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Abstract. This article analyses the relationships between software architecture, 
programming languages and interactive systems. It proposes to consider that 
languages, like user interface tools, implement architecture styles or patterns aimed 
at particular stakeholders and scenarios. It lists architecture issues in interactive 
software that would be best resolved at the language level, in that conflicting 
patterns are currently proposed by languages and user interface tools, because of 
differences in target scenarios. Among these issues are the contra-variance of reuse 
and control, new scenarios of software reuse, the architecture-induced concurrency, 
and the multiplicity of hierarchies. The article then proposes a research agenda to 
address that problem, including a requirement-and scenario-oriented deconstruction 
of programming languages to understand which of the original requirements still 
hold and which are not fully adapted to interactive systems.  

1 Introduction  

Niklaus Wirth, renowned computer science teacher and programming language designer, 
wrote in 1975 a reference book entitled “Algorithms + Data structures = Programs” [1] that 
has influenced thousands of programmers. It may be that his equation was incomplete though. 
Software architecture, that is the way of organising software into interconnected parts, has 
progressively become recognized as a central issue in programming and software 
engineering, to the point where students now spend more time learning about patterns and 
frameworks than data and algorithms. Yet, software architecture is still mostly considered a 
separate issue from programming languages. We contend that this is a serious issue for the 
software engineering of interactive systems. Short of being able to write "Programs = data + 
algorithms + architecture" and addressing architecture issues at the language level, the 
architecture of interactive software may be doomed to inconsistency and complexity.  

The architecture of interactive software has been heavily studied and many influential 
results in software architecture were obtained by researchers with a background in interactive 
software, or derived from their work. Compare for example the authors and topics in the 
following list of publications: [2-10]. Still, very few actors of the domain consider that the 
situation of interactive software architecture is satisfactory: teaching these issues is still 
awkward, and programming interactive software remains complex as soon as one does not 
stick to common WIMP interfaces. The author's personal experience in selling interactive 
software design and solutions was a very instructive field study of that problem: most 
potential customers of interactive software technology are put off by perceived 
incompatibilities between the processes of user interface design and traditional software 
engineering, or even more explicitly by software incompatibilities [11]. For instance, 



customers had to renounce implementing the chosen design when finding that implementing 
it with Java Swing would cost four times the cost of a WIMP interface, just because of 
architecture mismatches.  

In this article, we propose an analysis of the relationships between software architecture, 
programming languages and interactive software, based on the principles of requirements and 
usage scenarios. We highlight a strong coupling between languages and architecture, and 
propose that languages can be studied using the same methods. We then use this analysis to 
identify some requirements and scenarios where current programming languages and 
interactive software conflict and thus favour inconsistent or costly architecture solutions. User 
interface toolkits act as architectural patches to languages, but the result is not always 
consistent. Finally, we propose a research agenda for addressing that issue, considering that 
user interface development brings at the same time new problems and techniques for 
addressing them. Architecture issues can be addressed by identifying the underlying usage 
scenarios more explicitly before applying the body of knowledge created for programming 
languages. Doing so, in addition to helping to understand interaction architecture, could help 
improve programming languages.  

2 Of programming tools, scenarios and architecture  

The software engineering and the user interface design communities have come up with 
similar models of requirements engineering and design for software products. With some 
differences in vocabulary, they share the concepts of stakeholders, external requirements or 
goals, technological choices or constraints, scenario-or usecase-based design, task or process 
analysis, and iterative design [12,13]. These design models have proven effective over the 
years for designing tools and (in many cases) improving the efficiency of the final users.  

These models can be applied to the design of a special category of tools: the tools made for 
software builders themselves. Programming languages are tools for programmers; 
development environments are tools for programmers and project managers; user interface 
toolkits are tools for programmers and interface designers; some specialized languages are 
aimed at non-professional programmers, and so on. Some of these tools are developed with a 
focus on a given technology and aimed at specific tasks, for instance logic programming for 
knowledge management. Some have to take into account constraints such as the performance 
of compilers or computers. But all of them were designed, explicitly or not, with stakeholders 
and usage scenarios in mind. That is, they take into account all the persons that are concerned 
with the product because they build, manage, or use it and they try to capture the multiple 
activities around the product through concrete stories called scenarios or use cases. Many 
language designers used themselves as the target users, made their own scenarios mentally, 
and performed initial iterations by testing the candidate designs against their mental 
scenarios. Others, such as the designer of Perl, used the whole user community for a vast 
participatory design process. In all cases, understanding the underlying scenarios and 
requirements provides a powerful means for analysing architectures, languages and other 
tools.  

In the following sections, we identify the types of stakeholders and scenarios that underlie 
the state of the art in software architecture, programming languages and interactive software 
architectures. We will later use that analysis to detect some plausible causes of the problem of 
interactive software architecture.  

