
Towards a Secure Service Coordination

Thi-Huong-Giang Vu

LSR-IMAG Laboratory, BP 72, 38402 Saint Martin d’Hères, FRANCE
Thi-Huong-Giang.Vu@imag.fr

http://www-lsr.imag.fr/Les.Personnes/Thi-Huong-Giang.Vu/

Abstract. This paper presents an approach for building secure service-
based coordinated systems. Secure coordination is considered at two lev-
els: abstraction (i.e., specification) and execution (i.e., run level). At the
abstraction level, we define a general model enabling to specify coordi-
nation and its related non functional properties (such as security). The
idea is to use constraints for expressing the application logic of a coordi-
nated system and its required security strategies. Coordination activities
are the key concepts used for controlling the execution of participating
services. Constraints are specified as pre and post conditions of these co-
ordination activities. At the execution level, we propose an architecture
which implements strategies to verify constraints and manage the secure
execution of coordination. We propose also an instantiating vade-mecum
to configure execution level components according to a specific set of
constraints.

1 Context and Motivations

The democratization of Internet along with recent advances in information tech-
nologies has made the global networked marketplace vision a reality. In such an
environment, companies form alliances for building information systems that ag-
gregate their respective services, and thereby enabling them to stay competitive.
Effective service sharing and integration is a critical step towards developing next
generation of information systems for supporting the new online economy. Given
the time-to-market, rapid development and deployment requirements, informa-
tion systems are made up of the services of different service providers, accessible
through networks, e.g., Internet. Such information systems are called coordinated
systems. A service performs functionalities associated with a goal desired by its
provider. Services are heterogeneous, and use different data formats and trans-
port protocols. A service provider is an autonomous organism that keeps control
on the service execution with respect to some non-functional aspects such as
security. A service can evolve independently of its users (applications) by both
aggregating new functionalities or, conversely, removing existing ones. A service
provider predefines also instructions and descriptions for using its services (e.g.,
where and when functionalities of these services can be accessed). Using a service
implies invoking a provided method and (possibly) waiting for execution results.

Numerous systems, models and languages have been proposed for supporting
service coordination, i.e., the way services invocations are orchestrated according



to the application logic of a given coordinated system. Existing solutions such as
workflow models [16, 7] or Petri nets [13] tackle the specification and enactment
of service coordination. Using a workflow model, the execution of a coordinated
system is controlled by a data flow and a control flow. The data flow specifies
data exchange among participating services. The control flow describes their
dependencies and it is expressed by ordering operators such as sequence, selec-
tion (OR-split, OR-joint) and synchronization (AND-split, AND-joint). Using a
Petri net, the execution of a coordinated system is expressed in form of rules
applied on data delivered to or consumed by participating services (i.e., places).
It implies (i) rules for abstracting the structure of exchanged data (i.e., tokens)
between services and (ii) rules for scheduling and firing input and output data of
service execution (i.e., transitions). The execution of interaction among services
has been facilitated by current technologies, such as technologies driven by the
interoperation approach [5, 15] and the intercommunication approach [4].

While particular attention has been devoted to service coordination, non-
functional aspects such as security have been poorly addressed by existing coor-
dination models, languages and execution engines. It is hard to accurately spec-
ify what a coordinated system has to do under specific security requirements
such as authentication, reliability, non repudiation and messages integrity. It is
also often difficult to consider in advance the coordination of participating ser-
vices under a large set of interactions and interdependencies among them. A
loose specification of application logic can lead to a wrong order of interactions
among services. We can also mistreat real situations during the coordination
execution, e.g., invoked service is undesirably replaced by another. Furthermore,
at execution time managing secure coordination implies:

– Authentication of the services that participate in a coordination process
(i.e., identify the invoked service and the service that provides results after
an invocation).

– Verifying messages integrity (i.e., those exchanged among services) in order
to avoid their unauthorised alteration.

– Ensuring non repudiation of coordination: post-check the validity of coor-
dinated system execution and prevent a participating service from denying
previous actions.

The challenges are to avoid security vulnerabilities that can reach the ser-
vice coordination and to provide strategies and measures for ensuring security
at run-time. Moreover, the proposed strategies and measures should not con-
tradict the facility of the coordinated system construction and the flexibility
of services. It should be possible to adapt coordination and security aspects of
coordinated systems on different topologies, usage scenarios, delegation require-
ments and security configurations. It should imply also the way to customize
security levels for different types of participating services when they take part in
different coordinated systems. Therefore, we aim at adding security properties
service coordination.

