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Abstract. Geospatial image data obtained by satellites and aircraft are
increasingly important to a wide range of applications, such as disaster
management, climatology, and environmental monitoring. Because of the
size of the data and the speed at which it is generated, computing spatio-
temporal aggregates over geospatial image data is extremely demanding.
Due to the special characteristics of the data, existing spatio-temporal
aggregation model and evaluation approaches are not suitable for com-
puting aggregates over such data.
In this paper, we outline the key challenges of computing spatio-temporal
aggregates over streaming geospatial image data, and present three goals
of our research work. We also discuss several preliminary results and
future research directions.

1 Introduction and Motivation

Driven by major advances in remote sensing technology, geospatial image data
from satellites and aircraft have become one of the fastest-growing sources of
spatio-temporal data sets. The remotely-sensed imagery collected by NASA
alone are expected to exceed dozens of terabytes per day within the next few
years. Such data have become increasingly important to a wide range of applica-
tions, such as disaster management, climatology, and environmental monitoring.

In a typical data processing setting for streaming geospatial image data, the
data are transmitted continuously in the form of raster images. Each image can
be regarded as a rectangular grid in which each cell (point) consists of a point
location and point value. Figure 1 gives an example of a sequence of raster im-
ages transmitted from the National Oceanic and Atmospheric Administration’s
(NOAA) Geostationary Environmental Operational Satellite (GOES) West [4]
over a period of about one hour. Since GOES West scans different regions of
Earth’s surface over time, each image in Figure 1 has a different spatial extent.

In general, such image data continuously arrive at a very high rate and vol-
ume. For example, GOES West satellite images are transmitted at 2.1Mbits/second
– about 22GBytes/day. As a result, it is very important to have operations that
summarize the data. One such operation, known as spatio-temporal aggregation,
summarizes the data in both spatial and time dimension. For example, a typical
spatio-temporal aggregate query is: “Calculate the average soil temperature in



Fig. 1. Sequence of GOES West images. Different regions of Earth’s surface are scanned
over time, resulting in images with different spatial extents.

Davis, California, from July to September every year for the last ten years.”
Spatio-temporal aggregates are not only one of the most fundamental opera-
tions for various applications, such as detecting changes in the environmental
landscape, but also the most demanding in terms of space and time complexity.

The efficient processing of spatio-temporal aggregate queries, which specify a
region of interest and some time interval, have been studied in several works [7,
10, 15–18, 20]. However, there are several limitations in these approaches.

First of all, existing aggregation models do not provide a meaningful an-
swer to a query over streaming geospatial image data. All existing approaches
use traditional aggregation models, in which data that satisfy the given query
region is aggregated, and a single aggregate value is returned as the answer. This
is not always meaningful in the context of streaming geospatial image data, since
they falsely imply that high-quality data is always available for the entire query
region.

Secondly, existing evaluation approaches are not suitable for streaming
geospatial image data. Some of these approaches are optimized for static data in
such ways that they are not suitable for streaming data. Some approaches have
such high construction or maintenance costs that they can not catch up with
the arrival rate of streaming geospatial image data. Moreover, some approaches
primarily focus on spatial objects, each of which contains its own spatial compo-
nent. To apply these approaches to geospatial images, they consider each point
in an image as an individual spatial object, and store its spatial component by
itself. As a result, these approaches do not take advantages of the gridded point
set structure inherent to raster image data. In particular, they do not exploit
cases where neighboring points have similar or identical point values – but such
cases occur frequently for some regions in raster images. Therefore, these ap-
proaches tend to have extremely high storage costs, which in turn lead to poor
construction and query performance.

In this PhD research work, we aim to design effective spatio-temporal ag-
gregate computations for streaming geospatial image data. Here, “effectiveness”
represents both spatio-temporal aggregation models and evaluation approaches.
The objectives for this goal include:



1. Develop a new spatio-temporal aggregation model that provides more fine-
grained (intuitive) results for the spatio-temporal aggregate computation
over streaming geospatial image data.

