Enhancing User Interaction and Efficiency
with Structural Summaries for
Fast and Intuitive Access to XML Databases

Felix Weigel

Centre for Information and Language Processing (CIS)
University of Munich (LMU), Germany
weigel@informatik.uni-muenchen.de

Abstract. This paper describes an ongoing Ph. D. project whose goal is
to improve both the user interaction and the efficiency of XML databases.
Based on structural summaries for indexing and visualizing the structure
of XML data, we describe a highly interactive, intuitive GUI targeted at
non-experts, and present sophisticated algorithms and data structures
for efficient query evaluation which enable a smooth user interaction.
Preliminary results illustrate how XML exploration, indexing, querying,
caching, ranking and user feedback in XML databases can benefit signif-
icantly from the structural summaries.

1 Introduction

XML has by now become a de-facto standard for modelling, querying, exchang-
ing and storing a broad range of data with different characteristics. At the one
end of the spectrum, there are text-centric documents with little structure to
be queried, e.g., web pages, Wikis, Blogs, news feeds, e-mail and FAQ archives.
At the other end, there is XML content with a much more rigid and meaningful
structure and little text, e.g., product catalogues, tax payer’s data submitted
via electronic forms and bibliography servers. While traditional Information Re-
trieval (IR) techniques have been established for the former class of data, XPath
and XQuery [1] are the languages of choice for the latter.

However, XML is most commonly used for a wide variety of truly semistruc-
tured data in between those two extremes, with complex and irregular structure
adding significant information to the rich textual content. Examples are docu-
ments in digital libraries or publishing houses, electronic encyclopedias, on-line
manuals, linguistic databases and scientific taxonomies. For querying such data
neither database nor IR-style methods are well suited. On the one hand, we can-
not expect unskilled users of these applications to express their information need
in XPath or XQuery, languages which are also inapt for ranked retrieval in XML
data with an irregular or (partly) unknown schema. On the other hand, flat-text
IR disregards valuable structural hints which can help not only to formulate
more precise queries, but also to rank and present query results in a meaningful
form. Although there is much recent work on ranking structured documents, the
user interaction in such systems mostly follows the database paradigm®.

! See, e.g., the IR extensions to XPath (in the INEX benchmark [2]) or XQuery [3].

We argue that to make the full spectrum of XML applications accessible to
non-experts, a new way of user interaction with XML databases is needed which
helps them understand and use the schema of the data in an intuitive way.
It is known from earlier experience with relational databases (RDBSs) and IR
engines that sophisticated query languages alone are not enough for serving the
information needs of unexperienced users. Making users benefit from the XML
structure poses challenges to both the user interface and the query kernel:

Schema exploration. Exploiting the inherent document structure allows for
more precise and useful queries and answers. However, sometimes users find
the markup just meaningless, either because they ignore the underlying
schema or because they are faced with instructions for layout, document
processing, namespaces, etc.?2 Rather than to present the structure of the
data one-to-one, interfaces to XML databases should therefore allow users
to explore the schema and selected sample data, as well as to create views
customized to their information need and degree of expertise.

Structured query results. When presenting query results to users, the XML
structure relates distinct parts of the result and defines boundaries for high-
lighting matches in a meaningful context. Yet users also need to recognize
how results relate to the query and schema. When exploring results, users
often wish to change part of the query and reevaluate it. Ideally this could
be done in a seamless iterative feedback without leaving the result view.

Efficient query evaluation. Encouraging vivid user interaction via integrated
schema exploration, querying and result browsing makes sense only with a
fast query kernel ensuring prompt system reaction. A major challenge is
the incremental query evaluation based on previously retrieved results in an
XML query cache, which is needed for smooth user interaction and feedback.

Structured ranking. Structural query hints can be used to present retrieved
elements in order of relevance. However, computing relevance scores for struc-
tured documents is non-trivial. Open problems are, e.g., how to find elements
which cover exactly a relevant portion of text, how to handle structural near-
misses and how to avoid overlapping elements in the query result efficiently.

