
Reverse Engineering Cross-Modal User Interfaces for
Ubiquitous Environments

Renata Bandelloni, Fabio Paternò, Carmen Santoro

ISTI-CNR, Via G.Moruzzi,1

56124, Pisa, Italy
{Renata.Bandelloni, Fabio.Paterno, Carmen.Santoro}@isti.cnr.it

Abstract. Ubiquitous environments make various types of interaction platforms
available to users. There is an increasing need for automatic tools able to
transform user interfaces for one platform into versions suitable for a different
one. To this end, it is important to have solutions able to take user interfaces for
a given platform and build the corresponding logical descriptions, which can
then be manipulated to obtain versions adapted to different platforms. In this
paper we present a solution to this issue that is able to reverse engineer even
interfaces supporting different modalities (graphical and voice).

Keywords: Reverse Engineering, Cross-Modal User Interfaces, Model-based
Approaches.

1 Introduction

In recent years, one of the main characteristics of Information and Communication
Technology is the continuous proliferation of new interactive platforms available for
the mass market. They vary not only in terms of screen size, but also in terms of the
interaction modalities supported. Indeed, if we consider the Web, which is the most
common interaction environment, we can notice that recently a number of W3C
standards have been under development in order to also consider interaction
modalities other than the simple graphical one.

One important consequent problem is how to obtain applications that can be
accessed through such a variety of devices. It can be difficult and time-consuming to
develop user interfaces for each potential platform from scratch. In order to address
such issues in recent years there has been an increasing interest in model-based
approaches able to allow designers to focus on the main logical aspects without
having to deal with a plethora of low-level details related to all the possible details.
To this end, a number of device-independent markup languages have been proposed
to represent the relevant models in device-independent languages (see for example
XIML, UIML, UsiXML, TERESA XML). However, developing such model-based
specifications still takes considerable effort. In order to reduce such effort there are
two possible general approaches: informal-to-formal transformations or reverse
engineering. In informal-to-formal approaches the basic idea is to take informal
descriptions, such as graphical sketches or natural language descriptions of scenarios,

and try to infer, at least partly, the corresponding logical abstractions. Reverse
engineering techniques aim to obtain transformations able to analyse implementations
and derive the corresponding logical descriptions. Thus, they can be a useful step
towards obtaining new versions of an implementation more suitable for different
platforms.

Solutions based on syntactical transcoders (for example from HTML to WML)
usually provide results with poor usability because they tend to fit the same design to
platforms with substantial differences in terms of interaction resources. One possible
solution to this problem is to develop reverse engineering techniques able to take the
user interface of existing applications for any platform and then build the
corresponding logical descriptions that can be manipulated in order to obtain user
interfaces for different platforms that share the original communication goal, but are
implemented taking into account the interaction resources available in the target
platforms. This requires novel solutions for reverse engineering of user interfaces,
given that previous work has focused only on reverse engineering of graphical
desktop user interfaces.

In this paper we present ReverseAllUIs, a new method and the associated tool able
to address such issues. We first provide some background information regarding the
logical framework underlying this work and the various logical descriptions that are
considered. We introduce the architecture of our tool, indicating its main components,
their relations and describing its user interface. Then, we discuss how in our
environment both vocal and graphical interfaces can be reverse engineered through a
number of transformations by describing each transformation involved when
considering cross-modal interfaces (interfaces of applications that can be accessed
through either one modality or another one). Lastly, some conclusions along with
indications for future work are provided.

2 Related Work

Early work in reverse engineering for user interfaces was motivated by the need to
support maintenance activities aiming to re-engineer legacy systems for new versions
using different user interface toolkits [10, 13], in some cases even supporting
migration from character-oriented user interfaces to graphical user interfaces.

