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Abstract. Spatio-temporal database systems aim to answer continuous
spatio-temporal queries issued over moving objects. In many scenarios
such as in a wide area, the number of outstanding queries and the num-
ber of moving objects are so large that a server fails to process queries
promptly. In our work, we aim to develop scalable techniques for spatio-
temporal database systems. We focus on two aspects of spatio-temporal
database systems: 1) the query processing algorithms for a large set of
concurrent queries, and 2) the underlying indexing structures for con-
stantly moving objects. For continuous query processing, we explore the
techniques of Incremental Evaluation and Shared Execution, especially to
k-nearest-neighbor queries. For moving object indexing, we utilize Update
Memos to support frequent updates efficiently in spatial indexes such as
R-trees. In this paper, we first identify the challenges towards scalable
spatio-temporal databases, then review the current contributions we have
achieved so far and discuss future research directions.

1 Challenges and Motivations

The integration of position locators and mobile devices enables new pervasive
location-aware computing environments [3, 32] where all objects of interest can
determine their locations. In such environments, moving objects move contin-
uously and send location updates periodically to spatio-temporal databases.
Spatio-temporal database servers index the locations of moving objects and pro-
cess outstanding continuous queries. Characterized by a large number of mov-
ing objects and a large number of continuous spatio-temporal queries, spatio-
temporal databases are required to exhibit high scalability in terms of the num-
ber of moving objects and the number of continuous queries.

To increase the scalability of spatio-temporal databases, there exist two main
challenges. The first challenge is to support a large set of continuous queries
concurrently. With the ubiquity and pervasiveness of location-aware devices and
services, a set of continuous queries execute simultaneously in a spatio-temporal
database server. In the case that the number of queries is too large, the perfor-
mance of the database degrades and queries suffer long response time. Because
of the real-timeliness of the location-aware applications, long delay makes the



query answers obsolete. Therefore, new query processing algorithms addressing
both efficiency and scalability are required for answering a set of concurrent
spatio-temporal queries.

The second challenge for building scalable spatio-temporal databases is to
index moving objects efficiently. Building indexes on moving objects can facili-
tate significantly query processing in spatio-temporal databases. However, due to
the dynamic property of moving objects, the underlying indexing structures will
receive numerous updates during a short period of time. Given the fact that up-
date processing is costly, traditional spatial indexes may not be applied directly
to spatio-temporal databases. This situation calls for new indexing techniques
supporting frequent updates.

The above two challenges motivate us to develop scalable techniques for
both continuous query processing and moving object indexing in spatio-temporal
databases. Specifically, we propose the SEA-CNN algorithm for evaluating a
large set of continuous k-Nearest-Neighbor queries. While SEA-CNN addresses
continuous k-nearest-neighbor queries, it has potential to extend to other types
of queries. Meanwhile, we propose the RUM-tree for indexing moving objects
by enhancing the standard R-trees with Update Memos. The update scheme
utilized in the RUM-tree can be applied to other indexes to improve their update
performance.

In the rest of the paper, we review our research works conducted so far and
discuss future Ph.D. research directions.

2 Current PhD Contributions

In this section, we review the contributions we have achieved to build highly
scalable spatio-temporal database management systems. The efforts focus on two
aspects: (1) Continuous query processing, especially, k-Nearest-Neighbor query
processing and (2) Moving object indexing. For each aspect, we first summarize
the related works and then generalize our current work. In the following discus-
sion, we assume a two-dimensional environment where objects move continuously
and their locations are sampled to the server from time to time. However, the
proposed techniques can be applied to higher dimensional environments as well.

2.1 SEA-CNN: Shared Execution Algorithm for Continuous
k-Nearest Neighbor Queries

Related Work. The scalability in spatio-temporal queries has been addressed
recently in [9, 19, 23, 34, 39, 54]. The main idea is to provide the ability to evalu-
ate concurrently a set of continuous spatio-temporal queries. Specifically, these
algorithms work for stationary range queries [9,39], distributed systems [19],
or continuous range queries [34, 54]. Utilizing a shared-ezecution paradigm as a
means to achieve scalability has been used successfully in many applications,
e.g., in NiagaraCQ [14] for web queries, in PSoup [12, 13] for streaming queries,
and in SINA [34] for continuous spatio-temporal range query. However, to our



best knowledge, there has no former work that addresses the scalability issue of
k-Nearest-Neighbor queries.