2. Develop a query processing framework to evaluate spatio-temporal aggregate
queries using the new aggregation model.

3. Design efficient supporting index structures to evaluate spatio-temporal ag-
gregate queries over streaming geospatial image data, in terms of construc-
tion time, space requirements, and query performance.

2 Related Work

Most of the existing approaches for computing spatial and spatio-temporal ag-
gregates [6, 7, 9, 10, 16, 18, 20] focus on spatial objects and not field-based data,
such as gridded point data or raster images. The aR-tree [6, 9] is an R-tree in
which each MBR (minimum bounding rectangle) of an internal node has a pre-
computed aggregate value that summarizes the values for all objects that are
contained by the MBR. As a result, the partial aggregate result can be obtained
in the intermediate nodes of the tree without accessing all the contained objects.

Papadias et al. [10] presented another structure –the aRB-tree– that extends
the aR-tree and considers the spatial and temporal information separately. The
aRB-tree consists of an R-tree to index the regions of spatial objects, and a
B-tree structure associated with each region in the R-tree to store the temporal
information. Similar to the aR-tree, partial aggregate results can be obtained
from intermediate nodes. The disadvantage of the aR-tree and the aRB-tree is
that multiple paths from the root node may be needed to answer an aggregate
query. Zhang et al. [21] proposed an indexing scheme –the BA-tree– to overcome
this limitation. The BA-tree is based on a k-d-B tree. Similar to the aR-tree and
aRB-tree, with each region of an internal nodes in a BA-tree a pre-computed
aggregate value is associated. In addition to this, the BA-tree maintains some
extra data for each region of the internal nodes, which guarantees that only one
path is searched during an aggregate computation. Furthermore, based on the
BA-tree, Zhang et al. [20] proposed an indexing scheme to maintain aggregate
information at multiple temporal granularities for streaming data. Tao et al. [16]
pointed out that the aRB-tree has a problem with distinct counts and presented
an approximate approach to evaluate distinct count/sum aggregate queries.

However, none of these approaches is suitable for streaming geospatial im-
age data. The reasons are as follows. First, all the above approaches provide
a single value as the final answer to an aggregate query, which is not always
meaningful in the context of streaming raster image data, especially when the
image data contribute only partially to the query region. Secondly, since these
approaches are designed for spatial objects and not for large amounts of points
in streaming image data, the location for each point needs to be stored. This
results in extremely high space consumption. Finally, the relationship of values
among neighboring points is not considered in these approaches, something that
one should take advantage of.



3 Preliminary Results

In this section, we describe several preliminary results for this PhD research
work. First, we present a new aggregation model – Segment-based Spatio-temporal
Aggregation (SST-Aggregation) – for answering spatio-temporal aggregate queries
over streaming geospatial image data, in particular, raster image data. Secondly,
we give a brief description of a query processing architecture for this new model.
Thirdly, we present data structures that support such computations. Finally, we
present some experimental results.

3.1 Segment-based Spatio-temporal Aggregation (SST-Aggregation)
Model

Consider the scenario in Figure 2, which gives an abstract view of a raster image
stream (RIS ). There are four images I1, · · · , I4 with different sizes and spatial
locations. A typical spatio-temporal aggregate query is, for example, “Calcu-
late the average soil temperature in a given query region R=[lp, hp] (shown as
the bold rectangle box in Figure 2) during the time interval [t1, t2].” Here, we
primarily focus on regions with shapes of a multi-dimensional box.
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Fig. 2. Example scenario of a spatio-temporal aggregate query over a RIS

Applying existing approaches and index structures to compute spatio-temporal
aggregates will provide us with a single value for the query box. An interesting
observation for this query is that image I3 only contributes partially to the query
box. That is, at different points in time during [t1, t2], not all images contribute
all their points (and thus point values) to the query result. Thus, a single aggre-
gate value does not necessarily represent an accurate result since such a result
might be skewed, depending on what stream data is available during [t1, t2].