More recently, interest in user interface reverse engineering has received strong
impetus from the advent of mobile technologies and the need to support multi-device
applications. To this end, a good deal of work has been dedicated to user interfaces
reverse engineering in order to identify corresponding meaningful abstractions [see
for example 2, 3, 6, 7, 11]. Other studies have investigated how to derive the task
model of an interactive application starting with the logs generated during user
sessions [8]. However, this approach is limited to building descriptions of the actual
past use of the interface, which is described by the logs, but is not able to provide a
general description of the tasks supported, which includes even those not considered
in the logs. A different approach [5] proposes re-engineering Java graphical desktop
applications to mobile devices with limited resources, without considering logical
descriptions of the user interface. One of the main areas of interest has been how to

recover semantic relations from Web pages. An approach based on visual cues is
presented in [15], in which semantic relations usually apply to neighbouring rectangle
blocks and define larger logical rectangle blocks

The next section discusses the various possible logical levels that can be
considered for user interfaces in ubiquitous environments. Previous work in reverse
engineering has addressed only one level at a time. For example, Vaquita and its
successors [2, 3] have focused on creating a concrete user interface from Web pages
for desktop systems. WebRevenge [11] has addressed the same types of applications
in order to build only the corresponding task models.

In general, there is a lack of approaches able to address different platforms,
especially involving different interaction modalities, and to build the corresponding
logical descriptions at different abstraction levels: our work aims to overcome this
limitation.

3. Background

In the research community in model-based design of user interfaces there is a
consensus on what constitutes useful logical descriptions [4, 12, 14].

We provide a short summary for readers unfamiliar with them:

• The task and object level, which reflects the user view of the interactive
system in terms of logical activities and objects that should be manipulated in
order to accomplish them;
• The abstract user interface, which provides a modality independent
description of the user interface;
• The concrete user interface, which provides a modality dependent, but
implementation language independent, description of the user interface;
• The final implementation, in an implementation language for user interfaces.

Thus, for example we can consider the task ”select an artwork”, this implies the

need for a selection object at the abstract level, which indicates nothing regarding the
modality in which the selection will be performed (it could be through a gesture or a
vocal command or a graphical interaction). When we move to the concrete description
then we have to assume a specific modality, for example the graphical modality, and
indicate a specific modality-dependent interaction technique to support the interaction
in question (for example, selection could be through a radio-button or a list or a drop-
down menu), but nothing is indicated in terms of a specific implementation language.
When we choose an implementation language we are ready to make the last
transformation from the concrete description into the syntax of a specific user
interface implementation language. The advantage of this type of approach is that it
allows designers to focus on logical aspects and take into account the user view right
from the earliest stages of the design process.

In the case of interfaces that can be accessed through different types of devices the
approach has additional advantages. First of all, the task and the abstract level can be
described through the same language for whatever platform we aim to address, which

means through device-independent languages. Then, in our approach, TERESA XML
[1], we have a concrete interface language for each target platform. By platform we
mean a set of interaction resources that share similar capabilities (for example the
graphical desktop, the vocal one, the cellphone, the graphical and vocal desktop).
Thus, a given platform identifies the type of interaction environment available for the
user, and this clearly depends on the modalities supported by the platform itself.
Actually, in our approach the concrete level is a refinement of the abstract interface
depending on the associated platform. This means that all the concrete interface
languages share the same structure and add concrete platform-dependent details on
the possible attributes for implementing the logical interaction objects and the ways to
compose them indicated in the abstract level. All languages in our approach, for any
abstraction level, are defined in terms of XML in order to make them more easily
manageable and allow their export/import in different tools.

Another advantage of this approach is that maintaining links among the elements in
the various abstraction levels provides the possibility of linking semantic information
(such as the activity that users intend to do) and implementation levels, which can be
exploited in many ways. A further advantage is that designers of multi-device
interfaces do not have to learn the many details of the many possible implementation
languages because the environment allows them to have full control over the design
through the logical descriptions and leave the implementation to an automatic
transformation from the concrete level to the target implementation language. In
addition, if a new implementation language needs to be addressed, the entire structure
of the environment does not change, but only the transformation from the associated
concrete level to the new language has to be added. This is not difficult because the
concrete level is already a detailed description of how the interface should be
structured.