We believe that the key to easy, intuitive user interaction with XML databases
is the tight integration of graphical views on the document schema, sample data,
user queries and retrieval results on top of an efficient and scalable query kernel.
The goal of the Ph. D. project is to address the above challenges with (1) a novel
graphical user interface (GUI) providing integrated schema, query and result
views, (2) index structures and algorithms for efficient, scalable and incremental
query evaluation, (3) efficient and effective techniques for XML ranking. In a first
phase, we have investigated how structural summaries visualizing the document
schema also improve the efficiency of the query kernel. Most of this work, though
targeting enhanced user interaction, applies to XML databases in general. Hence

2 For instance, with its 30,000 distinct label paths, the schema of the INEX collection
of scientific articles [2] is much more complex than the actual logical structure of the
documents, and therefore hard to understand for non-expert users.

we present our contributions in the context of more recent approaches which
have appeared since the beginning of the project in late 2003. To the best of our
knowledge our approach to intuitive and efficient user interaction is unique in
that we employ the same structural summary for (a) exploring the schema and
samples of the data, (b) formulating, planning, evaluating and caching queries,
(c) ranking query results and (d) enabling iterative user feedback.

The next section sketches the state of the art in XML retrieval, highlighting
techniques we build upon. Section 3 explains in detail our solutions to the afore-
mentioned challenges, presenting the main contributions of the project. These
are summarized and briefly contrasted with existing approaches in Section 4,
which also gives a snapshot of the accomplished work and remaining issues.

2 XML retrieval: state of the art and open problems

User interaction with XML databases. As mentioned in the introduction, XML
retrieval is typically addressed either from an IR or a database viewpoint, which
is also reflected in the main features of the systems. While the focus of XML
databases is efficient XQuery processing, IR engines optimize ranking effective-
ness (precision/recall). By contrast, user interaction has been somewhat ne-
glected so far®. Most systems from both camps offer only a text interface to
queries and results, rendering query results as XML fragments [4]. More sophis-
ticated GUIs focus on visual query creation [5,6,7,8,9,10] while disregarding the
exploration of query results. In particular, it is hard to figure out how results
relate to the query and schema. [11] introduces a compact result view which
reflects the query structure, but is not linked to the query view. All these tools
assume prior knowledge of the document schema for creating meaningful queries.
[8,10] support DTD-driven query assistance and restructuring, but lack schema
and result browsing. In [6,12] structural summaries are used to visualize the
document schema, provide sample content and facilitate manual query formula-
tion to some extent. However, there is little work on adapting IR-style relevance
feedback for smooth iterative XML retrieval. In particular, we are not aware of
any solution to efficient incremental query evaluation based on user feedback.

Index and storage structures. As more and more multi-gigabyte data sets need to
be stored and queried, efficiency and scalability of XML databases have received
much attention. IR systems often use inverted lists built over tag names or
keywords as index structures. This hinders scalability, joins of large node lists
being expensive. Many database approaches are based on the DataGuide [6], a
compact representation of the document structure where each distinct label path
appears exactly once. Query paths are matched on this structural summary in
main memory rather than the entire data set on disk, which avoids some joins
and disk I/O. The DataGuide has been combined with different IR techniques
for text matching, such as signature files, tries and inverted lists.

3 No new approaches to user interaction were presented at the Interactive and Rele-
vance Feedback tracks of INEX 2004 [2].

A complementary indexing technique are labelling schemes, which assign ele-
ments specific IDs from which part of the document structure is inferred without
accessing the entire data set. Recently many new schemes addressing different
query problems on XML trees have been proposed. For instance, interval schemes
[13] encode the descendant axis by representing an element v as a numeric inter-
val I, such that v is a descendant of v" iff I, C I,,. They are space-efficient but
sensitive to node insertions and join-intensive. Prefiz schemes [14] represent an
element as the sequence of sibling positions on its root path, similar to the sec-
tion numbers in this paper. Simple label manipulations allow to infer ancestors
and siblings. Binary encodings have been applied to reduce the space overhead
of prefix schemes. Node insertions can be handled gracefully [15], whereas the
problem of labelling graph-shaped XML remains open.

While earlier semistructured [16] and most IR engines are native systems,
recent approaches treat XML retrieval as an application for RDBSs. Different
methods of storing and querying XML in tables have been proposed [17,15,13].
Supporters of the native approach [18,4,19] argue that the best performance is
achieved by tailoring the system to the XML data model. However, the question
whether native or relational systems are more efficient, which largely affects
indexing, joining as well as query planning and optimization, is still unresolved.