K-nearest-neighbor queries are well-studied in traditional databases (e.g.,
see [21, 26, 36, 41]). The main idea is to traverse a static R-tree-like structure [20]
using “branch and bound” algorithms. For spatio-temporal databases, a direct
extension of traditional techniques is to use branch and bound techniques for
TPR-tree-like structures [7,29]. The TPR-tree family (e.g., [42,43,49]) indexes
moving objects given their future trajectory movements. Continuous k-nearest-
neighbor queries (CkNN) are first addressed in [44] from the modeling and query
language perspectives. Recently, three approaches have been proposed to ad-
dress CkNN queries [22, 46, 48]. Mainly, these approaches are based on: (1) Sam-
pling [46]. Snapshot queries are reevaluated with each location change of the
moving query. At each evaluation time, the query may get benefit from the pre-
vious result of the last evaluation. (2) Trajectory [22,48]. Snapshot queries are
evaluated based on the knowledge of the future trajectory. Once the trajectory
information is changed, the query needs to be reevaluated. However, the scal-
ability issue of k-Nearest-Neighbor query has not been addressed by the above
works yet.

Orthogonal but related to our work, are the recently proposed k-NN join
algorithms [8,51]. The k-nearest-neighbor join operation combines each point
of one data set with its k-nearest-neighbors in another data set. The main idea
is to use either an R-tree [8] or the so-called G-ordering [51] for indexing static
objects from both data sets. Then, both R-trees or G-ordered sorted data from
the two data sets are joined either with an R-tree join or a nested-loops join
algorithm, respectively. The CkNN problem is similar in spirit to that of [8,
51]. However, we focus on spatio-temporal applications where both objects and
queries are highly dynamic and continuously change their locations.

Our Contributions. In [53], we propose, SEA-CNN, a Shared Ezecution
Algorithm for evaluating a large set of CKNN queries continuously. SEA-CNN
introduces a general framework for processing large numbers of simultaneous
CkNN queries. SEA-CNN is applicable to all mutability combinations of objects
and queries, namely, SEA-CNN can deal with: (1) Stationary queries issued on
moving objects (e.g., ”Continuously find the three nearest taxis to my hotel”).
(2) Moving queries issued on stationary objects (e.g., ” Continuously report the
5 nearest gas stations while I am driving”). (3) Moving queries issued on moving
objects (e.g., " Continuously find the nearest tank in the battlefield until I reach
my destination”). In contrast to former work, SEA-CNN does not make any
assumptions about the movement of objects, e.g., the objects’ velocities and
shapes of trajectories.

Unlike traditional snapshot queries, the most important issue in processing
continuous queries is to maintain the query answer continuously rather than
to obtain the initial answer. The cost of evaluating an initial query answer is
amortized by the long running time of continuous queries. Thus, our objective
in SEA-CNN is not to propose another kNN algorithm. In fact, any existing



algorithm for kNN queries can be utilized by SEA-CNN to initialize the answer of
a CkNN query. In contrast, SEA-CNN focuses on maintaining the query answer
continuously during the motion of objects/queries.

SEA-CNN is designed with two distinguishing features: (1) Incremental eval-
uation based on former query answers, and (2) Scalability in terms of the number
of moving objects and the number of CkNN queries. Incremental evaluation en-
tails that only queries whose answers are affected by the motion of objects or
queries are reevaluated. SEA-CNN associates a searching region with each CkNN
query. The searching region narrows the scope of a CkNN’s reevaluation. The
scalability of SEA-CNN is achieved by employing a shared execution paradigm
on concurrently running queries. Shared execution entails that all the concurrent
CkNNs along with their associated searching regions are grouped into a common
query table. Thus, the problem of evaluating numerous CkNN queries reduces
to performing a spatial join operation between the query table and the set of
moving objects (the object table).

During the course of execution, SEA-CNN groups CKkNN queries in a query
table. Each entry stores the information of the corresponding query along with
its searching region. Instead of processing the incoming update information as
soon as they arrive, SEA-CNN buffers the updates and periodically flushes them
into a disk-based structure. During the flushing of updates, SEA-CNN associates
a searching region with each query entry. Then, SEA-CNN performs a spatial
join between the moving objects table and the moving queries table.

By combining incremental evaluation and shared execution, SEA-CNN
achieves both efficiency and scalability. In [53], we provide theoretical analy-
sis of SEA-CNN in terms of its execution cost and memory requirements, and
the effects of other tunable parameters. We also provide a comprehensive set
of experiments demonstrating that, in comparison to other R-tree-based CkKNN
techniques, SEA-CNN is highly scalable and is more efficient in terms of 1/O
and CPU costs.