The purpose of the logical user interface XML-based languages is to represent the
semantics of the user interface elements, which is the type of desired effect they
should achieve: they should be able to allow the user to accomplish a specific basic
task or to communicate some information to the user. In particular, in TERESA XML
there is a classification of the possible interactors (interface elements) depending on
the type of basic task supported (for example single selection, navigator, activator, …)
and the ways to compose them. Indeed, the composition operators in TERESA XML
are associated with the typical communication goals that designers want to achieve
when they structure the interface by deciding how to put together the various
elements: highlighting grouping of interface elements (grouping), one-to-many
relations among such elements (relation), hierarchies in terms of importance
(hierarchy), or specific ordering (ordering).

4. Architecture

The architecture of our tool is represented in Figure 1. It can handle multiple types of
input and generate multiple types of output, which are represented by the arrows on
the border of the rectangle associated with the ReversAllUIs tool.

Fig. 1. The architecture of the tool.

Our current tool addresses VoiceXML, XHTML and XHTML Mobile Profile (MP)

as implementation languages, but we are planning to support additional languages
(such as X+V and Java, including the version for digital TV). One main characteristic
is that the tool can receive as input not only user interface implementations, but also
descriptions at intermediate abstraction levels, which can be reversed in order to
obtain higher level descriptions. The highest level description is the task model,
which, consequently, can only be an output for our tool.

Figure 2 shows the user interface of the tool. It allows the designer to select the

type of input and output file. In the list of available input files there are
implementation languages (such as XHTML and VoiceXML), concrete user
interfaces (CUI) that depend on the platform (such as desktop and vocal) and the
abstract specification (AUI), which is both implementation language and platform-
independent.

Both the source file and the resulting reversed file are displayed. In the bottom
some report messages are presented

VoiceXML XHTML XHTML MP

TERESA
Vocal

Concrete UI

TERESA
Desktop

Concrete UI

TERESA
Mobile

Concrete UI

TERESA
Abstract
Interface

ConcurTaskTrees
Task Model

………

………

ReverseAllUIs

Fig. 2. The user interface of the tool.

5. XHTML/CSS-to-Desktop or Mobile Concrete Descriptions
Transformation

The reverse tool can reverse both single XHTML pages and whole Web sites. A
Web site is reversed considering one page at a time and reversing it into a concrete
presentation. Thus, the tool builds connections among the different presentations
depending on the navigation structure of the Web site, and the presentations are
arranged into a single concrete description representing the whole Web site.

When a single page is reversed into a presentation, its elements are reversed into
different types of concrete interactors and combination of them. The reversing
algorithm recursively analyses the DOM tree of the X/HTML page starting with the
body element and going in depth. For each tag that can be directly mapped onto a
concrete element, a specific function analyses the corresponding node and extracts
information to generate the proper interactor or composition operator. In the event
that a CSS file is associated to the analysed page, for each tag that could be affected
by a style definition (such as background colour, text style, text font) the tool checks
possible property definitions in the CSS file and retrieves such information to make a
complete description of the corresponding concrete interactor.

Then, depending on the XHTML DOM node analysed by the recursive function,
we have three basic cases:

• The XHTML element is mapped into a concrete interactor. A tag can
correspond to multiple interactors (e.g. input or select tag) in this case the
choice of the corresponding interactor depends on the associated type or

attributes This is a recursion endpoint. The appropriate interactor element is
built and inserted into the XML-based logical description.

• The XHTML node corresponds to a composition operator, for example in the
case of a div or a fieldset. The proper composition element is built and the
function is called recursively on the XHTML node subtrees. The subtree
analysis can return both interactor and interactor composition elements.
Whichever they are, the resulting concrete nodes are appended to the
composition element from which the recursive analysis started.

• The XHTML node has no direct mapping to any concrete element. If the
XHTML node has no child, no action is taken and we have a recursion
endpoint, otherwise recursion is applied to the element subtrees and each
child subtree is reversed and the resulting nodes are collected into a grouping
composition.

Table 1 shows the main XHTML tags and the corresponding interactors/operators

for the desktop concrete description.