Caching of XML query results. Reusing cached query results is an instance of
the more general problem of query processing in the presence of views on the
database, which has been studied extensively for RDBSs. Major problems are
query containment/overlap (compare the definitions of queries/views to decide
whether their extension overlap or contain one another) and query answering
(based on the view definitions and extensions, decide whether a given piece
of data is part of the result of a specific query). Many papers have studied
the theoretical complexity of these problems with different query languages for
semistructured data. For instance, [20] shows that both are PSPACE-complete
for tree-shaped and EXPSPACE-complete for arbitrary conjunctive queries of
regular path expressions. Despite the high theoretical complexity, a number of
different approaches strive to push the practical efficiency to its limits, build-
ing on native XQuery engines [21,22], two-way finite state automata [20], tree
automata [23], incomplete trees [24,25], or LDAP servers [26].

Ranked XML retrieval. Unlike flat-text IR, XML ranking must cope with (1) re-
laxing query structure in order to capture near misses, (2) balancing structural
and textual query conditions when computing relevance scores, (3) defining an
inverted element frequency, (4) choosing suitable elements to return (rather than
entire documents), and (5) avoiding result overlap. Since the first INEX bench-
mark [2] in 2002, many performance metrics and new ranking models have been
proposed, most of which adopt flat-text methods such as ¢fidf [27,28,29]. A
web-inspired technique is to exploit the link structure in document collections
[30,31]. Recently the use of ontologies for query expansion has been studied more
thoroughly [32,31]. However, little work is concerned with the efficient implemen-
tation of XML ranking techniques.

3 Contributions of the project

3.1 Indexing and exploring XML data with the CADG index

At the core of our efficiency enhancements is the Content-Aware DataGuide
(CADG), a path summary inspired by the DataGuide [6] which tightly integrates
IR techniques for efficient keyword search. Those parts of the schema which do
not lead to occurrences of query terms are pruned early during path matching.
Experiments show that this considerably reduces disk I/O, improving the perfor-
mance of the original DataGuide by up to a factor 200 [33]. As a first step toward
enhanced user interaction (Sect. 3.6), we created a graphical CADG [34] which
extends the DataGuide visualization

in [6] (Fig. 1). The schema is ren- [fSchemaBrouser

dered as a tree with highlightable :dva‘:::;(:;; Tren Comral il
nodes. The user can view sample # 7 publication ¢. — \

. X 97 mera o9 B Guery B
keywords occurring under specific 9 ¥ auhars @5)
label paths and statistical informa- O(;’é‘(‘;“)"””“‘
tion about their distribution in the @ ¥ comert 10) T
data. For complex schemata (e.g., | e
INEX benchmark), the user may Eﬁﬁi’m@ AR T
simplify the CADG by hiding sub- [o ses| et 3
trees based on tag names or tex- 1‘mm a..ysnmag B - na
tual content. Unlike [6], we also use |u= =

the CADG for creating complex tree
queries in a semiautomated manner. Fig. 1. CADG visualization.

3.2 Ranked XML retrieval with the CADG index

min. relevance|3.03 jl2s.00 (% =
max. rank|so) JETa k3

ranking scores

As mentioned above, the question
how to rank structured documents
both efficiently and effectively is
still open. Rather than to com-
mit ourselves to a particular model,
we therefore classified existing ap-
proaches w.r.t. the path and term
frequencies they use for computing
relevance scores. In [35] we show how to adapt the CADG to indexing precom-
puted frequencies for different classes of ranking model, which speeds up the
retrieval process. To evaluate our approach experimentally, we implemented the
S-Term ranking model [36] and tested it with the INEX 2004 benchmark [2]. The
system scaled up well to over 500 MB in terms of retrieval speed, but we discov-
ered that even with precomputed frequencies the scoring of certain queries takes
quite long [37]. Clearly this is due to deficiencies inherent to the S-Term model.
Although not central to the Ph.D. project, we might therefore develop a sim-
plified model which avoids too complex scoring and at the same time addresses
some of the challenges mentioned in Sect. 2.

726 Fisld{s)

Integrated language vision knowleclge

Information retrieval ‘

relevance score: 12.11 relevance scare: §.09

[*]

Fig. 2. Ranking visualization.

We also use ranking in our preliminary GUI for rendering result lists, which
may become large for unselective queries. With a new threshold histogram (Fig. 2)
the user specifies a minimum relevance score (or alternatively, a maximum rank)
for items to be displayed, dynamically adapting the number of items in the result
list below the widget.

