

Bringing Usability Concerns to the Design of Software
Architecture1

Bonnie E. John1, Len Bass2, Maria-Isabel Sanchez-Segura3, Rob J. Adams1

1 Carnegie Mellon University, Human-Computer Interaction Institute, USA
{bej, rjadams}@cs.cmu.edu

2 Carnegie Mellon University, Software Engineering Institute, USA
ljb@sei.cmu.edu

3 Carlos III University of Madrid, Computer Science Department, Spain
misanche@inf.uc3m.es

Abstract. Software architects have techniques to deal with many quality
attributes such as performance, reliability, and maintainability. Usability,
however, has traditionally been concerned primarily with presentation and not
been a concern of software architects beyond separating the user interface from
the remainder of the application. In this paper, we introduce usability-
supporting architectural patterns. Each pattern describes a usability concern that
is not supported by separation alone. For each concern, a usability-supporting
architectural pattern provides the forces from the characteristics of the task and
environment, the human, and the state of the software to motivate an
implementation independent solution cast in terms of the responsibilities that
must be fulfilled to satisfy the forces. Furthermore, each pattern includes a
sample solution implemented in the context of an overriding separation based
pattern such as J2EE Model View Controller.

1. Introduction

For the past twenty years, software architects have treated usability primarily as a
problem in modifiability. That is, they separate the presentation portion of an
application from the remainder of that application. This separation makes it easier to
make modifications to the user interface and to maintain separate views of application
data. This is consistent with the standard user interface design methods that have a
focus on iterative design – i.e. determine necessary changes to the user interface from
user testing and modify the system to implement these changes. Separating the user
interface from the remainder of the application is now standard practice in developing
interactive systems.

Treating usability as a problem in modifiability, however, has the effect of
postponing many usability requirements to the end of the development cycle where
they are overtaken by time and budget pressures. If architectural changes required to

* This work supported by the U. S. Department of Defense and the NASA High Dependability

Computing Program under cooperative agreement NCC-2-1298.

2 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

implement a usability feature are discovered late in the process, the cost of change
multiplies. Consequently, systems are being fielded that are less usable than they
could be.

Recently, in response to the shortcomings of relying exclusively on separation as a
basis for supporting usability, several groups have identified specific usability
scenarios that are not well supported by separation, and have proposed architectural
solutions to support these scenarios [2,3,5,6,11]. In this paper, we move beyond
simply positing scenarios and sample solutions by identifying the forces that conspire
to produce such scenarios and that dictate responsibilities the software must fulfill to
support a solution. Following Alexander [1], we collect these forces, the context in
which they operate, and solutions that resolve the forces, into a pattern, in this case a
usability-supporting architectural pattern.

In the next section, we argue that software architects must consider more than a
simple separation-based pattern in order to achieve usability. We then discuss why we
are focusing on forces and why the forces that come from prior design decisions play
a special role in software creation. In section 4, we describe our template for these
patterns and illustrate it with one of the usability scenarios previously identified by
several research groups. We also comment on the process for creating these patterns.
Finally, we conclude with how our work has been applied and our vision of future
work.

2. Usability Requires More than Separation

The J2EE Model-View-Controller (J2EE-MVC) architectural pattern [12], appears in
Fig. 1. This is one example of a separation based pattern to support interactive
systems. The model represents data and functionality, the view renders the content of
a model to be presented to the user, and the controller translates interactions with the
view into actions to be performed by the model. The controller responds by selecting
an appropriate view. There can be one or more views and one controller for each
functionality.

The purpose of this pattern is explained by Sun as follows [12]: “By applying the
Model-View-Controller (MVC) architecture to a JavaTM 2 Platform, Enterprise Edition
(J2EETM) application, you separate core business model functionality from the
presentation and control logic that uses this functionality. Such separation allows
multiple views to share the same enterprise data model, which makes supporting
multiple clients easier to implement, test, and maintain.” Modifications to the
presentation and control logic (the user interface) also become easier because the core
functionality is not intertwined with the user interface. A number of such patterns
have emerged since the early 1980s including the original Smalltalk MVC and
Presentation Abstraction Control (PAC) [8] and they have proven their utility and
have become common practice.

Bringing Usability Concerns to the Design of Software Architecture 3

Model
- Encapsulates application state
- Responds to state queries
- Exposes application functionality
- Notifies views of changes

View
- Renders the models
- Requests updates from models
- Sends user gestures to controllers
- Allows controllers to select view

Controller
- Defines application behavior
- Maps user actions to model updates
- Selects view for response
- One for each functionality

State query

Change Notification

View Selection

User Gestures

Change
State

Method Invocations

Events

Fig. 1. J2EE-MVC structure diagram (adapted from [12]).

