Paternò, F., Wulf, V. (eds).: End-User Development. Human Computer

Interaction Series. Springer Verlag (2006)
7. Lieberman, H. (ed): Your Wish is my Command. Programming By Example. Morgan

Kaufmann Publishers. Academic Press, USA (2001)
8. Macías, J.A., Puerta, A., Castells, P.: Model-Based User Interface Reengineering. HCI

Related Papers of Interacción 2004. Jesús Lorés y Raquel Navarro (eds.). Springer-Verlag
Volume, (2006) 155-162

9. Macías, J.A., Castells, P.: Finding Iteraction Patterns in Dynamic Web Page Authoring.
Proceedings of the EHCI-DSVIS. Tremsbüttle Castle, Hamburg, Germany. July 11-13.
Rémi Bastide, Philippe Palanque and Jörg Roth (Eds.). Lecture Notes in Computer Science,
Volume 3425, Springer-Verlag (2005) 164 – 178

10.Macías, J.A., Castells P.: An EUD Approach for Making MBUI Practical. Proceedings of
the First International Workshop on Making model-based user interface design practical.
CADUI. Funchal, Madeira, Portugal. January 13 (2004)

11.Myers, B.A.: Creating User Interfaces by Demonstration. Academic Press, San Diego
(1998)

12.Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer
Verlag (1999)

13.Repenning, A., Ioannidou, A.: What Makes End-User Development tick? 13 Design
Guidelines. Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User Development. Human
Computer Interaction Series. Springer Verlag (2006) 51-85

14.Rode, J., Rosson, M.B., Pérez, M.A. End-User Development of Web Applications.
Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User Development. Human Computer
Interaction Series. Springer Verlag (2006)

15.Rode, J., Rosson, M.B.: Programming at Runtime: Requeriments & Paradigms for
nonprogrammer Web Application Development. IEEE 2003 Symposium on Human-Centric
computing Languages and Environments New York (2003) 23-30