3.3 The BIRD labelling scheme

In a third step we developed the BIRD labelling scheme [38] for avoiding joins
of large node sets, a common bottleneck in XML query evaluation. Although
the CADG matches leaves of query paths without such joins, BIRD achieves
huge benefits when retrieving nodes higher on the path, or common ancestors in
tree queries. The key to reducing the join effort is that BIRD not only decides
all XPath axes for two given elements, but also infers ancestors, siblings and
children of a single element from its label alone, for which we coined the term
reconstruction. Combined with the CADG, reconstruction avoids additional disk
I/O for looking up matches to the branching nodes of a tree query. As shown
in Fig. 3, BIRD labels (small numbers) are multiples of integer weights (large
numbers), which are stored in the CADG. For instance, to reconstruct the parent
of element 43, we look up the parent weight (5) in the CADG and simply compute
the parent label as 43 — (43 mod 5) = 40, and likewise for other ancestors.

In [38] we study (1) the benefit
of reconstruction over decision and
(2) how BIRD compares to other la-
belling schemes in terms of expressiv-
ity (reconstruction/decision of differ-
ent axes), processing time, space con-
sumption and robustness against up-
dates. In our experiments with five

Fig. 3. BIRD ancestor reconstruction.
Small numbers denote BIRD node la-
bels, whereas large numbers indicate
BIRD weights. Here all children of the
same node have the same weight re-

labelling schemes BIRD outperforms
all competitors with equal expressiv-
ity in terms of space and time. The
only comparable approach, uPID [39],
generates smaller labels but is less ex-

pressive than BIRD. Although BIRD
is not as robust against updates as
other schemes such as ORDPATH [15], further experiments illustrate that a
simple strategy minimizes the impact of node insertions at least for a certain
class of data set. Still we would like to investigate advanced updating techniques
for BIRD sketched in [38]. Finally, a comparison of different query algorithms in
the paper confirms that (1) reconstruction is indeed most effective for speeding
up query evaluation, (2) schemes with excessive label size may incur a perfor-
mance overhead due to inefficient node comparison, and (3) labelling schemes
respecting document order (such as BIRD, e.g.) benefit from extra optimization
techniques. These encouraging results motivated the combination of BIRD and
the CADG in a relational setting (see the next section).

gardless of their label paths.

Currently we are surveying a multitude of XMark: parent reconstruction
new approaches with distinct features which

[]
=
(=]

2 1-BIRD — 4
s - g ORDPATH - 0
have appeared meanwhile, including an exten- S s el D~ R]
R . .) irtual Nodes -~ . A
sive comparative analysis and evaluation of more 2 00T aetar”
. . . 5100 F o - 8
than twenty labelling schemes in terms of time £ PN
. . . 2 K
and space efficiency, robustness against node in- £ sof- e
. g b > —x~ . _
sertions and expressivity. While a previous sur- £ Otﬁ/g—e‘.—e‘»—ﬁﬂé—‘é—é—#ﬂé@é—%
345678 0910111213

vey [40] classifies a small number of approaches 2
into bit-vector, interval and prefir schemes, we
subsume BIRD and a few other encodings under Fig. 4. Reconstruction speed

a fourth class, multiplicative schemes. of BIRD and other ap-
proaches.

3.4 Relational XML retrieval with the RCADG index

level of context node

The following work contributes to the T T T TeEaE
. . . . #0 #5] It 27/000000{11111

discussion of native vs. relational XML rizotisloeasalei 00000011171 :

ZI

2|

. . . 2 | #1 | #2 [name |elt
retrieval systems (see Section 1). Given o Tpeo ol
#4 [#3 [#4 [edu elt 2|
2