The problem, however, is that achieving usability means more than simply getting the
presentation and control logic correct. For example, consider cancelling the current
command, undoing the last command, or presenting progress bars that give an
accurate estimate of time to completion. Supporting these important usability
concerns requires the involvement of the model as well as the view and the controller.
A cancellation command must reach into the model in order to terminate the active
command. Undo must also reach into the model because, as pointed out in [10],
command processing is responsible for implementing undo and command processing
is carried out in the model in J2EE-MVC. Accurate time estimates for progress bars
depend on information maintained in the model. This involvement of multiple
subsystems in supporting usability concerns is also true for the other separation based
patterns. Thus, usability requires more than just separation.

3. The Forces in Usability-Supporting Architectural Patterns

The patterns work pioneered by Christopher Alexander in the building architecture
domain [1] has had a large impact on software engineering, e.g. [8,10]. Following
Alexander’s terminology, a pattern encompasses three elements: the context, the
problem arising from a system of clashing forces, and the canonical solution in which
the forces are resolved. The concept of forces and their sources plays a large role in
defining the requirements that a solution must satisfy.

As we mentioned above, previous work [2,3,5,6,11] focused on identifying
usability scenarios not well served by separation and providing an example solution,
architectural or OOD. These solutions did indeed support the scenarios, but included
design decisions that were not dictated by, nor traceable to, specific aspects of the
scenarios. In the work presented here, this lack of traceability is remedied by
Alexander’s concept of forces.

Figure 2 depicts the high-level forces acting on a system of people and machines
to accomplish a task. In general, forces emanate from the organization that causes the
task to be undertaken.

4 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

User´s Organizational Settings

Task in an Environment

System

Forces

Forces

Benefits

Fig. 2. Forces influencing the solution and benefits of the solution.

That is, the organization benefits from efficiency, the absence of error, creativity, and
job satisfaction, to varying degrees, forcing the people to behave and the machines to
be designed to provide these benefits. The costs of implementing, or procuring,
software systems that provide such benefits is balanced against the value of those
benefits to the organization. Although the balance is highly dependent on the specific
organization and will not be discussed further, our work provides a solid foundation
for determining costs, benefits, and the link between them.

User´s Organizational Settings

Task in an Environment

Forces

System

Users

Human
desires and
capabilities

Software

Benefits
realized
when the

solution is
provided

State of the
software

General
responsibilities

Specific Solution (more
detail): e.g., architecture,

software tactics

Forces

Forces

Forces

Previous
design

decisions

Forces
Benefits

Fig. 3. Forces impacting the software architecture.

Figure 3 gives more detail about the forces acting on the software that is the object of
design. In addition to the general organizational forces that put value on efficiency,
the reduction of errors and the like, there are specific forces placed on the design of a

Bringing Usability Concerns to the Design of Software Architecture 5

particular software application, which may conflict or converge, but are eventually
resolved in a design solution. These forces have several sources: the task the software
is designed to accomplish and the environment in which it exists, the desires and
capabilities of humans using the software, the state of the software itself, and prior
design decisions made in the construction of the software in service of quality
attributes other than usability (e.g., maintainability, performance, security).

The first three sources of forces, task and environment, human, and software state,
combine to produce a general usability problem and a set of general responsibilities
that must be satisfied by any design purporting to solve the problem. These
responsibilities can serve as a checklist when evaluating an existing or proposed
software design for its ability to solve a given usability problem.

Combining these general responsibilities with the forces exerted by prior design
decisions produces a specific solution, that is, an assignment of responsibilities to new
or existing subsystems in the software being designed. If we assume, for example, the
common practice of using an overall separation-based architectural pattern for a
specific design, the choice of this pattern introduces forces that affect any specific
solution. In this sense, our usability-supporting architectural patterns differ from other
architectural patterns in that most other patterns are presented as if they were
independent of any other design decisions that have been made.

We now turn to the elements of a usability-supporting architectural pattern,
illustrated with an example.

4. A Template for Usability-Supporting Architectural Patterns:
Example & Process

Table 1 presents a template for a usability-supporting architectural pattern, containing
the context, the problem, and both a general solution and a specific solution. This
template is based on the concepts in Alexander’s patterns [1], past experiences
teaching architectural support for usability problems [6,11], and usability evaluation
of the pattern format itself. For example, the forces are listed in columns according to
their source under the Problem section of the template. Each row of forces is resolved
by a general responsibility of the software being designed. Even though the
responsibilities constitute the General Solution, we place them in the rows occupied
by the forces that they resolve because this spatial configuration emphasizes the
traceability of responsibilities back to the forces. In the Specific Solution we repeat
the general responsibilities rather than simply pointing to them, because it is easier for
the designer to read the text of the general responsibility in proximity to the prior
design decisions than to continually switch between different sections of the pattern
template. As with the general responsibilities, the rows in the Specific Solution
provide a traceability lacking in our previous presentations of similar material.