2.1 Software architecture  

One definition of software architecture is “the structure of the components of a 
program/system, their interrelationships, and principles and guidelines governing their 



evolution over time” [14] or in other words, how to split programs in smaller parts and glue 
them together. In their seminal paper on software architecture, Garlan and Shaw analyse 
architectural styles by focusing on the nature of components and the glue that links them [15]. 
Software architectures are not tools for building software, but rather rules, guidelines, or 
patterns for the same purpose. Nonetheless, the above reasoning on scenarios applies, in that 
an architecture style is a design aimed at supporting some scenarios of software building for 
stakeholders of the software industry. Programming tools are complete and implemented 
designs, whereas architectures styles are partial designs. Some architecture styles come with 
supporting tools. Others are more theoretical and let their users choose how to implement 
them, either because they address issues orthogonal to those addressed by available tools, or 
because they conflict with them (see the section on Interactive software architecture below 
for examples).  

Architectures, like tools, are aimed at sparing their users from some design choices by 
providing a good solution adapted to their goals. For instance, a “pipes and filters” 
architecture like that of the Unix shell focuses on the needs of three types of stakeholders 
involved in the production of data analysis software: the programmers of basic analysis 
algorithms, who are encouraged to isolate their algorithms in separate programs, thus 
avoiding the details about how their algorithms will be used; the shell programmers, who are 
encouraged to implement a simple interface for connecting program inputs and outputs, and 
know that their shell will be usable in various situations; and finally power users who can 
build custom analysis chains at a very low cost.  

The role of scenarios is recognized by the software architecture community [16]. 
Admittedly, no architecture style is well adapted to all situations. The identified stakeholders 
include the end user, framework programmers, administrators, and maintainers. Scenarios 
include development, debugging, parameterising, all sorts of software reuse, and even 
off-shoring. It is recognised that the type of application (databases, interaction, AI, etc) is an 
important aspect of scenarios too [15]. It is interesting to note, however, that most of the 
literature on software architecture focuses on scenarios and techniques beyond a certain 
granularity of code. Most proposed definitions of software architecture suggest that it deals 
with medium and large-scale software components. Garlan and Shaw present software 
architecture as the third level of a scale where the first two levels are high-level programming 
languages and abstract data types.  

2.2 Programming languages and hardware design  

It is also interesting to analyse languages and even computers through the looking glass of 
scenarios and architecture. Actually, many constructs in programming language are aimed at 
software architecture rather than algorithms or data structure. Most literature shows that all 
programming languages and even computing hardware enforce certain architecture styles and 
were built with certain stakeholders and scenarios in mind. It also hints that expressions in 
programmer lore such as “clean”, “elegant” or “orthogonal” are actually scenario-based 
architecture quality statements.  

In the prehistory of computing, Jacquard looms were machines that executed programs 
coded on punch cards. The system was split into two components (machines and cards) so as 
to support a standard scenario involving two actors: the same machine built by a maker could 
afterward be used by an operator to produce different weaving patterns by changing cards. 
That architecture style where the central engine is fixed and smaller parts of the execution 
process can be changed at will was very influential on Ada Lovelace. She built upon the idea 
to propose that Babbage's analytical engine could be used to tabulate different mathematical 
functions by using different cards. She also used it to suggest that functions could be 
computed several times with different data [17]. Later Turing invoked similar computing 
scenarios to propose splitting the sequence of operations executed by the Automatic 



Computing Engine into “subsidiary operations” [18]. He also proposed instructions named 
BURY and UNBURY and a stack structure to support that architecture, thus laying out the 
foundations of the call stack. Support for implementing it was soon built into computers and 
since then has been present in the microcode of most processors.  

Just like computing hardware, programming languages have been deeply influenced by 
these historical scenarios: a fixed engine executing interchangeable computations, or 
programmers splitting their code into several sequences so as to call the same sequence 
several times. The concept of function, procedure or subroutine borne from these scenarios is 
present in most languages. The design rationales written by language designers are dense with 
references to such scenarios. For instance Stroustrup [19] mentions “communication between 
designers and programmers” (p. 114) as a goal, states that “the issue of how separately 
compiled program fragments are linked together is critical” (p. 34), and that “C with Classes 
was explicitly designed to allow better program organisation; computation was considered a 
problem solved by C” (p. 28). Actually, languages such as Pascal, C++ or Java abound with 
features aimed at facilitating the splitting of programs into reusable parts: functions, name 
scoping, namespaces, typing, classes, etc. These features implement a style that is strongly 
suggested to programmers: split your programs in functions so that you can reuse them at 
will. Hence we claim that languages support the “Programs = data + algorithms + 
architecture” equation, and we observe that most languages are still based on the historical 
computation scenario.  