olo|

3/010010]/010010
3]000000]10111
1[101100[101100
1[oo1011]001011

that both approaches have been estab- [#E{#3]#5 [qenderlent
lished and pursued without much cross-
fertilization taking place so far, we ex- Fig. 5. Relational CADG (RCADG).
amined how our native XML indexing
techniques can boost the retrieval of XML stored in an RDBS. The goals in the
context of the Ph.D. project were (1) to improve the scalability of our native
prototype system whose performance degraded for unselective queries, (2) to
benefit from RDBS features such as concurrency or recovery and (3) to store
intermediate results temporarily during query evaluation, in anticipation of a
future incremental query kernel (see the next section). In [41] we show how to
migrate the CADG and BIRD to the relational data model, applying interval
labelling [42] to CADG nodes and BIRD labelling to document nodes. The re-
sulting Relational CADG (RCADG) replaces the structural summary in main
memory with a single table containing one row for each CADG node (see Fig-
ure 5), including its interval-scheme labels (columns pid, maz), BIRD weight
(weight), CADG-specific keyword signatures (csig, gsig) and statistical path in-
formation for query planning and ranking (keys, elts).
XML queries against the RCADG are evaluated
entirely within an RDBS as a sequence of SQL state-
ments. The translation algorithm makes heavy use
of BIRD’s reconstruction capabilities to minimize the —&°%e"-
number and the size of intermediate result node sets
to be joined. For instance, to evaluate the query PrevSib gender
in Figure 6 only g3 and g5 are matched by joining e
the RCADG table with the element table, whereas Fig. 6. RCADG query.
matches to g1, q4 and gg are obtained via reconstruc-
tion. Thus the number of joins is reduced by 50% compared to other relational
approaches. Subsequent evaluation steps each produce a more complete interme-
diate result table from prior results, which also enables relational index support

o] o] o
NREN

Parent;

for elements reconstructed on the fly. This technique is rewarded in the experi-
ments where we compare the RCADG to the native CADG/BIRD system, a re-
lational version of the interval scheme and another relational DataGuide variant
that uses string matching on paths [17]. Unlike the two relational competitors,
the RCADG fully preserves the underlying document schema in the RDBS. This
avoids false hits for certain queries on recursive data sets (which we observed for
the string-matching approach) and also enables query optimization techniques
that take into account XML path statistics ignored by the relational optimizer.

From the study on relational XML retrieval with the RCADG, we learned
that (1) exploiting native indexing techniques such as BIRD and the CADG
in an RDBS boosts the query performance by up to three orders of magnitude
compared to both native and relational approaches, (2) the proposed techniques
significantly improve the scalability both in terms of the query complexity and
selectivity, (3) these benefits are achieved with only a negligible space overhead,
but (4) the performance gains may be deteriorated by inappropriate query plan-
ning and rewriting. Our preliminary planning algorithm needs to be refined to
cope with more involved cases where the selectivity of a particular query node
on the one hand and the analysis of applicable reconstruction steps on the other
hand favour conflicting query plans.

3.5 Incremental query evaluation with an XML query cache

The user interaction described below encourages the continuous modification
of prior queries in an iterative relevance feedback process. To this end, queries
need to be evaluated incrementally, i.e., common subsets of results to different
queries should not be retrieved repeatedly from scratch but reused with the least
possible computational effort. This means that (1) final or intermediate results
to previous queries must be materialized at least temporarily and (2) subsequent
queries must be analyzed to find out which parts of the results they share with
previous ones. The first requirement is satisfied in a natural way by the RCADG
(see above). To meet the second requirement, we have developed a novel XML
query cache [43] from which reusable result subsets can be retrieved efficiently
with the help of schema information. A new query is first matched on the schema
level (which can be done very fast in the RCADG’s path table). The resulting
schema hits are decomposed into pairs of label paths which are then looked up in
the query cache to find prior queries with overlapping schema hits. The results of
these queries are available in their RCADG result tables for further processing.

This approach has three benefits, which distinguish it from the earlier work
we know of. First, comparing query eztensions (i.e., results) rather than inten-
sions (i.e., tree patterns or XQuery expressions) works around the high complex-
ity of query containment (Sect. 2). Second, comparing schema hits before access-
ing the full query results helps to discard useless cached queries efficiently. Third,
by caching intermediate and final matches to all parts of a query we can reuse
partial query results and create new query plans to compute the complete result
incrementally. Note also that only schema hits are kept in the main-memory part
of the cache, whereas the full query extensions reside in the RDBS backend.

3.6 Integrated schema exploration, querying and result browsing

The current GUI described in [34] [Fawme e
provides separate views on the i ipeee ey | stadt | hotel | restaurant |
: 4 rHits for stadt
schema, queries and results. Once | b
’ E| B N sto (22) Hits1-10from20 previous next
a query has been formulated and || . .
E name =
evaluated, the retrieved hits are | I, [a=
. . = A beschreibung (Bayreuth .
explored m a graphlcal represen_ : ! Auf den Intemetseiten des Rathauses finden .
tation reflecting the query struc- [f *"™*®9 ||| ¢ ot
ture. While browsing the result [| & #¥mele1e) s sy iz shete
. . B 5 Fraenkisches Hotel - Gasthof Opel
view, users often wish to mod- ‘ 8 J @oumber ¢ (Gasthof Opel ist ca. 3 km von Bayreuth...
ify the query, realizing mismatches |- & (| ®
with their information need. Cur- [k & gastonomic Istack Bayreui] / gastronoie /restaurand
. . .. 4 A Restaurant zur Sudpfanne
rently this requires re-edltlng and | & AWV restaurant| (Geniessen im Restaurant lassen Sie...
re-running the query outside the |1 4o mee | [S
result VieW (perhaps after Consult— . : Open in a new Window H Clusuﬂis'ld1|

ing the schema again). This not
only causes needless computations
to find data that is already known,
but also makes it hard for the user to keep track of updates to the query result.