6 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

Table 1. Usability-supporting architectural pattern template.
Name: The name of the pattern

Usability Context
Situation: A brief description of the situation from the user’s perspective that makes
this pattern useful
Conditions on the Situation: Any conditions on the situation constraining when the
pattern is useful.
Potential Usability Benefits: A brief description of the benefits to the user if the
solution is implemented. We use the usability benefit hierarchy from [3,5] to express
these benefits.

Problem General solution
Forces exerted by
the environment
and the task. Each
row contains a
different force

Forces exerted
by human
desires and
capabilities.
Each row
contains a
different force

Forces exerted by
the state of the
software. Each
row contains a
different force.

Responsibilities of
the general
solution that resolve
the forces in the row.

Specific Solution
Responsibilities of
general solution
(repeated from the
General Solution
column)

Forces that
come from
prior design
decisions

Allocation of
responsibilities to
specific
components.

Rationale justifying
how this assignment
of responsibilities to
specific modules
satisfy the problem

Component diagram of specific solution
Sequence diagram of specific solution
Deployment diagram of specific solution (if necessary)

4.1 Cancellation: An Example of a Usability-Supporting Architectural Pattern

Consider the example of canceling commands. Cancellation is an important usability
feature, whose value is well known to UI specialists and users alike, which is often
poorly supported even in modern applications. This example shows the extent to
which a usability concern permeates the architecture. Space does not permit us to
include a completed pattern for this example, so we will illustrate specific points with
selected portions of the pattern.

Usability Context. Table 2 contains the Name and the Usability Context portions of
the usability-supporting architectural pattern for canceling commands. The Situation
briefly describes the pattern from the point of view of the user, similar to the situation
in other pattern formats. However, the Conditions section provides additional
information about when the pattern is useful in the usability context. For example,
cancellation is only beneficial to users when the system has commands that run longer
than a second. With faster commands, users do not get additional benefit from
cancellation over simply undoing a command after it has completed. The loci of
control may also appear in the Condition section. In our example, the cancellation
may be initiated by the user or by the software itself in response to changes in the

Bringing Usability Concerns to the Design of Software Architecture 7

environment. The last section in the usability context is the Potential Usability
Benefits to the user if the solution is implemented in the software. Quantifying these
benefits will depend on the particular users, tasks, and organizational setting and is
beyond the scope of this paper. However, the list of potential benefits and their
rationale is a starting point for a cost/benefit analysis of providing the solutions in the
pattern. The benefits are cast in terms of the benefit hierarchy given in [3,5] ranging
from efficiency, to supporting non-routine behavior (i.e., problem-solving, creativity,
or learning), to user confidence and comfort. The ability to cancel commands has the
potential to benefit each of these categories.

The Problem and General Solution

Table 2. Usability context of the Cancelling Commands pattern.

Name: Cancelling Commands
Usability Context

Situation: The user issues a command then changes his or her mind, wanting to
stop the operation and return the software to its pre-operation state. It doesn’t
matter why the user wants to stop; he or she could have made a mistake, the
system could be unresponsive, or the environment could have changed.
Conditions of the Situation: A user is working in a system where the software
has long-running commands, i.e., more than one second.
The cancellation command can be explicitly issued by the user, or through some
sensing of the environment (e.g., a child’s hand in a power car window).

Potential Usability Benefits:
A. Increases individual user effectiveness

A.1 Expedites routine performance
A.1.2 Reduces the impact of routine user errors (slips) by allowing users

to revoke accidental commands and return to their task faster
than waiting for the erroneous command to complete.

A.2 Improves non-routine performance
A.2.1 Supports problem-solving by allowing users to apply commands

and explore without fear, because they can always abort their
actions.

A.3 Reduces the impact of user errors caused by lack of knowledge
(mistakes)
A.3.2 Accommodates mistakes by allowing users to abort commands

they invoke through lack of knowledge and return to their task
faster than waiting for the erroneous command to complete.

B. Reduces the impact of system errors
B.2 Tolerates system errors by allowing users to abort commands that aren’t

working properly (for example, a user cancels a download because the
network is jammed).

C. Increases user confidence and comfort by allowing users to perform without
fear because they can always abort their actions.

Sections of the pattern are the heart of this paper’s contribution to the research in
usability and software architecture. Previous research jumped from a general scenario,
like that in our Situation section, directly to a short list of general responsibilities and
an architectural solution [2,3,5] or to detailed design solution [6] using the expertise

8 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

of the authors. Considering the forces is a step forward in codifying the human-
computer interaction and software engineering expertise that was tacit in the previous
work. Making tacit knowledge explicit provides a rationale for design
recommendation, increases the understanding of the software engineers who use these
patterns to inform their design, and provides a basis for deciding to include or exclude
any specific aspect of the solution.