True enough, the evolution of mainstream languages has been focused on supporting more 
and more complex software engineering scenarios. First it was observed that the functions 
paradigm could be used to support such uses as documenting, reading and maintaining code, 
or detecting errors. Then came more complex scenarios: a first programmer develops a library 
of functions that other programmers will reuse in their programs; or a programmer builds a 
computation engine in which other programmers later insert their own computation functions; 
or a programmer builds a specialisation of a library and inserts it into a computation engine, 
etc. These scenarios are supported by features such as separate compilation, late binding, 
interfaces or exceptions. This evolution was possible because clever engineers always found 
how to extend the basic paradigm to support these scenarios: they were compatible with the 
historical architecture.  

Alternate programming paradigms have been proposed: functional, logical, reactive or 
parallel programming. But usually the proposed justifications were about the expressive 
power of languages for a given programmer, not about architecture or scenarios involving 
multiple stakeholders. If some of these paradigms induce architecture styles that diverge from 
the historical style, this is apparently just a side effect. For instance, when Backus criticised 
“von Neumann languages” and proposed the functional style [20], he did it at the level of 
programming instructions, not at the level of combining larger parts of programs. Some of his 
arguments used architectural concepts (“language framework versus changeable parts”), but 
his concern was at a very fine grain and that did not lead him to challenge the functions 
paradigm. And the truth is that the ability of this paradigm to be applied to all situations is 
apparently unlimited.  

2.3 Interactive software architecture  

Nevertheless, after nearly 30 years of research history, interactive software does not seem to 
be part of that success story:  
 the user interface research community periodically debates about the reasons why 
so little of its successful research makes it to commercial products, and software issues are 
among the proposed explanations;  
 programming rich user interfaces is still considered a highly complex task, and 
teachers still look for solutions to make their students able to create working interactive 



components during their courses;  
 researchers working on new interaction styles often express frustration at current 
tools or build their own;  
 many works have been devoted to software architecture, models and patterns for 
interactive software, which confirms that there are stills problems that need solving; the fact 
that research in the domain has considerably decreased is most likely not due to a sense of 
successful achievement;  
 very few results have been integrated into programming languages, unlike with 
other software engineering works;  
 industries in the defence, aerospace, automotive, or home automation industries are 
still looking for technologies that combine the results of user interface research and their 
current development tools;  
 the implementation of many interactive systems uses some sort of middleware, 
which frees architects from the constraints of languages by creating their own language (the 
middleware protocol) to glue components; the fast evolution of Web user interfaces is 
probably an example of this.  
 

We propose to analyse causes of this situation by comparing the architecture styles 
induced by languages and those proposed for interactive software. We first try to identify the 
software engineering scenarios behind the proposed interactive software architectures, before 
identifying some conflicts in a later section.  

One of the most cited reference is the Seeheim architecture model, proposed at a time 
when the problem at hand was retrofitting existing software with new graphical user 
interfaces [21]. This scenario was new because it required to organise software along two 
dimensions. The first axis was as usual a split into one fixed and one interchangeable parts: 
the functional core and the user interface. The second axis dealt with the varying location of 
execution control, which depends on the nature of the user interface: control is split between 
the functional core and the user interface for text user interfaces, and it resides within the user 
interface when it is graphical. These requirements led to propose a four-tier architecture 
pattern. However that was done at a very high level of abstraction, not explaining how that 
was related to programming constructs, probably because there was no obvious solution for 
that. When the Seeheim model was refined later into the Arch model, new tiers were added to 
accommodate more complex reuse scenarios including multiview user interfaces, but once 
again no relationship with programming languages was set forth [22]. This means that 
programmers are free to implement the architecture as they wish. But this freedom comes at a 
high cost, just as if programmers of classical programs had kept on coding in assembly 
language. More detailed architecture styles have been proposed. PAC [23] had the same aims 
as the Seeheim and Arch model, but with more concrete handling of concerns such as the 
hierarchical organisation of components. However it was no more based on programming 
language constructs.  

In contrast with these architecture styles aimed at changing user interfaces, a series of 
architecture styles or patterns have been proposed and implemented as toolkits or frameworks 
to address more programmer-oriented needs [24]. The “Inversion of Control” (IoC) or 
“Dependency Injection” pattern recently gained popularity [26]; it captures the fact that 
containers are usually coded before the objects they contain even though they pass control to 
them at execution time. Earlier, a series of graphical toolkits have used the callback pattern or 
the late binding technique provided by object-oriented languages [4,5,25]. The MVC 
(Model-View-Controller) pattern focused on graphical rendering and input handling, relying 
on constructs of Smalltalk, a rare language built with user interaction scenarios in mind 
[9,27]. Some authors proposed to connect program components through one-way constraints 
[28] or dataflow connections [29] so as to support program readability and interchangeability 
of components, or even adaptation to execution platforms, in the context of direct 
manipulation and animation. With similar use scenarios in mind, but with a focus on 
graphical rendering, others have proposed to isolate graphical computations in components 



linked together by a hierarchical glue named a scene graph [30]. Others have proposed to 
isolate states and reactions to events in components based on finite state machines, 
Statecharts or Petri nets [31]. Others have noticed that architecture styles proposed by 
alternative programming styles matched some scenarios of interactive software development: 
tools were developed using the functional programming [32], the reactive programming [33], 
or the parallel programming paradigms. Some even tried to merge user interface 
programming deeply into the syntax of existing languages to try and force the compatibility 
of user interfaces and programming languages, see for instance the Ubit toolkit that makes 
heavy use of the operator overloading feature of C++ [34].  