The most salient feature of the new GUI to be developed is the tight integra-
tion of the schema, query and result views. Ideally the user would silently issue
new queries or modify previous ones while browsing the document schema or
query result, as follows. First the user activates interesting label paths, possibly
with keyword constraints as before. The occurrences of these label paths span a
substructure in the documents which in turn induces a partial schema specific
to the current activation. In the schema view, the CADG is immediately up-
dated, e.g., by hiding paths outside the reduced schema. Note that finding the
current substructure requires efficient tree matching in the documents, just like
for processing explicit user queries. v database 1)

At any point in time the user can ¢ ¥ jibrav w2)

Fig. 7. Preliminary GUIL

either narrow down or expand the ¥ publication (. e

CADG by changing the path acti- t ;':"‘“% content =
. . . il #5

vation. Moreover, distinct paths can ac:ta::];r '; ;t::rm

be merged, i.e., treated as equiva- Oile ¢#7) upp:ndlx

lent both in query evaluation and @ ¥ content (#10) bibliography

in the GUI. Conversely, occurrences ¥ abstract #11)

of the same label path can be dis- a. Tree view. b. Hotspot view.

tinguished, based on their textual

content or statistics such as subtree content _ meta

size, by splitting the correspond- — pegy <
I body title

ing node in the schema view. To s I

some extent this blurs the distinc-

tion between the schema and the ac- c. Bird’s eye overview.

tual data. However, query results for

: Fig. 8. Alternative schema views.
user-specified parts of the schema

are still displayed in a dedicated view (see Figure 7, right-hand side), using dif-
ferent profiles determining the desired level of detailedness as well as backlinks
into the schema view for locating the corresponding label paths.

Inspired by the capabilities of

. ‘database/libi blicati 4 ith
common file system browsers, we in- e e e T

author
tend to provide alternative views on samples. abiteboul boyce codd
the schema. Fig. 8 sketches two pos- contains: smith
sible schema presentations, the tree a. Concise schema node profile.
view (a.) introduced before and the
. . . /database/library/publication/meta/authars
hotspot view (b.) Whlch dlsplay§ the author B —
root path and children of a single samples Eﬁ iaren dﬁ:{ﬂiplicitt\r: L
. children In uments: al

schema node. The level wzdget to h' descendants in documents: 8.0

. i i rds tained: 1190
the right in Fig. 8 b. indicates how contors: B — s sovermedt. 190

deep the node is buried in the doc-
ument hierarchy. Multiple hotspot b. Full schema node profile.
views may be opened in separate
frames or integrated with the tree
view. A bird’s eye overview locates the hotspots in the document hierarchy
(Fig. 8 ¢.). Individual schema nodes may be rendered at distinct levels of de-
tailedness. Two alternatives to the simplistic rendering in Fig. 8 a. are illustrated
in Fig. 9. In a concise read-only profile (Fig. 9 a.), sample keywords and user-
specified query keywords are shown. By contrast, the full profile (Fig. 9 b.)
provides widgets to edit these properties and also displays some path statistics.
Meanwhile we have specified the intended user interaction with the new GUI
in terms of a clean formal algebra. More specifically, we compiled a set of A-
operations for activating label paths in the schema view, and E-operations for
exploring the query results. A preliminary implementation covers some A- and
E-operations in the GUI, but does not yet trigger the appropriate evaluation
steps. Further remaining tasks include the merging and splitting of label paths
and an analysis of the expressiveness of the interaction algebra.

Fig. 9. Alternative schema node profiles.