The Problem is defined by the system of forces stemming from the task and
environment, recurring human desires and relevant capabilities, and the state of the
software itself. These forces are arranged in columns and rows, a portion of which is
shown in Table 3 for Cancelling Commands. Each row of conflicting or converging
forces is resolved by a responsibility of the software, presented in the rightmost
column of Table 3. These responsibilities constitute a General Solution to the
problem.

The first row in the Problem and General Solution records the major forces that
motivate the general usability situation. In our example, the facts that networks and
other environmental systems beyond the software are sometimes unresponsive, that
humans make mistakes or change their minds but do not want to wait to get back to
their tasks, and that the software itself is sometimes unresponsive dictate that the
software provide a means to cancel a command. The subsequent rows list other forces
that come into play to dictate more specific responsibilities of the software. Some
forces are qualitative and some are quantitative. For example, the middle of Table 3
shows a quantified human capability force that produces a performance responsibility;
the software must acknowledge the reception of a cancel command within 150 ms and
in a manner that will be perceived by the user [2]. These forces encapsulate decades
of human performance research and provide specific performance and UI design
guidance in a form that is usable and understandable by software designers.

In some rows, the forces converge and the responsibility fulfills the needs of the
different sources of force. For example, in the second row of Table 3, both the
environment and the human are unpredictable in their need for the cancellation
function. The responsibilities that derives from these needs, that the system always be
listening for the cancellation request and that is always be collecting the necessary
data to perform a cancellation, solve both these compatible forces. Sometimes the
forces conflict, as in part of the last row of Table 3, where the user wants the
command to stop but the software is unresponsive. The responsibility must then
resolve these opposing forces, in this case, going outside the software being designed
to the system in which it runs.

Process of Creating the Problem and General Solution. Our process of creating the
entries in the Problem and General Solution columns begins by examining prior
research in usability and software architecture.

Bringing Usability Concerns to the Design of Software Architecture 9

Table 3. Portion of the Problem and General Solution for Cancelling Commands.

Problem General solution
Forces exerted by
the environment
& task.

Forces exerted by
human desires
and capabilities.

Forces exerted by
the state of the
software.

General
responsibilities of
the software.

Networks are
sometimes
unresponsive.

Sometimes changes
in the environment
require the system to
terminate

Users slip or
make mistakes, or
explore
commands and
then change their
minds, but do not
want to wait for
the command to
complete.

Software is
sometimes
unresponsive

Must provide a
means to cancel a
command

No one can predict
when the
environment will
change

No one can
predict when the
users will want to
cancel commands

 Must always listen
for the cancel
command or
environmental
changes.

Must be always
listening and
gathering the
actions related to
the command being
invoked.

 User needs to
know that the
command was
received within
150 msec, or they
will try again.

The user can be
assumed to be
looking at the
cancel button, if
this is how they
canceled the
command

People can see
changes in color
and intensity in
their peripheral
vision as well as
in their fovea.

 Must acknowledge
the command within
150 msec.

Acknowledgement
must be appropriate
to the manner in
which the command
was issued. For
example, if the user
pressed a cancel
button, changing the
color of the button
will be seen. If the
user used a
keyboard shortcut,
flashing the menu
that contains that
command could be
detected in
peripheral vision.

10 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

Table 3. Portion of the Problem and General Solution for Cancelling Commands (continued).

Problem General solution
Forces exerted
by the
environment &
task.

Forces exerted by
human desires and
capabilities.

Forces exerted
by the state of
the software.

General
responsibilities
of the software.

EITHER The command
itself is responsive

The command
should cancel itself
regardless of the
state of the
environment

 User
wants the
command
to stop

OR The command
itself is not
responsive or has
not yet been
invoked

An active portion
of the system must
ask the
infrastructure to
cancel the
command, or
The infrastructure
itself must provide
a means to kill the
application (e.g.,
task manager on
Windows, force
quit on MacOS)
(These
requirements are
independent of the
state of the
environment.)

Collaborating
processes may
prevent the
command from
canceling promptly

 The command has
invoked
collaborating
processes

The collaborating
processes must be
informed of the
cancellation of the
invoking command
(these processes
have their own
responsibilities that
they must perform
in response to
being informed).

From the previously documented scenarios we can read, or infer, forces from the task
and environment or human desires and capabilities, and sometimes from the state of
the software itself. From previously enumerated responsibilities, we uncover tacit
assumptions about the forces they are resolving. From prior solutions, additional
general responsibilities can sometimes be retrieved. We list all these forces in the
appropriate columns and the responsibilities that resolve them.

This preliminary table then becomes the framework for further discussion around
what we call considerations. Considerations are recurring forces, or variations in

Bringing Usability Concerns to the Design of Software Architecture 11

forces, that cut across multiple scenarios. The considerations we have found to be
useful involve issues of feedback to the user, time, initiative, and scope.