Motivated by this observation, we propose a new aggregation model – Segment-
based Spatio-Temporal Aggregation (SST-Aggregation). This model overcomes
the limitation of the traditional aggregation model in the context of streaming
raster image data, and provides more meaningful answers to queries. The defi-
nition for SST-Aggregation is given in Definition 2. First, we define a Segmented
Query Region.



Definition 1. [Segmented Query Region] Given a query region R = [lp, hp],
and a RIS I = {I1, I2, · · · , In}. The segmented query region Rseg consists of
disjoint sub-regions R1 = [lp1, hp1], R2 = [lp2, hp2], · · · , Rk = [lpk, hpk] such that

1. R = R1 ∪ R2 ∪ · · · ∪ Rk;
2. Each sub-region Ri = [lpi, hpi], i = 1, · · · , k, has the same timestamp for the

low and high point as R;
3. For each image Ij ∈ I(j ∈ [1, n]) such that R ∧ Ij �= 0, each sub-region

Ri = [lpi, hpi], i = 1, · · · , k, satisfies exactly one of the following segment
properties:
– Ij ≥S Ri. That is, the image Ij fully covers the spatial extent of Ri. The

set of all images that cover Ri is denoted Ii, termed the contribution
image set for Ri.

– Ij ∧ Ri = 0. That is, the image Ij does not intersect with Ri.
4. Given any two sub-regions R1 and R2 whose contribution image sets are I1

and I2, respectively. If R1 ∪ R2 is a region, then I1 �= I2.

Definition 2. [SST-Aggregation] A Segment-based Spatio-temporal Ag-
gregation (SST-Aggregation) over a RIS I is an aggregate operation that
computes summarized information (specified by an aggregate function f) for a
query region R. The SST-Aggregation constructs the segmented query region Rseg

for R, and computes an aggregate value for each sub-region in Rseg with the ag-
gregation function f . The SST-Aggregation is defined as follows.

SST-Aggregation (I, f, R) = {< ri, f(I|ri
) > |ri ∈ Rseg for all i}

The SST-Aggregation model supports those aggregate functions that are de-
fined in the SQL:2003 standard [8]. This model can be easily extended to support
continuous queries, including moving window queries.

3.2 Query Processing Architecture

Based on this new SST-Aggregation model, we propose a two-component query
processing architecture to evaluate a spatio-temporal aggregate query, as illus-
trated in Figure 3. When a query is entered into the stream management systems,
it is first passed to the segmentation component, which segments the query region
into a segmented query region, as defined in Definition 1.

Next, the segmented query regions generated by the segmentation are passed
to the aggregate-computation component, which computes and constructs the
final result to the query.

Both segmentation and aggregate-computation rely on the images (as spatio-
temporal objects) from the stream that have entered the system so far. The
aggregate-computation component relies on the image point data, while the seg-
mentation component relies on the image metadata, such as the spatial extent
and the timestamp of each image.
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Fig. 3. Conceptual approach for computing SST-Aggregate queries

3.3 Index Structures

To evaluate the effectiveness of our SST-Aggregation model and the proposed
query processing architecture, we consider two different index structures for im-
age metadata and point data. Since image metadata is typically much smaller
than image point data, we maintain a main-memory data structure –the Meta-
data index – to store the metadata, while disk-based structures are used for
image point data.

Metadata Index The metadata index that we proposed in [22] consists of
two Red-Black trees [2], one for each spatial dimension. We call these trees the
x-tree and the y-tree. Consider an image I created at time t, which has the
spatial region represented by two points (xlow, ylow) and (xhigh, yhigh). The x-
tree stores the values of xlow and xhigh along with the timestamp t, where each
of xlow and xhigh is a key and t is the value. The y-tree has the same structure as
the x-tree except that it stores y values. In both trees, we do not store duplicate
key values. To achieve this, we maintain a circular buffer inside each node in the
trees. This circular buffer stores the list of timestamp values.