4 Summary and discussion

The Ph. D. project presented here aims to improve both the user interaction and
the efficiency of XML databases. Major contributions are (1) a highly interactive,
intuitive GUI for non-expert users, (2) index and storage structures for efficient
exact or ranked XML retrieval and (3) algorithms for the incremental evaluation
of XML queries. The work on index and storage structures is finished. We have
thoroughly analyzed our techniques in comparison with existing methods and
demonstrated their practical use in extensive experiments, including scalability
tests for various data sets up to 9 GB in size. The use of structural summaries
such as the CADG has been shown to be particularly apt for the envisaged user
interaction, because it provides an intuitive graphical access to the document
schema and at the same time accelerates query evaluation. This twofold benefit
was already discussed in the context of the Lore system [6]. We significantly

extend that work by (1) combining the DataGuide with IR techniques for key-
word search and ranking (CADG), (2) boosting its performance by means of a
novel labelling scheme (BIRD), (3) migrating the resulting index to an RDBS
(RCADG), (4) using it for similarity search in an XML query cache, (5) inte-
grating it with query and result views for iterative feedback-driven search.

The studies and experiments with XML ranking have shown that our index-
ing techniques support the efficient query evaluation with different models, and
have given us a clear picture of what needs to be improved. As far as the quality
of the S-Term ranking is concerned, the performance at INEX 2004 is encour-
aging but leaves room for optimizing the specificity of the results. For better
response times, the computation of relevance scores needs to be simplified.

References

Boag, S., Chamberlin, D., et al.: XQuery 1.0. W3C Cand. Rec. (2005)

INEX: (Initiative for the Evaluation of XML Retrieval)

Amer-Yahia, S., et al.: XQuery 1.0 and XPath 2.0 Full-Text. W3C W. Dr. (2005)

Paparizos, S., Al-Khalifa, S., Chapman, A., Jagadish, H., et al.. TIMBER: A

Native System for Quering XML. In: Proc. SIGMOD Conf. (2003)

5. Gemis, M., Paredaens, J., Thyssens, [.: A Visual Database Management Interface
based on GOOD. In: Proc. Int. Worksh. on Interfaces to Database Systems. (1993)

6. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In: Proc. VLDB Conf. (1997) 436-445

7. Munroe, K.D., Papakonstantinou, Y.: BBQ: A Visual Interface for Browsing and
Querying of XML. In: Proc. Conf. on Visual Database Systems. (2000) 277-296

8. Comai, S., Damiani, E., Fraternali, P.: Computing Graphical Queries over XML
Data. Trans. Inf. Syst. 19 (2001) 371-430

9. Berger, S., et al.: Xcerpt and visXcerpt: From Pattern-Based to Visual Querying of
XML and Semistructured Data. In: Proc. VLDB Conf. (2003) 1053-1056 (Demo).

10. Braga, D., Campi, A., Ceri, S.: XQBE (XQuery By Example): A Visual Interface
to the Standard XML Query Language. Trans. Database Syst. 30 (2005) 398-443

11. Meuss, H., Schulz, K.U.: Complete Answer Aggregates for Tree-like DBs: A Novel
Approach to Combine Querying and Navig. Trans. Inf. Syst. 19 (2001) 161-215

12. Chawathe, S.S., Baby, T., Yeo, J.: VQBD: Exploring Semistructured Data. In:
Proc. SIGMOD Conf. (2001) 603 (Demo).

13. Boncz, P., Grust, T., van Keulen, M., Manegold, S., et al.: Pathfinder: XQuery—
The Relational Way. In: Proc. VLDB Conf. (2005) 1322-1325

14. Tatarinov, I., Viglas, S., Beyer, K.S., et al.: Storing and Querying Ordered XML
Using a Relational Database System. In: Proc. SIGMOD Conf. (2002) 204-215

15. O’Neil, P.,; O’Neil, E., Pal, S., Cseri, L., et al.. ORDPATHs: Insert-Friendly XML
Node Labels. In: Proc. SIGMOD Conf. (2004) 903-908

16. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database
Management System for Semistructured Data. SIGMOD Record 26 (1997) 54-66

17. Yoshikawa, M., et al.: XRel: A Path-Based Approach to Storage and Retrieval of
XML Documents Using Relational Databases. Trans. Int. Tech. 1 (2001) 110-141

18. Fiebig, T., Helmer, S., Kanne, C.C., Moerkotte, G., Neumann, J., et al.: Anatomy
of a Native XML Database Management System. VLDB Journal 11 (2002) 292-314

19. Galax: Open-source XQuery reference implementation. (www.galaxquery.org)

- =

20.

21.

22.

23.

24.