X/HTML Element CUI-Desktop
Element

 OrderedList(Ordering)
 Bullet(Grouping)
<table> Fieldset,

BgColor(Grouping)
DescriptionTable

<tr> Fieldset,
BgColor(Grouping)

TableRow
<td> Fieldset,

BgColor(Grouping)
TableData

<select> List_box
Drop_down_list

<select multiple> ListBox
<textarea> Textfield
<form> Form(Relation)
<input type=text> Textfield
<input type=checkbox> Checkbox
<input type=radio> Radiobutton
<input type=reset> ResetButton
<input type=submit> SubmitButton
<input type=button > Button

ButtonAndScript
<div> Fieldset, Bullet,

BgColor(Grouping)

<fieldset> Fieldset(Grouping)
<a> TextLink

ImageLink
mailto

<h1>..<h6>
 <i> <tt>
<code> <cite> <def>
<kbd> <big> <small>
<sub> <sup> <var>

Textual

 Image

Table 1. Reversing XHTML to CUI-Desktop.

As we can see from Table 1, some of the XHTML tags can be reversed into more

than one concrete element. The choice of the proper elements depends on the
attributes of the XHTML tags.

In the case of the <table> tag, we considered that often it is used in order to define
the layout of the page, even if it is generally considered not a good design choice.
When reversing a XHTML table it is necessary to recognise the purpose for which it
has been used. When it is a proper table showing data, it is reversed into the
corresponding table concrete element, otherwise it is considered as a technique for
grouping the contained elements. Some rules used to distinguish layout tables from
data tables are:

• tables with attribute “border = 0” are probably layout tables,
• tables with attribute border set to a value greater than 0 are probably data

tables,
• tables having tag <body> as a parent and no other sibling tags are layout

tables,
• tables having the summary attribute are data tables,
• tables that define a caption element are data tables.

After the first generation step, the logical description is optimised by eliminating

some unnecessary grouping operators (mainly groupings composed of one single
element) that may result from the first phase. This can happen for example with tags
such as <div> and <fieldset> that are automatically reversed into groupings but whose
content includes only a single interactor, such as piece of text and images that can be
joined into a single description interactor.

XHTML MP is a subset of XHTML more suitable for mobile devices. The
concrete description for the mobile device platform is also a subset of that for the
desktop system, it provides a smaller set of elements for implementing the higher
level interactors and composition operators. Thus, when a XHTML MP
implementation is found, then it is required to apply a transformation that works on a
subset of input and output of the transformation previously described.

6. VoiceXML to Vocal Concrete Description Transformation

The basic elements of a voice application written in VoiceXML are form(s) and
menu(s). The form element has the same purpose as the XHTML form, that is, to
collect information and pass them to a server for further processing. Thus, the
VoiceXML form is reversed into a Relation operator like the XHTML form. Inside
the form, we can find Grouping of interactors obtained from reversing the VoiceXML
form elements for entering input. Mainly they are specified through subdialog, record
and field.

Subdialog is a kind of smaller voice dialog contained in the main voice dialog, thus
it is reversed into a grouping of the contained elements.

Record performs the registration of a vocal input from the user in an audio file
format, which is reversed into a concrete vocal_input_file element.

Field is used to recognize user vocal input, not in an audio file format, but as text
that can be eventually matched against a grammar specified in the VoiceXML file.
The field can be reversed into a vocal_input_text element, in case it allows free or
grammar-driven vocal input, or into a vocal_selection in case it contains <option>
children nodes specifying the only possible answers among which the user can
choose. The field tag can specify a grammar to restrict the range of possible vocal
input from the user. Such a grammar is also retrieved and specified in the
corresponding concrete element.

In addition, the Relation composition obtained as output of reversing a form can
also contain a Grouping of control elements derived from reversing the VoiceXML
<clear> and <submit> tags.

The second basic element of VoiceXML presentations is the menu. The menu is

used to allow the user to navigate through the same dialogue or into a new one. Thus
the menu is reverse engineered into a concrete Ordering of navigator elements. More
specifically, this navigator can be: enumerate_menu, dtmf_menu or message_menu,
depending on the type of VoiceXML menu.

A properly designed voice user interface includes feedback messages resuming the

user activity. Each concrete interactor can define a feedback message associated to
the interaction object. In order to identify the feedback messages and associate them
to the proper interactor, we analyse all the messages contained in the vocal
presentation. Thus, all those messages that contain a field value reading as vocal
output are considered to be feedback messages of the field.