The theoretical architecture styles such as Seeheim, Arch or PAC could not fail: they 
represent real concerns and do not face “implementation details”. The more 
implementation-oriented solutions were not as successful, even though most of them strike by 
their elegance. Apart from MVC and the Smalltalk environment, they all fall into one of these 
two categories:  
 the general purpose tools, which are widely used but considered as yielding 
complex architectures and limiting the evolution of user interfaces;  
 and the more specialized tools, which are not widely used, probably because the 
local help they provide conflicts with the requirements of the other parts of the software or 
the architecture style of the underlying language. In the rest of this paper we attempt to 
analyse the reasons behind this mixture of  
 
success and failure, and we propose a research agenda to address them.  

3 A multi-level view of software architecture  

We observe that all the tools and architecture styles mentioned in the previous section are 
concerned with architecture at different levels of granularity. All levels propose to split 
applications into components in a way that efficiently supports scenarios where parts of the 
software are created at different times by different persons, but they deal with components of 
different sizes.  

3.1 Four levels of architecture  

Architecture can be considered at four levels with growing component sizes:  

 1. The lowest level is that of programming instructions: how can they be grouped 
and reused, for instance in iterations? We are used to juxtaposing instructions, but Turing 
identified that as a design choice: “A simple form of logical control would be a list of 
operations to be carried out in the order in which they are given” [18] Lisp or Occam do not 
rely on that implicit semantics of grouping. As for control structures, patterns are proposed 
that favour different reuse scenarios (using an assignment in a test, for instance). This level of 
architecture is handled by languages and processors: they define a data model, a set of 
instructions, and ways of organising them. All underlying usage scenarios have one 
stakeholder: a  
 programmer who writes, reads, and debugs a small piece of code, usually at the 
scale of one page.  
2 The next level deals with structuring chunks of programs: how do I split my code in 
sequences that are at most one page long and that can be reused at several places? That level 
deals with the needs of programmers or groups of programmers working on the same part of a 
program. It deals with scenarios such as documenting code, communicating about it, 
optimising or debugging it. Most languages handle it through functions or classes, or through 
alternate constructions such as continuations.  



3 Then comes the level of software reuse, customisation and extension by different 
actors. Common stakeholders are groups of programmers that either split work and integrate 
it later or reuse libraries and frameworks built earlier. Others are project managers, 
maintenance managers and technical writers. Recently, engineers who deploy and 
parameterise software, or even users, have become stakeholders at that level. For classical 
software, that level has been handled by tools like preprocessors and linkers, then by 
languages, then more recently by architecture patterns and systems of plug-ins. For 
interactive software, it has been the focus of user interface management systems, toolkits or 
frameworks. Interactive software has been a great provider of research on that level, and the 
works listed previously are solutions pending for consideration. For instance, events were 
recently included in C# [35].  
4 The highest level is software planning, concerned with reusing whole applications 
or groups of applications. It deals with stakeholders such as information directorates in 
companies, computer providers, software houses and scenarios such as product line 
management, deployment, etc. Expressions such as “software urbanism” [36] have been 
coined for this level, which we do not address here.  
 

Taking the perspective of tool design, the first two levels are aimed at single users (the 
programmers), and the third level is more about groupware design (development teams). 
These levels cannot be handled independently.  

3.2 Managing compatibility  

All levels cannot be addressed by a single tool. For instance it was decided to handle in 
operating systems issues that were best not handled in languages. However, a lot of research 
has been aimed at handling more and more of the higher levels in languages. The step from 
level 1 to level 2 was made very early; the step from level 2 to level 3 has started with 
FORTRAN II (the introduction of separate compilation) and is probably not over. Two 
probable reasons for that tendency are:  
• a wish to minimise the number of concepts or patterns manipulated by programmers; once 

they are in a programming language or a processor, they can be used at all levels with no 
additional cost;  

• once a pattern has proved its value and compatibility with the language, a desire to 
encourage programmers to use that pattern rather than invent others which might prove 
incompatible and dangerous.  