23.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Calvanese, D., et al.: View-based Query Answering and Query Containment over
Semistructured Data. In: Proc. Int. Worksh. Database Prog. Lang. (2002) 40-61
Chen, L., Rundensteiner, E.A.: XQuery Containment in Presence of Variable Bind-
ing Dependencies. In: Proc. Int. Conf. World Wide Web. (2005) 288-297

Shah, A., et al.: Improving Query Perf. using Materialized XML Views: A Learning-
based Approach. In: Proc. Int. Worksh. XML Schema Data Mgt. (2003) 297-310
Chen, L., Rundensteiner, E.A., Wang, S.: XCache: a Semantic Caching System for
XML Queries. In: Proc. SIGMOD Conf. (2002) 618618 (Demo).

Hristidis, V., Petropoulos, M.: Semantic Caching of XML Databases. In: Proc.
Int. Worksh. Web and Databases. (2002) 25-30

Abiteboul, S., Segoufin, L., Vianu, V.. Representing and Querying XML with
Incomplete Information. In: Proc. Symp. Principles of Database Systems. (2001)
Marrén, P.J., Lausen, G.: Efficient Cache Answerability for XPath Queries. In:
Proc. Int. Worksh. Data Integration over the Web. (2002)

Wolff, J.E., Florke, H., Cremers, A.B.: XPRES: A Ranking Approach to Retrieval
on Structured Documents. Technical Report IAI-TR-99-12, Univ. Bonn (1999)
Fuhr, N.; Grof§johann, K.: XIRQL: A Query Language for Information Retrieval
in XML Documents. In: Proc. Int. Conf. Research Developm. IR. (2001) 172-180
Theobald, M., Schenkel, R., Weikum, G.: An Efficient and Versatile Query Engine
for TopX Search. In: Proc. VLDB Conf. (2005) 625-636

Guo, L., Shao, F., Botev, C., et al.: XRANK: Ranked Keyword Search over XML
Documents. In: Proc. SIGMOD Conf. (2003) 16-27

Graupmann, J., et al.: The SphereSearch Engine for Unified Ranked Retrieval of
Heterogeneous XML and Web Documents. In: Proc. VLDB Conf. (2005) 529-540
Theobald, A., Weikum, G.: The Index-Based XX Search Engine for Querying
XML Data with Relevance Ranking. In: Proc. EDBT Conf. (2002) 477-495
Weigel, F., Meuss, H., Bry, F., Schulz, K.U.: Content-Aware DataGuides: Inter-
leaving IR and DB Indexing Techniques for Efficient Retrieval of Textual XML
Data. In: Proc. Europ. Conf. Information Retrieval. (2004) 378-393

Meuss, H., Schulz, K.U., Weigel, F., et al.: Visual Exploration and Retrieval of
XML Document Collections with the Generic System X 2. Dig. Lib. 5 (2005) 3-17
Weigel, F., Meuss, H., Schulz, K.U., Bry, F.: Content and Structure in Indexing
and Ranking XML. In: Proc. Int. Worksh. Web and Databases. (2004)

Schlieder, T., Meuss, H.: Querying and Ranking XML Documents. Journ. Ameri-
can Society for Information Science and Technology 53 (2002) 489-503

Weigel, F., Meuss, H., Schulz, K.U., Bry, F.: Ranked Retrieval of Structured
Documents with the S-Term Vector Space Model. In: Proc. INEX Worksh. (2004)
Weigel, F., Schulz, K.U., Meuss, H.: The BIRD Numbering Scheme for XML
and Tree Databases — Deciding and Reconstructing Tree Relations using Efficient
Arithmetic Operations. In: Proc. Int. XML Database Symposium. (2005) 49-67
Bremer, J.M., Gertz, M.: Integrating XML Document and Data Retrieval Based
on XML. VLDB Journal (2005) Ounline First.

Christophides, V., Scholl, M., Tourtounis, S.: On Labeling Schemes for the Seman-
tic Web. In: Proc. Int. Conf. World Wide Web. (2003)

Weigel, F., Schulz, K.U., Meuss, H.: Exploiting Native XML Indexing Techniques
for XML Retrieval in Relational Database Systems. In: Proc. Int. Worksh. Web
Information and Data Management. (2005)

Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.
In: Proc. 27th VLDB Conf. (2001) 361-370

Weigel, F., Schulz, K.U.: Caching Schema Information and Intermediate Results
for Fast Incremental XML Query Processing in RDBSs. Submitted for publ. (2006)