With any interactive system, there is always a consideration of feedback to the
user. The user wants to be informed of the state of the software to make best use of
their time, to know what to do next, perform sanity checks, trouble-shoot and the like.
There are several types of feedback in almost every pattern: acknowledgement of the
user’s action, feedback on the progress of software actions, and feedback on the
results of software actions. The need for each of these types of feedback is forces in
the human needs and capability column. In Table 3, this consideration shows up in the
third row.

The time consideration involves forward-looking, current, and backward-looking
issues of time. One forward-looking consideration is the issue of persistence. Does the
pattern involve any objects that must persist over time? If so, there are often issues of
storing those objects, naming them, finding them later, editing them, etc. (This
consideration can also be thought of as a need for authoring facilities). A current time
issue is whether the pattern involves a process that will be operating concurrently with
human actions. If so, how will the human’s actions be synchronized at an effective
time for both the software and the human? An example of a backward-looking time
consideration occurs in the cancelling command pattern (not included in the portion
of the pattern in Table 3). What state should the software roll back to? In most
applications the answer is clearly “the state before the last command was issued.”
However, in systems of collaborating applications or with consumable resources, the
answer becomes less clear. An extreme example of this consideration for a system-
level undo facility can be found in the examination of system administrators by
Brown and Patterson [7].

The initiative consideration involves which entity can control the interaction with
the software being designed. In the cancelling commands pattern, initiative comes
from several places. One normally thinks of a cancel command being deliberately
instigated by the user. However, it is also possible that the environment can change,
initiating the equivalent of a cancel command to the software. For example, the
software that controls an automobile window lifter should stop the window rising if
the driver presses a button (user’s initiative), or if a child’s hand is about to be trapped
(system’s initiative).

The scope consideration asks whether a problem is confined to the software being
designed or concerns other aspects of the larger system. In the cancelling commands
example, a larger scope is evident in the last two rows in Table 3 when considering
responsibilities when the software is unresponsive and when there are collaborating
processes.

Thus, the combination of mining prior research in usability and software
architecture and asking the questions associated with considerations, allow the
definition of the forces and responsibilities that resolve them. The general
responsibilities constitute a general solution to the problem created by the forces.
Some pattern advocates would eschew our process of defining responsibilities
because the solution is generated, not recognized as an accepted good design used
repeatedly in practice. We believe that these general responsibilities have value
nonetheless because (1) they serve as requirements for any specific solution, and (2)

12 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

many of the usability problems we have examined are not consistently served in
practice as yet, so no widely accepted solution is available.

Specific Solution. The specific solution is derived from the general responsibilities
and the forces that come from prior design decisions. Usability-supporting
architectural patterns differ from other architecture patterns in that they are neither
overarching nor localized. Patterns such as client-server, layers, pipe and filter, and
blackboard [8] tend to dominate the architecture of the systems in which they are
used. It may be that they only dominate a portion of the system but in this case, they
are usually encapsulated within a defined context and dominate that context. Other
patterns such as publish-subscriber, forward-receiver, and proxy [8] are local in how
they relate to the remainder of the architecture. They may impose conditions on
components with which they interact but these conditions do not seriously impact the
actions of the components.

Usability-supporting architectural patterns are not going to be overarching. One
does not design a system, for example, around the support for cancelling commands.
The support for this usability feature must be fit into whatever overarching system
designs decisions are made to facilitate the core functionality and other quality
attributes of the system. Usability-supporting architectural patterns are also not local,
by definition. They involve multiple portions of the architecture almost regardless of
what the initial design decisions have been made. Cancel, for example, ranges from a
requirement to listen for user input (at all times), to freeing resources, to knowing
about and informing collaborators of the cancellation request. All these
responsibilities involve different portions of the architecture.

When presenting a specific solution, then, there are two choices – neither
completely satisfactory.
1. Present the solution independent of prior design decisions. That is, convert the

general responsibilities into a set of components and assign the responsibilities to
them, without regard for any setting. A specific solution in this form does not
provide good guidance for architects who will come to the usability supporting
architectural patterns after having made a number of overarching design decisions.
For example, if the J2EE-MVC pattern is used as the overarching pattern, then a
listener for the cancel command is decoupled from the presentation of feedback to
indicate acknowledgement of the command. If the PAC pattern is used, then a
listener would be part of the presentation and would also be responsible for
feedback.

2. Present the solution in the context of assumed prior design decisions. That is,
assume an overarching pattern such as J2EE-MVC or PAC and ensure that the
specific solution conforms to the constraints introduced by this decision. This
increases the utility of the specific solution for those who are implementing within
the J2EE-MVC context but decreases the utility for those implementing within
some other context.
We have tried both solutions when we have presented earlier versions of this

material, without finding a completely satisfactory solution. However, common
practice in interactive system development currently uses some form of separation of
the interface from the functionality. Therefore demonstrating the interplay of general
responsibilities with a separation-based overarching architecture is a necessity to

Bringing Usability Concerns to the Design of Software Architecture 13

make contact to current practice. Given the popularity of J2EE-MVC, we present our
specific solution in that context.