2.2 RUM-tree: R-trees with Update Memos

Related Work. As one of the dominant choices for indexing spatial objects,
the R-tree [20] and the R*-tree [6] exhibit superior search performance in
spatial databases. However, R-trees were originally designed for static data
where updates rarely happen. The R-tree is not directly applicable to dynamic
location-aware environments due to their costly update operation. To facilitate
the processing of continuous spatio-temporal queries, for the past decade,
many research efforts focus on developing indexes on spatio-temporal objects
(e.g., see [33] for a survey). There are two main categories for indexing
spatio-temporal objects: (1) trajectory-based, and (2) sampling-based. For
the object trajectory based indexing, four approaches have been investigated:
(1) Duality transformation (e.g., see [1,16,27,37]), (2) Quad-tree-based meth-
ods (e.g., see [50]), (3) R-tree-based index structures (e.g., see [38,39,42,43,
49]), and (4) B-tree-based structures [24]. For the sampling-based indexing,
the Lazy-update R-tree (LUR-tree) [28] modifies the original R-tree structure



to support frequent updates. A hash-based structure is used in [45,47] where
the space is partitioned into a set of overlapped zones. SETI [10] is a logical
index structure that divides the space into non-overlapped zones. Grid-based
structures have been used to maintain only the current locations of moving
objects (e.g., see [19,34,53]). One common limitation of the above techniques
is that the corresponding old entry has to be removed from the index when an
update happens. On the contrary, one unique feature of our work is to allow
old entries of an object co-exist with the latest entry.

Our Contributions. In [52], we propose the RUM-tree (stands for R-tree
with Update Memo) that aims to minimize the update cost in R-trees. The main
idea behind the RUM-tree is as follows. When an update happens, the old entry
of the data item is not required to be removed. Instead, the old entry is allowed to
co-exist with newer entries before it is removed later. In the RUM-tree, specially

designed Garbage Cleaners are employed to periodically remove obsolete entries
in bulks.

In the RUM-tree, each leaf entry is assigned a stamp when the entry is in-
serted into the tree. The stamp places a temporal relationship among leaf entries,
i.e., an entry with a smaller stamp was inserted before an entry with a larger
stamp. Accordingly, the leaf entry of the RUM-tree is extended to enclose the
identifier of the stored object and the assigned stamp number.

The RUM-tree maintains an auxiliary structure, termed the Update Memo
(UM, for short). The main purpose of UM is to distinguish the obsolete entries
from the latest entries. UM contains entries of the form: (oid, Siatest, Noid), where
oid is an object identifier, Sj,test is the stamp of the latest entry of the object
oid, and N,j4 is the maximum number of obsolete entries for the object oid in
the RUM-tree. As an example, a UM entry (Ogg, 1000,2) entails that in the
RUM-tree there exist at most two obsolete entries for the object Ogg, and that
the latest entry of Ogg bears the stamp of 1000. To accelerate searching, the
update memo is hashed on the oid attribute.

The RUM-tree employs Garbage Cleaners to limit the number of obsolete
entries in the tree and to limit the size of UM. The garbage cleaner deletes the
obsolete entries lazily and in batches. Deleting lazily means that obsolete entries
are not removed immediately; Deleting in batches means that multiple obsolete
entries in the same leaf node are removed at the same time.

We explore two mechanisms of garbage cleaning in the RUM-tree. The first
mechanism of garbage cleaning makes use of the notion of cleaning tokens. A
cleaning token is a logical token that traverses all leaf nodes of the RUM-tree
horizontally. The token is passed from one leaf node to the next every time
when the RUM-tree receives a certain number of updates. The node holding a
cleaning token inspects all entries in the node and cleans its obsolete entries,
and then passes the token to the next leaf node after I updates. To locate the
next leaf node quickly, the leaf nodes of the RUM-tree are doubly-linked in
cycle. To speed up the cleaning process, multiple cleaning tokens may work in
parallel in the garbage cleaner. In this case, each token serves a subset of the



leaf nodes. Besides the cleaning tokens, another clean-upon-touch mechanism
of garbage cleaning is performed whenever a leaf node is accessed during an
insert /update. As a side effect of insert/update, such clean-upon-touch process
does not incur extra disk accesses. When working with the cleaning tokens, the
clean-upon-touch reduces the garbage ratio and the size of UM dramatically.

With garbage cleaners, the size of UM is kept rather small and can practically
fit in main memory of nowadays machines. To check whether an RUM-tree entry
is an obsolete entry or not, we just need to compare the stamp number of entry
with the Sjqiese Of the corresponding UM entry. If the two values are equivalent,
the RUM-tree entry is the latest entry for the object. Otherwise, the entry is an
obsolete entry.