Point Data Index Our focus has been on summation-related spatio-temporal
aggregate queries (range-sum queries), such as Sum, Count and Avg, over user-
defined query regions. Dominance-sum (dom-sum) is a technique to support the
efficient computation of box aggregate queries over objects with non-zero extent
in some d-dimensional space [21]. It has been widely used for computations on the
data cube [3, 5] and for spatial and spatio-temporal aggregates in the context of
spatial objects [20, 21]. In general, for a point set P in some d-dimensional space,
a range-sum query can be computed using the values of 2d dom-sums. For exam-
ple, consider the 2-dimensional raster image shown in Figure 4. We want to com-
pute the sum of all values of points located in the region [(1, 1), (2, 2)]. Four dom-
sum values are required to compute the sum, as illustrated in Figure 4. It is easy
to verify that this value is 8, computed from the dom-sum values of four points
shown in bold rectangles, that is, ds((2, 2))−ds((2, 0))−ds((0, 2))+ds((0, 0)) = 8.

Our design and implementation of point data indexes are based on the
dominance-sum technique. We first implemented and improved the BA-Tree [21]
proposed by Zhang et al., which is a k-d-B tree [11] with some additional
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Fig. 4. Computing the range-sum for region [(1, 1), (2, 2)] by using 4 dom-sum values

aggregate-related information stored at internal nodes. The BA-Tree supports
fast dom-sum computations. One improvement we have added to the BA-Tree
is as follows. As images stream in, we insert the data for each image spatio-
temporal point one by one into the BA-Tree. For a single raster image, all its
spatio-temporal points share the same timestamp value. For any two raster im-
ages, their spatio-temporal points are likely to share one or both values for the
spatial dimensions. In our BA-Tree implementation, we take advantage of this
property and introduce an optimized insert operation for point data into the
BA-Tree. Every time when a point is inserted into the tree, if this point already
exists in the tree, we simply add the value of the new point to the value of the
existing point. This way, we can significantly reduce the size of the BA-Tree and
also improve the performance of querying (refer to [22] for more information).

The major disadvantages of the BA-Tree are that it stores each point in a
raster image separately, and does not take advantage of the gridded point set
structure inherent to raster images, in particular of the cases where neighboring
points have similar or same point values. This causes significantly high storage
cost and consequently bad insertion and query performance. To address these
shortcomings, we proposed a novel data structure, called the compressed raster
cube (CRC). The CRC integrates the linear region quadtree [1, 12, 19] and the
dominance-sum computation technique, thus allowing efficient management of
streaming image point data in a scalable fashion.

The CRC can be thought of as a cube containing a constantly growing se-
quence of compressed raster images, each of which is essentially a linear region
quadtree with some auxiliary information with each node, namely dom-sum val-
ues for the points contained by the node. These dom-sum values are stored in a
novel dominance-sum compression scheme, which significantly reduces the num-
ber of dom-sum values that need to be stored with nodes in a region quadtree.
This compression scheme can be illustrated as follows. In general, given a node
k in a quadtree such that k contains m × m points that all have the same point
value. Only 2m− 1 dom-sum values need to be stored for k in order to compute
the dom-sum value for any point contained by k, as shown in Figure 5. The



dom-sum value for any point (x1, y1) contained by k can be computed in the
following formula:

ds((x1, y1)) = ds((x1, y)) + ds((x, y1)) − ds((x, y)) +
(x1 − x) × (y1 − y) × v

1 m
1

m

....

....

(x, y)

(x1, y1)

Fig. 5. All required dom-sum values (marked with ‘X’) for a m×m-size node in which
all points have the same point value

To construct such a CRC, we extended the OPTIMAL BUILD algorithm [12–
14] to convert a raster image into a quadtree and at the same time employ our
dominance-sum compression scheme. Our experiments on NOAA’s GOES West
Satellite image data show that the CRC can efficiently evaluate both fix-box
aggregate queries and moving window queries.