Compatible patterns. These two points highlight the importance of having compatible 
patterns throughout the four levels and especially within a given level. Patterns are 
compatible when they can be combined so that all scenarios they support individually are 
supported by the combination, without adding complexity. For instance, functions and 
object-oriented programming can be made compatible by deciding that object methods are 
functions. This allows to combine components written with either pattern. If compatibility is 
not retained programmers are led to creating code that has not the expected behaviour 
because the programmer had wrong expectations. At best this necessitates special 
documentation and training for programmers; at worst, programmers may try to introduce 
new concepts or syntaxes, succeeding only in masking the problems. For instance, message 
passing and functions can appear similar for architecture purposes but are based on different 
synchronisation models; mixing them is dangerous because the programmer's code may be 
executed in an unexpected way. Consequently, an architecture level should only use a subset 
of the connectors provided by the lower level (or compatible connectors), and its component 
types should be refinements of component types of the lower level. When incompatible 
patterns are identified at different levels, one can build middleware that adapts connectors: a 
RPC library or a message bus, for instance. The additional cost is acceptable between levels 2 
and 3, or 3 and 4, but not within level 2 or 3.  



Pattern lifecycle. Another consequence of the two points above is the lifecycle of 
architecture patterns that they describe. Solutions are first proposed to programmers in tools 
that act as additions or modifications (“patches”) to the underlying language. When an 
addition or modification proves safe and beneficial to a large audience, it ends up being part 
of a new language. Most user interface toolkits or frameworks provide both additions and 
modifications. The additions are interactive objects and algorithms: graphics, interaction 
management, gesture recognition, etc. The modifications are new level 3 or even level 2 
architecture patterns: data-flow, scene graph, continuations, etc. The same holds for operating 
systems. Consider for instance the select call of Unix or the message queues of Windows: 
they provide mechanisms that are not native to the C (resp. C++) language and that allow 
asynchronous communication.  

In the above lifecycle, additions usually stay out of the language. As for modifications, 
three states are possible:  

 compatible modifications waiting for inclusion in a language, if someone can 
devise a clever way of including them;  

 modifications that have been identified as incompatible and either force the use of a 
middleware layer or limit the usefulness of the toolkit.  

 modifications that have not been identified as incompatible, and make the toolkit 
difficult or even dangerous to use.  
 
Compatibility as a goal. Ideally of course, one would be able to design compatible 
architecture patterns that answer all known software engineering scenarios of a given domain, 
and thus ultimately build a language that supports that domain. That language would offer a 
component model and a linking mechanism that would hold at all levels and allow to build 
“fractal” software where the architecture patterns would be the same at all levels of hierarchy 
of the software. That would, among other things, make middleware useless. That would also 
allow the implementation of multilanguage solutions at level 3, such as Microsoft's .Net 
which allows the use of different languages for addressing different application parts. But it 
seems that the current situation today is that most proposed solutions for interactive systems 
are in the second or third state above. As stated before, this makes programming interactive 
systems more difficult and error-prone than necessary. This also has dire consequences on 
project management and user interface quality, encouraging to develop user interfaces at the 
end of projects when constraining architectures are already in place.  

An exception to this situation would be the Smalltalk environment, which was explicitely 
designed along the lines of architecture consistency: “Smalltalk's design — and existence— 
is due to the insight that everything we can describe can be represented by the recursive 
composition of a single kind of behavioral building block (...)” [37] Even then, the limited 
industrial success of Smalltalk suggests that some key scenarios where not taken into account, 
the foremost being probably the interconnection with non-interactive software. C++ took the 
opposite stance, making it harder to develop interactive software. That shows how much 
understanding the possible architecture mismatches is important.  

4 Understanding mismatches  

We now propose a few reasons why architecture patterns proposed at level 3 for interactive 
software display incompatibilities with those offered by most programming languages. Most 
reasons listed below stem from the same cause: interactive software involves new 
stakeholders and generates new engineering scenarios. If we except project managers, 
maintenance managers or technical writers, most scenarios described earlier in this article 
involved programmers who build their own programs by including components written by 
others, or insert their components into existing computation engines. User interface design 
and development multiplies the roles: it introduces interaction designers, graphical designers, 



developers of low fidelity prototypes, developer of the final application, framework 
developer, developers of device drivers, interactive component developers, users setting 
parameters of their application, etc. All these stakeholders have different backgrounds and 
use different tools, and they generate complex development scenarios. The complexity is 
similar to that of very large systems, even though a single program is produced. This partly 
comes from a new step of software engineering: it focused on programmers, then on software 
engineering groups, and now needs to focus on multidisciplinary software engineering groups 
[38].  
4.1 New reuse patterns  