For our cancel example, the forces caused by a prior design decision to use J2EE-
MVC govern the assignment of function to the model objects, the view objects, or to
the control objects (Figure 1). Any new responsibilities added by the usability
problem must adhere to the typical assignments in J2EE-MVC. Thus, responsibilities
that interact with the user must reside in the view, responsibilities that map user
gestures to model updates or define application behavior or select views must reside
in controller objects, and responsibilities that store state or respond to state queries
must reside in models.

Table 4. Row of specific solution that concerns the general responsibility of always listening
for the cancel command or environmental changes

Specific Solution
Responsibilities

of general
solution. i.e.,
requirements

Forces exerted by
prior design

decisions

Allocation of
responsibilities to

specific components

Rationale

Must always
listen for the
cancel command
or environmental
changes.

In J2EE-MVC, user
gestures are
recognized by a
controller

J2EE-MVC is neutral
about how to deal
with environmental
sensors

Listener component is
a controller. It must
x run on an

independent thread
from any model.

x receive user
gestures that are
intended to invoke
cancel.

x receive
environmental
change notification
that require a
cancel.

Since the command
being cancelled may be
blocked and preempting
the Listener, the Listener
is assigned to a thread
distinct from the one
used by the command.

Since J2EE-MVC is
neutral with respect to
environmental sensors,
we chose to listen for the
environmental sensors in
the same controller that
listens for user gestures
that request cancellation
(the Listener)

Table 4 shows a small portion of the Specific Solution for cancelling commands
in J2EE-MVC, resolving the general responsibilities with the prior design decisions.
For easy reading, the general responsibilities, i.e., requirements of the specific
solution are repeated in the first column of the Specific Solution. In Table 4, we’ve
chosen to illustrate the responsibility of always listening for the cancel command or
environmental changes that signal the need for cancellation. This general
responsibility was the first responsibility in the second row of Table 3. The next
column contains those forces exerted by the prior design decisions that apply to the
general responsibility in the same row. The fact that J2EE-MVC controllers recognize
user gestures is one such force. That J2EE-MVC does not mention environmental
sensors is listed as a force, but its inclusion simply records that J2EE-MVC does not
exert a force on this point. The third column resolves these forces by further
specifying the general responsibilities and allocating them to specific components in
the overarching architecture. In this case, a new controller entitled the Listener is

14 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

assigned the specific responsibilities that fulfil the general responsibility. The last
column provides additional rational for this allocation, for example, that since J2EE-
MVC does not specify a component for environmental sensors, we chose to use the
same controller as that listening for user requests to cancel.

After allocating all general responsibilities, all the new components and their
responsibilities, and all new responsibilities assigned to old components of the
overarching architecture can be collected into a specification for implementation. For
example, when the remainder of the complete Specific Solution table (not shown) is
considered, the Listener is responsible for

x always listening for a user’s request to cancel,
x always listening for external sensor’s request for cancellation (if any), and
x informing the Cancellation Manager (a model) of any cancellation request.

A component diagram of our specific solution is given in Figure 4. The View,
Controller and Active Command (model) and Collaborating Processes (if any) are the
components associated with J2EE-MVC under normal operations, without the facility
to cancel commands. The results of the analysis in the complete Specific Solution
table (not shown) added several new components. The Listener has already been
described.

Prior-State-
Manager
:Model

:Controller

Cancellation-
Manager
:Model

Listener
:Controller

:View Active-
Command
:Model

Collaborating-
Process
:Model

Prior-State-
Manager
:Model

Prior-State-
Manager
:Model

:Controller:Controller

Cancellation-
Manager
:Model

Cancellation-
Manager
:Model

Listener
:Controller
Listener
:Controller

:View:View Active-
Command
:Model

Active-
Command
:Model

Collaborating-
Process
:Model

Collaborating-
Process
:Model

Fig. 4. Component diagram for the specific solution.

The Cancellation Manager and Prior State Manager are new models fulfilling the
other general and specific responsibilities of cancelling commands. Because dynamic
behaviour is important for the cancel command we also use two different sequence
diagrams. The first (Figure 5) shows the sequence of normal operation with a user
issuing a command to the software. This figure represents the case in which:

x The user requests a command
x The command can be cancelled

The command saved its state prior to execution using the Prior State Manager. The
sequence diagram in Figure 6 represents the case in which:

x The user requests cancellation of an active command
x The current command is not blocked
x The prior state was stored
x Time of cancellation will be between 1 and 10 seconds. Change cursor shape

but progress bars are not needed.

Bringing Usability Concerns to the Design of Software Architecture 15

x It is not critical for the task that the cancellation be complete before another
user action is taken

x All resources are properly freed by the current command.
x Original state is correctly restored.

Fig. 5. Sequence diagram of normal operation, before cancel is requested.