Our approach enables secure service coordination by combining security prop-
erties of services. It also defines the general architecture of components for man-



aging secure coordination at run-time. We assume that services and network
security is ensured by the communication and the execution environments. Par-
ticularly, we suppose that there is no backdoor for accessing public instructions
and descriptions exported by services; and that exchanged information confiden-
tiality is ensured by underlying network services (e.g., by cipher mechanisms).
We also assume that security properties are exported by services and that they
are implemented by heterogeneous tools (e.g., different encryption algorithms).

The remainder of this paper is organized as follows. Section 2 introduces the
model for secure service coordination. Section 3 presents the run-time architec-
ture for verifying constraints and managing the secure execution of coordination.
Section 4 describes the instantiating vade-mecum for programming security tools
supported by the execution and communication environments. Section 5 com-
pares our work with existing ones. Finally, section 6 concludes the paper and
discusses further research directions.

2 Model for secure service coordination

We propose a model (see Fig. 1) that offers concepts to describe service coordi-
nation as coordination activities and their associated constraints.

Fig. 1. Secure service coordination model

A coordination activity specifies an interaction between two services, where
one invokes a function provided by the other and (possibly) waits for execution
results.

A coordination scenario is the history containing information about the exe-
cution of a coordinated system. It is built by tracing the execution of coordina-
tion activities.

A constraint specifies the behaviour, the data, the characteristic or the in-
terface associated to a coordination activity or to a coordination scenario. A
constraint can be enabled, enforced, observed and verified.

In our model, the application logic of a service-based coordinated system is
specified as a set of constraints. These constraints are added to coordination



activities (in form of their preconditions, post-conditions and invariants) and
refer to a given coordination scenario. In this way, an application logic can
address different types of requirements imposed to the execution of coordination
activities: ordering (e.g., their temporal relationships), firing (e.g., the moment
in which a participating service must be invoked) and data interdependencies
(e.g., input/output data relationships).

Security strategies required by a coordinated system are specified in a sim-
ilar way. Constraints expressed on security properties provided by services are
coupled with constraints used to control the execution of coordination activities.
These constraints are also added to coordination activities and refer to a given
coordination scenario. A security strategy addresses integrity, authentication,
authorisation and non repudiation for coordination. The coordination can be
then controlled and managed to be performed with respect to specific functional
safety requirements such as in the correct time, in the correct communication
cross-links, by the correct actors, etc.

Let us consider a flight booking application built out of three existing services:

– Adventurer service manages clients that are interested in booking flights.
– Payment service executes online payment transactions on given client ac-

counts.
– Seeking service looks for available seats and performs flight pre-booking op-

erations on a flight database.

The application logic of such a coordinated system is explained as follows.
The flight booking application first interacts with Adventurer service to get infor-
mation about client and her/his needs by invoking the method get Requirements.
This information is used by the method seek Flights of the Seeking service for
looking for available flights. This service returns a list of possible flights that are
displayed by the method display Results of the Adventurer service.

Constraints (ordering, firing and data interdependencies) express this appli-
cation logic as pre and post conditions associated to the three following coordi-
nation activities:

– A 1: getFlightInformation(AdventurerService) where reservation requirements
are retrieved.

– A 2: seekFlights(SeekingService) for looking for available flights according to
the information received as input (from A 1).

– A 3: showResults(AdventurerService) for displaying the booking result.

Required security properties such as authentication and authorisation are
also expressed in form of pre and post conditions of these coordination activi-
ties. Corresponding security strategies specify that these identified coordination
activities are permitted for invoking their relating methods and that received
results really stem from the invoked services.

For example, examine the coordination activity A 2 and its related coordina-
tion activities A 1 and A 3. The following constraints specify coordination and
security aspects associated to A 2:



– Obligate(S1 = COMMIT): once the execution status of A 1 (i.e., S1) is suc-
cesful, the method seekFlights of the Seeking service can be invoked.

– Match(O1): information about customer’s needs (i.e., O1) produced by the
method getFlightInformation of the Adventurer service is used as input data
of the method seekFlights provided by the Seeking service.

– After(getFlightInformation): the end of the execution of the method getFlight-
Information must precede the beginning of the execution of the method seek-
Flights.

– Approved(seekFlights): the identity of the service providing the invoked method
seekFlights must belong to the approved list of the coordinated system.

Similarly, the following post conditions of A 2 must hold:

– Permit(S3 = READY): A3 can fire the invocation to a method of the Adven-
turer service. This constraint plays also the role of an authorisation constraint
for A 3.