Software reuse defines a partial order relation between components: to reuse a component, a 
programmer must know how to address it, and uses that in the newly written component. This 
relation fostered many constructs in programming languages: names given to functions or 
variables, typing, encapsulation to hide details, name rewrite to provide growing levels of 
abstraction, etc. This binary relation is well adapted to scenarios where programmers add 
layers upon layers of code. It is not to scenarios involving other types of stakeholders, 
because in that case there are more than one reuse relations. That challenges many 
mechanisms, starting with encapsulation:  

 an interface designer or a user who changes a font in an application accesses a 
property name defined by the programmer of a text field; that name is not accessible to other 
programmers; consequently, components should have several interfaces depending on the 
type of stakeholders: developers of new interaction modalities, interactive component 
developers, application programmers, graphical designers, users;  

 even among programmers, the order relation may vary; for established concepts, 
the language and its core library reuse and encapsulate the operating system (see for instance 
the standard input in C); but with innovative user interfaces the application programmer is 
often also a device driver programmer, who for instance configures a wireless remote control 
to behave as a mouse; this requires framework developers to provide extension mechanisms 
for all operating systems, and breaks the traditional encapsulation hierarchy;  

 encapsulation usually supposes that the reused component is complete, whereas 
interface skinning or the multidisciplinary development of components leads to splitting 
components in halves that are managed independently: a programmer will develop the 
behaviour and a graphical designer the looks, for instance. This lessens the added value of 
class derivation.  
 
4.2 Contra-variance of reuse and control  

One of the most common reuse scenarios in interactive software is that of event sources: 
picking a target in graphics scenes or interpreting speech is hard enough that one prefers to 
reuse existing libraries. Reusing these components has led to eventdriven programming and 
to the progressive replacement of graphical libraries by programming framworks. This reuse 
pattern is fundamentally different from the historical reuse scenarios. Consider the partial 
order relation introduced in the previous section (reuse relation) and compare it with another 
partial order relation: that which relates two components when one transfers control to 
another one (control relation). In the historical reuse scenarios, the two relations are 
covariant: the caller knows the callee, because the main program is written after the libraries 
or at least linked later. With interactive software, the main program is still written last but 
initiative always comes from external sources: timers, network peers, or input devices. The 
two relations are thus contra-variant.  

This contra-variance has been accounted for in diverse ways: event-driven dialogue, main 
loops, callbacks, programming frameworks, IoC pattern, are all toolkit-level solutions for 
supporting it. However, we believe that it should be handled at a more basic level, because it 
is characterises the most important reuse pattern in interactive software. Apart from their 



initialisation, there are few situations where components are in a “covariant reuse” situation; 
actually, it is possible to describe fairly rich user interfaces without the concept of function, 
whereas it is impossible without a solution for the “contra-variant reuse”.  

Apart from the additional cost and complexity induced by this inversion of priorities 
between languages and interactive software, it causes several problems:  

 event emission is a good basis for encapsulating components: a button emits either 
press or release, a dialogue box with two buttons only emits ok or cancel, and so on; 
managing it outside of languages deprives programmers from that encapsulation;  

 there are solutions for providing both dataflow and event emission with a unified 
model; having function calls as the predominant paradigm in programs makes it difficult to 
implement, in particular because of diverging semantics as for sequencing;  

 using the functions paradigm creates a misunderstanding with functional core 
programmers: it does not help them to detect that user interfaces cannot be programmed as 
mere function calls, and pushes many teams to restrain to interface components that can be 
used with the functions paradigm;  

 and finally it plays a role in the “inversion of calendar” problem that strikes many 
large projects: when a user interface design is chosen towards the end of a project, managers 
realise that the architecture chosen years before does not allow it. Indeed, it is logical to 
choose an architecture early enough: at the beginning, the interface is still in the iterative 
design phase and there are other developments to start. But with no knowledge of the 
interaction styles that will be chosen one can only resort to the common denominator, which 
currently appears to be the function call, whereas the only certain thing is that it will not be 
the function call. It is therefore necessary to promote a basic pattern that accommodates the 
contra-variant reuse pattern, and if possible the covariant one for the commodity of functional 
core development.  
 
4.3 Locality of state and computations  

When reading software or locating errors, locality of behaviours is an important feature: 
having one page per algorithm makes it easier to use a divide-and-conquer approach. 
Functions are fit for that purpose when programs mostly consist of algorithms: each function 
implements a computation, which in addition makes computations reusable. However, 
computations and algorithms play a more minor part in interactive software. Most behaviours 
consist in managing a state, its modifications upon events, and the associated actions. For 
instance, leaving the graphical objects aside, a visual button is essentially made of a state 
(disabled, idle, pushed, etc) and ways of changing it. In computation-oriented programs 
functions are essential and data can be hidden in the call stack, and that led to functional 
programming. With interaction, state is essential in behaviours and the locality principle 
would require that all code that changes it is grouped. That pushed researchers to propose 
programming patterns based on finite state machines, Statecharts or Petri nets, but:  

 when using a computation-oriented language, the transitions are implemented as 
functions or methods and the principle of locality is not met;  

 functions and transitions are not as easy to match as functions and methods: all uses 
of function arguments do not easily transpose to transitions, and the expected sequencing 
properties are not always the same;  