:User
:View Listener

:Controller
Active-
Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

press
cancel
button send cancel

request cancel active
command

change cursor shape

acknowledge
user’s

command

estimates cancel
time between 1

and 10 secs
(busy cursor

needed)

are you alive?

yes

return original state

original state

release
resources

exiting

x restore cursor

:User
:View Listener

:Controller
Active-
Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

press
cancel
button send cancel

request cancel active
command

change cursor shape

acknowledge
user’s

command

estimates cancel
time between 1

and 10 secs
(busy cursor

needed)

are you alive?

yes

return original state

original state

release
resources

exiting

x restore cursor
Fig. 6. Sequence diagram of canceling.

5. Experience with Usability-Supporting Architectural Patterns

We have presented the cancel example (although not this pattern of forces and their
link to responsibilities) to professional audiences several times (e.g., [11]). After each
presentation, audience members have told anecdotes about their experiences with
implementing cancellation. One professional told us about the difficulty of adding
cancel after initial implementation, confirming the utility of having a set of commonly
encountered usability problems that can be considered early in design. Another
professional told us that his company had included the ability to cancel from the
beginning, but had not completely analyzed the necessary responsibilities and each
cancellation request left 500MB of data on the disk. This anecdote confirms the utility

:User
:View :Controller Active-

Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

normal
operation normal

operation
invoke

register

save current state

:User
:View :Controller Active-

Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

normal
operation normal

operation
invoke

register

save current state

16 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

of having a detailed checklist of general responsibilities that must be fulfilled with
sufficient traceability and rationale to convince developers of their importance.

We have also applied a collection of about two dozen usability-supporting
architectural patterns ([3,5], again, prior to our inclusion of forces) in several real-
world development projects. As part of their normal software architecture reviews,
development groups have considered such patterns as Supporting Undo, Reusing
Information, Working at the User’s Pace, Forgotten Passwords, Operating
Consistently across Views, Working in an Unfamiliar Context, Supporting
International Use, and several different types of Feedback to the User. Discussions of
these scenarios and their associated architectural recommendations allowed these
development groups to accommodate usability concerns early in the design process.

6. Conclusions

Our major conclusion is that software architects must pay attention to usability
while creating their design. It is not sufficient to merely use a separation based pattern
such as MVC and expect to deliver a usable system.

Furthermore, we have shown that usability problem can be considered in light of
several sources of forces acting in the larger system. These forces lead to general
responsibilities, i.e., requirements, for any solution to the problem. Because the
solutions to these usability situations do not produce overarching patterns and yet are
also not localized, additional forces are exerted by design decisions made prior to the
consideration of the usability situation. Finally, we have proposed a template that
captures the different forces and their sources and provides a two level solution
(general and specific), as well as substantial traceability and rationale.

We visualize a collection of usability-supporting architectural patterns formatted
as we have described. These could be embodied in a Handbook of Usability for
Software Architects that could be used in whatever architecture design and review
processes employed by a development team. For example, as part of an Architectural
Tradeoff Analysis Method review [9], the Usability Context of each pattern could be
examined by the stakeholders to determine its applicability to their project. The
usability specialists and software architects could then work together to determine the
risks associated with particular architecture decisions and whether the benefits of
supporting the pattern in the context of that project exceed the costs. They could use
the general responsibilities to verify that their adaptation of the specific solution
satisfies all of the forces acting in their context. The raw material for the production
of such a handbook is in place. About two dozen usability scenarios exist with explicit
solutions, at different levels, documented by several research groups. Half a dozen of
these have been augmented with forces and responsibilities using the template
proposed here [4]. We believe that publication of such a handbook would make a
significant contribution to improving the usability of fielded systems because the
concept of forces resolved by responsibilities provides a traceability and rationale
surpassing previous work.

Bringing Usability Concerns to the Design of Software Architecture 17

References

1. Alexander, C., Ishikawa, S., and Silvernstein, M. A Pattern Language, Oxford University
Press, New York, 1997.

2. Bass, L. and John, B. E. Supporting the CANCEL Command Through Software
Architecture, CMU/SEI-2002-TN-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2002.

3. Bass, L. and John, B. E. “Linking Usability to Software Architecture Patterns through
general scenarios”, Journal of System and Software, 66, Elsevier, 2003, pp. 187-197.

4. Bass, L., John, B. E., Juristo, N., and Sanchez-Segura, M. Tutorial "Usability-Supporting
Architectural Patterns" in Proceedings of the 26th International Conference on Software
Engineering, IEEE Computer Society, May 23-28, 2004, Edinburgh, Scotland.

5. Bass, L., John, B. E. and Kates, J. Achieving Usability Through Software Architecture,
CMU/SEI-TR-2001-005 Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, (2001). Available for download at
http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

6. Bosch, J. and Juristo, N. Tutorial "Designing Software Architectures for Usability" in
Proceedings of the 25th International Conference on Software Engineering, IEEE
Computer Society, May 3-10, 2003, Portland, Oregon, USA.