– Invariant(O2): the flight search result cannot be altered until it is redelivered
to the Adventurer service.

– Received(seekFlights, invocation) ∧ Sent(seekFlights, result): it ensures that
the invocation and the transmission of results are done within the same
execution scope. In the example, the invocation of the method seekFlights is
received and its results are sent within the scope of the coordination activity
A 2. This constraint is used for avoiding non-repudiation.

3 Execution manager general architecture

We propose an architecture for realising strategies to execute secure service coor-
dination. This execution architecture provides components that can be adapted
to manage security strategies to specific application requirements. It provides
components for managing functional aspects and non functional aspects, in par-
ticular security. For example, at the participating services side, functional aspects
are the methods they provide. In our example a security aspect of the Adventurer
service is client authentication. The functional aspect of a coordinated system
is its application logic and its non-functional aspects concern functional safety.

We define execution managers, which consist of control components that
are associated to services and coordination activities. It is extended with other
trusted third-party components. For a given coordination activity, each partici-
pating service is associated to a connector and a partner controller. A coordina-
tion activity is executed by a builder and it has an associated security controller
that supervises its execution and the execution of the related participating ser-
vices. There are three types of security controllers: constraint builders, strategy
controllers and aspect controllers. Security properties of services are homogenised
by wrappers which are also responsible of managing secure interaction between
services.



3.1 Coordination activity builder

Fig. 2 shows the components that execute coordination activities.

Fig. 2. Components for implementing coordination activities

A coordinator controls the execution of a coordination activity with the
support of an invocation maker and condition verifiers. It builds a schedule
that specifies the moment in which one or several constraints must be verified
with respect to the invocation of a method.

An invocation maker performs the invocation of a method specified within
a coordination activity.

A partner controller manages the interaction with the service related to a
specific invocation.

A connector is used as a specific communication channel for the interaction
between the partners of an invocation.

A monitor traces the execution of these components and notifies the execu-
tion status to build the coordination scenario.

3.2 Constraint builder

Fig. 3 shows the components used for managing constraints: constraint solvers,
exception handlers and condition verifiers.

Fig. 3. Constraint builder components



A constraint solver verifies a set of constraints. It returns a Boolean result.
The false value is considered as an exception and it is managed by another
component.

An exception handler manages exceptions raised within the execution of a
coordinated application. It collects the execution results of other components an
generates information associated to the coordination scenario.

A condition verifier combines the results of constraint solvers to evaluate
pre and post conditions of a specific coordination activity. It translates invari-
ants to equivalent pre and post conditions. All preconditions are checked before
launching an invocation. All post conditions are checked after receiving the result
from the corresponding invocation.

3.3 Strategy controller

Fig. 4 shows the components that implement strategies associated to a coordi-
nation.

Fig. 4. Strategy controller components

A rule adaptor schedules coordination activities according to pre-defined
strategies. It controls the execution of a set of coordination activities.

A strategy organizer implements a strategy specified by constraints using
properties of the participating services.

A policy controller controls and manages the execution of the strategies for
a given coordinated application.

A logger collects information about the execution state of strategies and the
notifications from monitors, exception handlers and stores them in a log.

3.4 Aspect controller

Fig. 5 shows the components for managing security policies of participating
services.

Aspect form generator describes security properties of a participating ser-
vice and exports it.



Fig. 5. Aspect controllers - wrappers for participating services

Aspect manager manages security properties of a service.
Monitor traces modifications on security properties and matches properties

with application requirements.

4 Instantiating vade-mecum

We describe an instantiating vade-mecum for programming security tools sup-
ported by the execution and communication environments (e.g., secure data
exchange among services). Our instantiating vade-mecum assists programmers
to configure the components of a service-based coordinated system according
to a specific set of constraints. The vade-mecum helps to avoid conflicts and
redundancy of coordination and security strategies supported by the compo-
nents of the proposed architecture and those supported by real environment.
The vade-mecum provides a technical catalogue of security strategies that can
be associated to given coordination contexts, and a guide for combining security
strategies with given coordination constructors.

Reinforce coordination rule. Security constraints associated to a coordination
activity are explicitly specified in our model. Those associated to participating
services are implicit to the description of such services. For giving supplementary
effects of protection at run-time (e.g., for supervising exchanged information and
for notifying the potentially dangerous scripts), security strategies which are not
(or implicitly) specified by constraints can be implemented and instantiated as
an instance of a Strategy Organizer.