The Update Memo eliminates the need to delete the old data item from the
index during an update. Therefore, the total cost for update processing is reduced
dramatically. The RUM-tree has the following distinguishing advantages: (1) The
RUM-tree achieves significantly lower update cost than other R-tree variants
while offering similar search performance; (2) The update memo is much smaller
than the secondary index used in other approaches, e.g., in [28, 30]. The garbage
cleaner guarantees an upper-bound on the size of the Update Memo making it
practically suitable for main memory; (3) The update performance of the RUM-
tree is stable with respect to the changes between consecutive updates, to the
extents of moving objects, and to the number of moving objects.

In [52], we present the RUM-tree along with the associated update, insert,
delete and range search algorithms inside the RUM-tree. We design a garbage
cleaner based on the concept of cleaning tokens to remove obsolete entries effi-
ciently. Further, we theoretically analyze the update costs for the RUM-tree and
for other R-tree variants employing top-down or bottom-up update approaches.
We also derive an upper-bound on the size of the Update Memo. Furthermore,
we conduct a comprehensive set of experiments. The experimental results indi-
cate that the RUM-tree outperforms other R-tree variants, e.g., R*-tree [6] and
FUR-tree [30], by up to a factor of eight in the presence of frequent updates.

3 Future Research Directions

There are still many research issues that can be extended from our current work.
The future work can be generalized in the following two aspects.

3.1 Continuous Query Processing

Alternative Underlying Indexing Structure. In our current work, the
SEA-CNN framework utilizes a grid-based structure to index the current
locations of moving objects. In this case, auxiliary indexing structures are
required to index the identifiers of both objects and queries. In this research
direction, we aim to utilize a more efficient underlying index structure in
the SEA-CNN to further boost the query processing. Specifically, we plan to
incorporate the memo-based techniques as employed in the RUM-tree into the



grid-based structure to avoid the overhead of auxiliary indexes. In this way, we
expect the performance of SEA-CNN can be further improved.

Historical and Predicative Queries. Currently, the SEA-CNN frame-
work mainly supports NOW queries, namely, queries only ask for the current
status of moving objects. In this research direction, we plan to extend the SEA-
CNN framework to support queries that require historical information and future
movement predication. To support historical query, SEA-CNN should be coped
with efficient indexing structures applicable for historical search. To support fu-
ture query, SEA-CNN needs to be extended from the sample-based model to the
trajectory-based model, thus future movement can be predicted based on the
trajectory information.

3.2 Moving Object Indexing

Crash recovery. In this direction, we address the issue of recovering the
RUM-tree in the case of system failure. When the system crashes, the informa-
tion in the update memo is lost. Therefore, our goal is to rebuild the update
memo based on the tree on disk. Since the recovery problem is closely related
to the logging problem, we aim to design different recovery algorithms based on
various logging policies.

Concurrency control. Concurrency control in standard R-trees is provided
by Dynamic Granular Locking (DGL) [11]. In this direction, we aim to extend
the DGL to support concurrency accesses in the RUM-tree. We investigate
the throughput of the RUM-tree under concurrency accesses and compare the
performance with other R-tree variants.

Bulk updates. Bulk loading [18, 25, 31, 40] and bulk insertions [2,5,15,17]
in R-trees have been explored during the last decade. However, none of the
previous works addresses the issue of updating indexed R-tree entries in bulk
manners. The main reason is that for a set of updates that will go to the same
R-tree node, the corresponding old entries are most likely to reside in different
R-tree nodes. Identifying these R-tree nodes containing old entries causes high
overhead. On the contrary, reducing an update operation to an insert operation
enables the RUM-tree to support bulk updates efficiently. Since there are no
deletions of old entries, bulk updates in the RUM-tree can be performed in a
way similar to bulk insertions in ordinary R-trees. In this research direction,
we aim to propose efficient and scalable bulk update approaches based on the
RUM-tree structure.

Extensions to Other Indexing Structures. The proposed update memo
inside the RUM-tree is general in the sense that it is not limited to the R-trees,
or limited to spatial indexes. The update scheme employed by the RUM-tree
can potentially be applied to many other spatial and non-spatial indexes to
enhance their update performance. Currently, we are investigating the update



performance of the enhanced Grid File [35] by applying an update memo to the
original structure. In the near future, we plan to apply our techniques to more
index structures, e.g., SP-GiST [4] and B-trees.
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