The elements described can be further composed by the Hierarchy operator in the
event that an increase or decrease of the vocal volume is detected. Another
composition of elements is identified when different VoiceXML interface elements
are enclosed between a starting and ending sound, in this case a Grouping structure is
associated with the interactors corresponding to the enclosed VoiceXML elements.

VXML Tag CUI-Vocal Element
<form> ChangeContext(Relation)
<block> Insert_sound, Insert_pause,

Change_volume,
Keywords(Grouping)

<subdialog> Insert_sound , Insert_pause,
Change_volume,
Keywords(Grouping)

<record> VocalInputFile
<field> VocalInputText

VocalSelection
<clear> ResetCmd
<reset> SubmitCmd
<menu> EnumerateMenu

DtmfMenu
MessageMenu

<prompt> FeedbackMessage
SimpleText

<paragraph> SimpleText
#text SimpleText
<link> VocalCommand
<prosody volume = “+X”> IncreaseVolume(Hierarchy)
<prosody volume = “-X”> DecreaseVolume(Hierarchy)
<audio> Sound

Table 2. Mappings from VXML to the Vocal Concrete User Interfaces.

7. Concrete Descriptions to Abstract Description Transformation

The Abstract User Interface is a platform- and implementation language-
independent description of the user interface, conversely to the Concrete User
Interface, which is a language specific for each platform for which the user interface
is designed. This means that reversing any platform specific concrete description
yields an abstract description always in the same language. Since in TERESA XML
the concrete descriptions are a refinement of the abstract one, they add
implementation details to the higher level interactors defined in the abstract
descriptions. The process for reversing a concrete description into the corresponding
abstract one is quite simple, since it is enough to remove the lower level details from
the interactor and composition operators specification, while the structure of the
presentations and the connections among presentations remain unchanged.

CUI-Desktop CUI-Vocal Abstract Interface
OrderedList

alphabeticalOrder
Keywords

Ordering

BiggerFont IncreaseVolume
DecreaseVolume

Hierarchy

Form ChangeContext Relation
Fieldset
Bullet
BgColor
Bullet

InsertSound InsertPause
ChangeVolume
Keywords

Grouping

RadioButton
ListBox
DropDownList

VocalSelection

SelectionSingle

CheckBox
ListBox

 VocalSelection

SelectionMultiple

Textfield VocalInputText TextEdit
Textfield VocalInputText NumericalEdit

NOT SUPPORTED VocalInputFile ObjectEdit
ImageMap NOT SUPPORTED PositionEdit
TextLink
ImageLink
Button

VocalCommand
EnumerateMenu
DtmfMenu MessageMenu

Navigator

ResetButton
ButtonScript
MailTo

ResetCmd
SubmitCmd
CmdAndScript

Activator

SimpleText
TextFile

SimpleText TextFile
AudioFile

Text

Image Sound Object
TextImage
Table

VocalDescription Description

NOT
SUPPORTED

FeedbackMessage Feedback

Table 3. Mappings of CUI-Desktop and CUI-Vocal elements to Abstract elements.

8. Example Applications

Figure 3 shows an example of a XHTML page for the desktop platform. It allows
the user to navigate among different pages through a navigation menu on the left and
shows a form that can be filled in and submitted for registering to a User Interface
Workshop event. As you can note, when the registration page is visualised, the related
link in the navigation menu on the left does not visualise “Registration” as a link.

Figure 4 shows the result of reversing the XHTML page into a Concrete User
Interface. The representation of the Concrete User Interface has been obtained by
loading the resulting CUI-Desktop specification in the TERESA tool, which shows in
the tree-like format the higher level information (AUI level). The same figure also
shows an excerpt of the XML specification of the concrete user interface obtained.
Comparing the XHTML page shown in Figure 3 and the corresponding logical
description shown in Figure 4 we can see that the reverse engineering of the page
generates a main column grouping (Grouping_1_2) of two main groupings:
Grouping_1_3 composing the interactors corresponding to the image and text at the
top of the page and Grouping_1_6 containing two further compositions:
Grouping_1_7 collects the interactors obtained from reversing the links of the
navigation menu on the left of the page, while Grouping_1_11 composes the text
introducing the form and the Relation that contains all the interactors corresponding
to the form elements collected in Grouping_1_12. The form commands submit and
reset have been reversed into the corresponding activators and collected into
Grouping_1_13. In the XML specification shown on the right side of Figure 4 we can
see excerpts of the corresponding concrete description. In particular, the XML shows
how the Relation composition operator is implemented by a form (form1) and is
connected to a registrationDone presentation through the Submit1_1 button, together
with the concrete interface details of the SingleSelection element named taxiRequired.