 in the same way as functions can be combined in complex ways, many 
development scenarios involve the combination of several behaviours; for instance, a blinking 
icon has two orthogonal behaviours: the blinking, and the ability to be dragged across the 
screen; state management should allow to separate and combine states at will, just like for 
functions;  

 states and behaviours are an important part of reuse scenarios and thus should be 
part of the reuse patterns: with interactive systems, programmers do not reuse components by 
adding functions to them; they add event reactions or animations as much as they would 
change the graphical looks;  



 in addition to be combined or reused, behaviours sometimes need to be structured 
hierarchically: levels in a game or steps in a wizard are high level states that influence lower 
level behaviours such as the speed of targets or the enabling/disabling of buttons; hierarchical 
state machines are a local solution that mixes badly with the software reuse scenarios;  

 finally, not all behaviours have the same focus on state transitions; some, often 
represented by dataflows, are made of successive computations that alter quantitative states. 
Animation, for example, relies on combining algorithms to compute the positions of graphical 
objects. This creates a continuum between computations, dataflows, and state-transitions that 
would require a uniform organisation pattern.  
 
4.4 Architecture-related concurrency  

Interactive systems require concurrency in few situations only. When reading large 
documents, the user should be able to interact with the system even when the program is busy 
loading the file. For most other situations, one only needs to rely on the interleaving of 
external events which all occur asynchronously. However, software engineering scenarios 
and architecture induce some form of concurrency that needs to be handled properly.  

Consider a program that emits events when the user clicks on an icon. Classical 
interactive software engineering scenarios lead to providing that component in a library, so 
that programmers can reuse it and bind their code to events it emits. It may happen that 
several components are connected to this event source. For instance, an application 
programmer can bind both the modification of a text field and the opening of a dialogue box, 
both obtained from two widget programmers. Suppose the box emits a sound then an 
animated feedback when opening, and the text changes with an animation. Then for all 
purposes, these two widget programmers are in a concurrent situation: neither knows about 
the actions coded by the other, and nevertheless the application programmer may want to 
ensure a sequencing order: sound first then animations, for instance. That requires that the 
programming environment allows to express sequencing constraints on the actions triggered 
by events. This requirement is rarely fulfilled, and many commercial programs exhibit 
strange behaviours with that regard.  

As usual, one may be tempted to handle this requirement with the concepts or the syntax 
of the underlying language. For instance, the author used an animation library that 
encapsulated sequencing in a functional programming style. It was very elegant to use, except 
that it had to be implemented through nested event loops, and when sequencing more than 
two animations, the first animation might get stuck and the program continued its execution 
with two nested mainloops. Trying to hide the concurrency only made it bite programmers 
later. The safe solution is to use a concurrent language or a system of threads and 
semaphores, which forces user interface programmers to absorb complex concepts and does 
not make it easy to explicit sequencing properties of their code.  

4.5 Multiple hierarchies  

Programming languages manage two hierarchies in programs. First, they give an 
important role to the lexical hierarchy of code to manage components. Most names are visible 
only within a given lexical scope, which plays an important role in defining reusable 
functions and components. Languages like C++ associate the lifecycle of objects to their 
lexical scope. Some languages, like Occam, even use lexical scopes to define the concurrent 
or sequential execution of instructions. Second, most languages introduce a hierarchy or types 
or classes that is often used to represent a hierarchy of domain concepts. Interactive systems 
require that other hierarchies are managed by the language or toolkit, and can rely very little 
on syntax. When a component is made of sub-components, these can: • -be created in a given 
lexical scope and use the names defined in that scope; • -be derived from another type of 



components, using the class hierarchy proposed  
by object-oriented languages;  

• -belong to a given modality (graphics, speech, etc) and occupy a certain position in a 
modality-specific hierarchy (scene graph or widget containment for instance); that is the 
hierarchy seen by the specialist of that modality;  

• -influence the execution of their parent and sibling components, for instance because their 
sizes is used by the layout algorithm, because their current state influences the behaviour 
of another component, or because their mere presence changes the nature of the user 
interface: consider for instance a graphics layer that removes all colours from the interface 
whenever a modal dialogue box is displayed. There are multiple independent behaviour 
hierarchies, relatively independent from each other. For all these hierarchies, it is tempting 
for programmers either to map them to the  

existing hierarchies in languages, or to build one's own set of graphs. The first option often 
yields conflicts. For instance, it is tempting to use a class hiearchy to represent the nature of 
components: a hierarchy of graphical object classes, a hierarchy of speech object classes, etc. 
This potentially leads to very complex class hierarchies when containers are present: can 
graphical groups contain speech objects? can windows contain animation trajectories? The 
latter option creates less complexity but forces programmers to build their own hierarchy 
management system, which cannot benefit from services provided by the language for its own 
hierarchies, such as renaming and encapsulation.  