3.4 Experimental Results

Our experimental data is extracted from NOAA’s GOES West satellite data. The
GOES satellite carries two types of instruments: the Imager and the Sounder.
The Imager scans various regions of the Earth’s surface, West-to-East and North-
to-South. The data are continually transmitted as frames at a rate of 2.1M
bits/sec. In our experiments, we are interested in the image data of the visible
band from the Imager. We extract this data from GOES data format into a
sequence of lines, each of which has the following format:

frameId rowId startColId numOfPoints <point-values>

The “frameId” is assigned by the satellite to identify a frame. We use it as
a logical timestamp in our experiments. “rowId” represents the absolute id of
a row in a scan of an image. “startColId” represents the absolute start column
id of a scan. “numOfPoints” gives the number of points in this row. Finally,
“<point-values>” represents a list of point values where the list has the size of
“numOfPoints”.



The first objective of our experiments is to determine how query segmenta-
tion affects the overall running time for answering SST-Aggregate queries. We
implement our metadata index and the BA-Tree in the Java programming lan-
guage, and run the programs on a Redhat Enterprise machine with a 2GHz CPU
and 512M RAM. The size of each node in the BA-Tree is 4096 bytes.

Figure 6 compares the running time of inserting the image metadata into
the metadata index with the running time of inserting the image point data
into the BA-Tree. Intuitively, since the amount of the image metadata is much
smaller than the amount of point data, the time to insert the metadata should
be significantly smaller than the time to insert the point data. Figure 6 verifies
this intuition. Figure 7 compares the running time of segmenting a query region
with the running time of computing aggregate results for that query region. As
one expects, the running time of segmentation is significantly smaller than the
running time of computing aggregate results.

Fig. 6. Time comparison for maintain-
ing two different data structures: Meta-
data index (bottom line), BA-Tree (up-
per curve)
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The second objective of our experiments is to evaluate the effectiveness of
our CRC structure, in terms of space consumption, construction time, and query
performance. Our algorithms are implemented using GNU C++. The programs
run on a Linux Redhat Enterprise 3 machine with an Intel Pentium 4 3G CPU,
1024K cache and 1G RAM. For the B+-tree implementation realizing the linear
region quadtree, we choose a node size of 4096 bytes and buffer size of 80M
bytes.

In this set of experiments, we quantize point values of incoming images by
ignoring the 0, 2, 4, 6 least significant bits, respectively, and collect the results
for each of the quantized data. In Figures 8-10, we label these quantized point
data sets with CRC-0 (=̂ original point data), CRC-2, CRC-4, and CRC-6. For
the different quantized data, Figure 8 shows the changes in the number of nodes
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in the B+-tree for each image as image point data is inserted into the CRC.
As expected, the more least significant bits are ignored for the point values,
the more the size of the CRC decreases. Figure 9 shows the number of IOs to
construct the CRC for the different quantized data. Figure 10 shows the query
performance of the CRCs and a direct computation from the raw image data.
This direct computation is done as follows. The raw image point data are stored
point by point in a file. This direct computation extracts the points that satisfy
the query and aggregates their values. As one can see, the CRC significantly
outperforms this direct computation on the raw data.

4 Conclusions and Future Work

In this paper, we have outlined the key challenges of computing spatio-temporal
aggregate queries over streaming geospatial image data. Several preliminary re-
sults have been presented. Our focus has been on summation-related aggrega-



tions – range-sum aggregations. Range-min/max aggregations are another im-
portant fundamental operations that support complex data analysis. We are
looking into some evaluation approaches that are able to efficiently support both
range-sum and range-min/max aggregate queries.

Since we are dealing with streaming data, the management of large volumes
of history data is a very important and challenging task. We are investigating
data vacuuming schemes to compress or eliminate history data in the stream,
and then integrating such schemes into our SST-Aggregation model and query
processing framework.
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