Fig. 3. Desktop XHTML example page.

Fig. 4. An abstract description of the graphical example (left) and an excerpt of the

corresponding XML concrete description (right).

Figure 5 shows the vocal VoiceXML version of the simple application considered.
The vocal interface starts by asking the user which dialogue to start with. Then, it
accesses the registration dialogue as requested and continues to prompt for
information to fill in the vocal form and then submit it. Figure 6 provides a
representation of the result obtained by reversing the VoiceXML application into a
Concrete User Interface. The tree view shows the abstract elements, while the XML
code excerpt shows the lower level concrete details. For example, the figure shows
how the part of the dialogue delimited by the two “Beep” sounds has been reversed
into the grouping Grouping_1_3. The concrete interface can implement the grouping
operator in different ways (see Table 2, subdialog element), in this case we see that
the “insert sound” option has been recognized. In Figure 6 we can also see an excerpt
of the concrete specification concerning the part of the dialogue that prompts for the
taxi option. The XML excerpt shows the message that the vocal interface uses both
for prompting and for giving feedback to the user. Moreover, it also supports the
recognition of the grammar associated to this particular vocal field.

Fig.5. Vocal VXML interface example.

Fig. 6. An abstract description of the vocal example (left) and an excerpt of the corresponding

XML concrete description (right).

9. Abstract Description to Task Model Transformation

The task models that we consider are specified in the ConcurTaskTrees (CTT)
notation [12], which describes them in a hierarchical format with various temporal
relations that can be indicated among tasks. In addition, a number of attributes can be
specified for each task. A CTT task is characterised by its “category” and “type”.

The category indicates how the task performance is allocated and can take the

following values:
• Abstraction: for higher level tasks with subtasks that do not have the same

type of allocation. This category of task is associated with composition
operator elements in the logical interface specification and therefore, it might
be associated to the overall access to one presentation,.

• Interaction: for tasks obtained by reversing interaction interactor elements.
• Application: for tasks obtained by reversing only-output interactor elements.

The root node of the task model is an abstraction task representing the whole

application. As the whole application is generally composed of several presentations,
the ReverseAllUIs tool starts building the task model associated to each presentation.
Each presentation of the Abstract User Interface can contain both elements that are
elementary interactor objects or composition operator elements.
The composition operators can contain both simple interactors and, in turn, multiple
composition operators. Each composition operator in the logical user interface is
reversed into an abstract task node, whose children are the tasks obtained by reversing
the elements to which the abstract composition operator applies. The reversed
children are connected through CTT temporal operators depending on the type of
composition operator, as indicated in Table 4. For instance, if there are several
objects in the same presentation and no constrain is put on the sequence about how
the user is expected to interact with the different objects in the presentation, this
behaviour will be translated by means of a concurrent CTT operator, which models
the possibility of interacting in any order with the different objects.

Abstract
Composition Operator

CTT Temporal Operator

Grouping Concurrency
Ordering SequentialEnabling
Hierarchy SequentialEnabling or

Concurrency

Relation Concurrency (among
elements contained in the
<first_expression> tag)

Disabled by (elements

contained in
<second_expression> tag)

Table 4. Reversing CUI composition operators into CTT temporal operators.