7. Brown, A. B. and Patterson, D. A., “Undo for Operators: Building an Undoable E-mail
Store” Proceedings of the 2003 USENIX Annual Technical Conference, San Antonio, TX,
June 2003.

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Pattern-Oriented
Software Architecture: A System Of Patterns, Volume 1. John Wiley & Sons Ltd., New
York, 1996.

9. Clements, P., Kazman, R., and Klein, M. Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley, Reading. MA, 2001.

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995.

11. John, B. E. and Bass, L., Tutorial, “Avoiding "We can't change THAT!": Software
Architecture and Usability” In Conference Companion of the ACM Conference on
Computer-Human Interaction, 2002, 2003, 2004.

12. Sun Microsystems, Inc, “Java BluePrints, Model-View-Controller,” September 2003,
http://java.sun.com/blueprints/patterns/MVC-detailed.html. Copyright 2000-2003 Sun
Microsystems. All rights reserved.

Discussion

[Michael Harrison] I'm not familiar with this work, so forgive the naive question. It
sounds like you've got a generic notion of CANCEL and you're trying to situate that
within a particular context and within a particular application. Is this correct?

[Bonnie John] No, we're looking more at generic contingencies, conditions
and forces. We're trying to say "if you look at your specific situation and
these fit" then you have to take the architectural guidance into account.

[Tom Omerod] You raised the question of how you know when you're done
producing one of these descriptions. For example, you've ended up with about twenty
responsibilities for CANCEL alone. How do you know when you're done?

18 Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams

[Bonnie John] We don't have a good answer for that question. In essence, we
have to keep presenting the description to new audiences, and comparing it
to new systems, and seeing if we get new insights. In the particular case of
CANCEL, we've only added one responsibility in the last year so we think
we may be close to done. However, the fact that there is no reliable way of
telling whether you're done is quite disconcerting.

[Tom Ormerod] Maybe it would be better if you were exploring several issues in
parallel, rather than just CANCEL.

[Bonnie John] Yes, and we are. In fact we have documented six of these
usability architectural issues, which is helping us to derive general patterns
(as shown in the paper).

[Willem-Paul Brinkman] Does usability prescribe only one software architecture, or
are only responsibilities mentioned? Because if there is only one right architectural
solution, then you can simply start checking the architecture.

[Bonnie John] No, absolutely not. This is why we particularly like having the
forces and responsibilities in our descriptions --- they give insight into how
to fit the solution into the rest of the system's architecture (which will
necessarily vary based on many other concerns).

[Gerrit van der Veer] You are labelling parts of your solutions as patterns. This
suggests that it is design knowledge that can be shared. Doesn't this imply that you
need examples of each pattern, as well as counter-patterns, to provide the generic
design knowledge? Is there an intention or effort to collect these (which is a huge
effort)?

[Bonnie John] Yes. We're working with Dick Gabriel at Sun, president of
Hillside Group, to get better integrated with the patterns community. With
the community's help we're hoping to make a collective effort to document
both these kinds of patterns.

[Jurgen Ziegler] Developers may get overwhelmed with the large number of
requirements, particularly since there are also many more requirements that are not
usability-related. Wouldn't it help to show developers different examples of
architectures that fulfil your requirements to different degrees?

[Bonnie John] Yes, absolutely. For example, one thing we're doing is
keeping track of products that don't do cancel correctly or completely, and
how. We haven't documented all of these yet.

[Nick Graham] In designing an architecture you have two basic options --- either
attempt to anticipate all cases, or make the architecture sufficiently resilient to change
that it is possible to modify afterwards. In the first case you may end up with an
architecture that's bloated by features that may never be used. In the second, you seem
to be back with the original "you can't change that" problem. Where does your
approach really fit in?

[Bonnie John] We use risk assessment techniques to assess which
requirements are really likely to come up. Since these requirements aren't

Bringing Usability Concerns to the Design of Software Architecture 19

core to the system function (in some sense they're peripheral) we're hoping
that with these checklists people can consider stuff like this early in the
process. We're not trying to anticipate everything, but rather things that we
know get left out. The kinds of things we're considering are general problems
that recur frequently and that reach deep into the architecture.

[Michael Harrison] Have you looked at whether people are actually helped by the
forces and responsibilities?

[Bonnie John] We've done one really in-depth project with this approach using a
Mars Rover control board with NASA. They say that the architectural suggestions
helped them, but now we're looking at the actual code and the user performance
data that NASA collected to get a view beyond their subjective evaluation.
(However, this was before we had the forces and responsibilities directly in our
model.) We're also doing similar things with some of our tutorial participants. The
data is sparse so far. We're conducting a controlled experiment to answer this
question which we hope to report on at ICSE and/or CHI 2005.