Furthermore, language hierarchies are limited to the scope of programs. They do not scale 
up to applications built as several programs. To do so, one needs to use middleware such as 
Corba, which provides a multi-program class hierarchy but at a very high cost. Ideally, a 
language should provide a hierarchy management that supports the hierarchies found in 
interactive systems, and valid at all levels of granularity, thus enabling to handle programs 
like components.  

5. Related work and research agenda  

This is not, by far, the first attempt at analysing the nature of programming languages and 
their issues. To begin with, all language designers appear to have carried out a critical 
analysis of existing languages. As already discussed in this paper, most did it with 
programmers in mind. Examples include Backus on functional programming [20], Kay on 
Smalltalk [37] or Stroustrup on C++ [19]. Prominent software engineering essayists often 
carry out the same type of analysis, based on their experience of industrial development; see 
Graham for a recent example [39]. Some researchers have tackled the issue of dealing with 
more complex software engineering scenarios. Aspect programming [40] and the meta-object 
protocol [41] are examples of that approach. Software architecture specialists have identified 
the problem of architecture mismatch [14] and analysed their causes and consequences, at a 
generic level. Several researchers from the interactive software community worked on 
resolving some mismatches posed by interactive software. For instance, Prospero is aimed at 
solving issues between different levels of tools in CSCW software development [42]. Wegner 
even goes further and challenges the very fact that algorithms should be central in 
programming, proposing interaction as the key construction [43].  

Our approach focuses on architecture and relies on the conviction that user interface 
development brings both problems and techniques for addressing them. A first list of 
problems has been presented in this article. The techniques are those of user interface design: 
requirements engineering and design techniques for usercentred design. We are convinced 
that an explicit use of these techniques, often used implicitly by language designers, can help 
understand the needs of interactive software stakeholders, the solutions proposed, and how to 
match them. Our experience with the user-centred design of the graphics module of a user 
interface environment [38] strengthens that conviction. We therefore propose a research 



agenda that could help understand to what extent solutions currently proposed by 
programming languages can be used for or adapted to the efficient development of interactive 
systems, or how they could be modified to support the expected development scenarios 
without forfeiting their other qualities. This agenda includes:  

 reviews of the software engineering and programming language literature to 
identify all stakeholders and scenarios taken into account in these domains;  

 identification of stakeholders and scenarios with modern and/or future interactive 
software;  

 measurements of how these scenarios are handled in current software;  
 identification and classification of requirements and properties expected from 

interactive software development tools and languages;  
 deconstruction of programming languages and theories to identify the supported 

architecture patterns and the underlying scenarios;  
 identification of the patterns in traditional or alternative languages that support the 

desired scenarios, and those that potentially conflict with them; this may lead us to discover 
that some works in interactive software architecture have exact equivalent in programming 
language research;  

 research of compatible patterns that support the scenarios from interactive software; 
in other words, re-application of the working methods of the language and software 
engineering communities once the deconstruction has been performed, including formal 
methods;  

 construction of a set of basic instructions and patterns adapted to interactive 
software, so as to build the equivalent of Microsoft .Net for developing interactive software 
with languages adapted to each part (graphical interface, functional core, speech interface, 
dialogue, etc).  
 
Conclusion  

In this paper, we have proposed to analyse programming languages and interactive software 
in terms of software architecture and in terms of stakeholders and scenarios supported by 
architectures. We have suggested that software architecture is present at several levels of 
granularity, the finest grain being handled by programming languages. We have described 
user interface toolkits as providing modifications to the architectures proposed by languages. 
We have listed several issues where languages and interactive software bring conflicting 
patterns, causing complexity that must be managed by programmers and that impedes 
innovation in user interaction. Finally, we have proposed a research agenda based on the 
identification of stakeholders, scenarios and architecture patterns that involves the application 
of language design techniques to interactive software tools or even interactive software 
languages. User interface design teaches us that humans are able to adapt to various designs, 
sometimes accepting systems that make them relatively inefficient. How much of this 
coadaptation is at work when we build user interface tools based on languages? So far, the 
user interface community has mostly focused on “getting the job done with the tools 
provided”, that is producing the expected user interfaces and taking the rest of software tools 
as immutable. Maybe we need some usability experts for ourselves!  
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Questions 

 

Prasun Dewan: 

Question: Regarding the influence of programming languages, all 
programming languages are Turing complete. Just because you find a 
language difficult to use could mean you don’t know how to use the 
language. 

Answer: I have lots of examples, but indeed it is really hard to prove it. 

 

Helmut Stiegler 

Answer: The language related notion of a control stack goes beyond a 
data-driven way of a processing model according to “last-in-first-out”. The 
notion is based on a “processing context” of a unit of processing (usually 
called a “procedure”) being automatically handled by an implicit mechanism 
and being independent from data visibly accessed by the unit of processing. 
This kind of control stack was introduced by Bauer and Samualtou in the 
Algre language, and a patent was granted to them. 

 