Each elementary interactor is reversed into a CTT basic task, whose category is
identified through the rules explained before. Further rules exist for reversing
elementary interactors. For instance, if an interactor supports an activity that might be
or not carried out by the user, then such interactor will be reversed onto an optional
task. Also, elementary abstract interactors can be mapped onto elementary tasks by
considering the type of activity supported by the task, which can be specified with
CTT notation: for instance, a text_edit AUI object will be mapped onto an interaction
task having “Edit” as its type of activity. As a particularly interesting case of
elementary interactor we consider the reverse engineering of navigators, which are
objects allowing moving from one presentation to another one, and therefore, their
reverse engineering involves both the presentation to which the navigator belongs and
the presentations that it is possible to reach through such navigators. The basic rule
that has been identified for reverse engineering navigators is that elementary
interaction tasks corresponding to navigators can disable the set of tasks associated
with the current presentation and enable the next presentation. Once all single
presentations have been reversed, the corresponding CTT subtrees must be composed
to build up the whole application task model. The presentation subtrees are inserted,
directly or grouped through a further abstraction node, as children of the root.

We describe how to reverse navigators by considering the example page considered in
Figure 3. From the point of view of the abstract user interface such presentation can
be seen as a presentation P1 connected to more than one presentation. Referring to
Figure 7, such presentations are respectively reversed into the abstract tasks Access
Form Results, Access Home Page, Access Organisers Page. Then, the latter
presentations can be accessed by means of navigators which are reversed into
corresponding interaction tasks, in our example they respectively correspond to Select
Send Form, Select Home, Select Organisers. The fact that through navigators it is
possible to reach the corresponding different presentations is modelled by connecting
such tasks to the correspondingly related abstract tasks through a SequentialEnabling
operator (represented by the >> symbol), and forming in turn three higher level
abstract tasks, which in our case correspond to Send Form, Access Home and Access
Organisers tasks. Such tasks will be in turn connected each other through a Choice
temporal operator (represented by the [] symbol, see Figure 7) to model the fact that
the user can select only one of these paths. The abstract task obtained by such
composition is in turn connected through a disabling operator with the subtree derived
by reverse engineering the other elements belonging to the presentation. The disabling

operator models the fact that when the user selects the navigation to a different page,
it will disable the other elements in the presentation.

Fig. 7. Reverse engineering of multiple connections.

As another type of navigator we consider the case when a presentation contains at
least one link to a page external to the current application, in the task model an
interactive task, called Select External Link, is added as subtask of the node grouping
all the subtasks obtained by reverse engineering the whole application, which
indicates that at this point the user leaves the application.

The recursive rules used in reversing the abstract logical description into the
corresponding task model can generate task models with more nodes than what is
strictly required. It may happen to find out abstraction tasks having only one child. In
this case, the abstract task is removed and the child node is raised one level up. The
CTT description language requires specifying the parent and sibling nodes for each
task, hence, while removing a task from the tree and replacing it with its child,
relationships among nodes must be updated.

10. Application of Reverse Engineering in Ubiquitous
Environments

Reverse engineering can be used to support semantic redesign. In semantic redesign
the basic idea is to transform the logical specification for a platform into a logical
specification for a different one according to a number of design criteria.

Another useful application of reverse (and forward) engineering, combined with
semantic redesign is the generation of migratory user interfaces. They are interfaces
that can migrate among different devices while adapting to the characteristics of the
target platform and maintaining task continuity, so that the users have not to restart
from scratch their activity when they change the device after a migration request.

We have developed a migration environment based on a proxy/migration server to
which users have to subscribe for accessing Web applications through it. If the
interaction platform used is different from the desktop, the server transforms the
considered page by building the corresponding abstract description and using it as a
starting point for creating the implementation adapted for the device accessing it.
Also, in order to support task continuity, when a request of migration to another
device is triggered, the environment detects the state of the application modified by
the user input (elements selected, data entered, …) and identifies the last element
accessed in the source device. Then, a version of the interface for the target device is
generated, the state detected in the source device version is associated with the target
device version so that the selection performed and the data entered are not lost.
Lastly, the user interface version for the target device is activated at the point
supporting the last basic task performed in the initial device.

11. Conclusions and Future Work

In the paper we have presented the ReverseAllUIs environment supporting reverse
engineering of user interfaces for different platforms and modalities (graphical and
voice).

These features make the tool useful to reverse engineer user interfaces in
ubiquitous environments, which are characterised by the presence of various types of
interaction platforms.

The logical descriptions obtained in this way can be used for many purposes. One
typical use is to exploit them in order to obtain user interfaces for different platforms
by exploiting the semantic information reconstructed in order to obtain more
meaningful results (through semantic redesign [9]) when deriving implementations
for different target platforms. The task models obtained can also be used to support
usability evaluation.

Future work will be dedicated to further increasing the number of interactive
platforms and modalities supported by the reverse engineering tool. We also plan to
develop a Web user interface of the reverse engineering tool so that users can access it
remotely, indicate the URL of a web site and receive back the specification of the
corresponding logical abstractions requested.

References

1. Berti, S., Correani, F., Paternò, F., Santoro, C., The TERESA XML Language for the
Description of Interactive Systems at Multiple Abstraction Leveles, Proceedings Workshop
on Developing User Interfaces with XML: Advances on User Interface Description
Languages, May 2004, pp.103-110.

2. Bouillon L., Vanderdonckt, J., Retargeting Web Pages to other Computing Platforms,
Proceedings of IEEE 9th Working Conference on Reverse Engineering WCRE'2002
(Richmond, 29 October-1 November 2002), IEEE Computer Society Press, Los Alamitos,
2002, pp. 339-348.

3. Bouillon L., Vanderdonckt J., Chieu Chow K., Flexible Re-engineering of Web Sites, in
Proceedings of the International conference on Intelligent User Interfaces, (IUI'04), January,
Madeira, ACM Press, 2004, pp 132-139

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers. Vol. 15, No. 3, June 2003, pp. 289-308.

5. Canfora, G., Di Santo, G., Zimeo, E., Toward Seamless Migration of Java AWT-Based
Applications to Personal Wireless Devices, Proceedings WCRE’04, pp.1-9.

6. El-Ramly, M. Ingiski, P. Stroulia, E. Sorenson, P. Matichuk, B. Modeling the System-User
Dialog using Interaction Traces, in Proc. of the eighth Working Conference on Reverse
Engineering (2-5 Oct 2001, Stuttgart, Germany), IEEE Computer Soc. Press, Los Alamitos,
USA, 2001, pp. 208-217.

7. Gaeremynck, Y. Bergman, L. D. Lau T., “MORE for less: model recovery from visual
interfaces for multi-device application design”, Proceedings of the international conference
on Intelligent user interfaces, January 2003 (Miami, Florida, USA), ACM Press, New York,
USA, 2003, pp 69-76

8. Hudson, S., John, B., Knudsen, K., Byrne, M., “A Tool for Creating Predictive Performance
Models from User Interface Demonstrations”, Proceedings UIST’99, pp.93-102, ACM
Press, 1999.

9. Mori, G. Paternò, F. Automatic semantic platform-dependent redesign, Proceedings Smart
Objects and Ambient Intelligence 2005, pp.177-182, Grenoble, October 2005.

10. Moore, M.M. Representation Issues for Reengineering Interactive Systems, ACM
Computing Surveys Special issue: position statements on strategic directions in computing
research, Vol. 28, No. 4, Dec 1996, article # 199, ACM Press, New York, NY, USA

11. Paganelli, L., and Paternò, F. Automatic Reconstruction of the Underlying Interaction
Design of Web Applications, Proceedings Fourteenth International Conference on Software
Engineering and Knowledge Engineering, pp.439-445, ACM Press, Ischia, July 2002.

12. Paternò F., Model-based design and evaluation of interactive applications, Springer Verlag,
1999. ISBN 1-85233-155-0.

13. Stroulia, E., Kapoor, R.V., Reverse Engineering Interaction Plans for Legacy Interface
Migration, Proceedings of CADUI 02, pp. 295--310.

14. Szekely, P., 1996. Retrospective and Challenges for Model-Based Interface Development.
2nd International Workshop on Computer-Aided Design of User Interfaces, Namur, Namur
University Press.

15. Xiang P., Shi Y., Recovering semantic relations from web pages based on visual cues,
Proceedings of the 11th international conference on Intelligent user interfaces, January 29-
February 01, 2006, Sydney, Australia, pp.342-344.