Establish privileges for actors related to a coordination activity. Authorisation
constraints associated to a coordination activity specify in which conditions such
an activity can be executed. The role of an actor plays and his/her associated
privileges are important elements for verifying constraints. We describe how
to grant and manage invoking privileges, and how to associate them to the
corresponding connectors.



Supervise coordination activity orchestration. We describe how to construct an
activity state-transition automaton for pre-checking the causality of coordination
activities for a given set of participating services.

5 Related Works

Existing works can be classified into two categories according to their service
interaction mechanisms. In the first category, services interact through a shared
space [6, 8, 1]. Security policies are associated to the shared space: access control
(authorisation, control privilege, etc.) and services authentication. Target co-
ordinated system configuration is specified by suitable coordination languages,
e.g., the Linda family [11, 12, 14].

In the second category, coordination is based on data exchange among par-
ticipating services. Services are considered black box processes that produce
and consume data via well defined interfaces. Services communicate directly for
establishing connections, exchanging data, diffusing control events among pro-
cesses [10, 8, 2].

In [1] security strategies are applied to tools and the environments that sup-
port interconnection and communication among participating services (i.e., only
at coordination execution level). WS-Policy and WS-Secure-Conversation com-
bined with WS-Security and WS-Trust are going in this direction. [6] presents an
approach for building a secure mobile agent environment. [3] specifies secure ex-
changed messages among Web services based on SOAP protocols. [9] proposes a
formal security model to identify and quantify security properties of component
functionalities to protect user data by evaluating and certifying the components
and their composition.

6 Conclusion and Future Work

This paper presented our approach towards secure service coordination. We de-
scribed our coordination model and an associated architecture for addressing
services authentication.

In conclusion, the main contribution of our work is to provide secure service
coordination by specifying security strategies and an associated architecture for
executing them. Security properties provided by services are homogenized un-
der a pivot view that can be used for specifying well suited security strategies
according to specific requirements.

We are currently specifying and implementing a secure coordination frame-
work called MEOBI. Future work includes evaluating MEOBI for component-
based and Web services based systems. Further research focuses on the extension
of secure coordination strategies by including performance requirements.



Acknowledgment

This research is supported by the French National Research Council (CNRS).
I would like to thank Prof. Christine Collet and Dr. Genoveva Vargas-Solar for
their support, guidance and attentive comments, Dr. Christophe Bobineau for
his constructive discussions during the preparation of this paper. I would like
to extend my appreciation to the reviewers for their feedbacks on the previous
draft of this paper.

References

1. Alvarez, P., Banares, J.A., Muro-Medrano, P.R.,Nogueras, J.,Zarazaga, F.J.: A Java
Coordination Tool for Web-service Architectures: The Location-Based Service Con-
text. In FIDJI’01: Revised Papers from the International Workshop on Scientific
Engineering for Distributed Java Applications, Springer-Verlag (2003) 1–14

2. BEA Systems, IBM Corporation, Microsoft Corporation: Web Services Coordination
(2003)

3. Belhajjame, K., Vargas-Solar, G., Collet, C.: Defining and coordinating open-
services using Workflow. In: Proceedings of the Eleventh International Conference
on Cooperative Information Systems, Lecture Notes in Computer Science (2003)

4. IBM Corporation: http://www-306.ibm.com/software/htp/cics/ (1999)
5. Object Management Group: http://www.corba.org/ (2002)
6. Cremonini, M., Omicini, A.,Zambonelli, F.: Coordination in Context: Authentica-

tion, Authorisation and Topology in Mobile Agent Applications. In: 3rd Interna-
tional Conference on Coordination Languages and Models, Springer-Verlag (1999)

7. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases (1995) 119-153

8. Issarny, V., Bidan, C., Saridakis, T.: Characterizing Coordination Architectures Ac-
cording to Their Non-Functional Execution Properties. In: 31st IEEE International
Conference on System Science (1998)

9. Khan, K.M., Han, J.: A Security Characterisation Framework for Trustworthy Com-
ponent Based Software Systems. In: IEEE International Computer Software and
Applications Conference (2003)

10. Klint, P., Olivier, P.: The TOOLBUS Coordination Architecture: A Demonstra-
tion. In: 5th International Conference on Algebraic Methodology and Software Tech-
nology, Springer Verlag (1996) 575–578

11. Malone, T.W.: What is Coordination Theory and How Can it Help Design Coop-
erative Work Systems?. In CSCW ’90: Proceedings of the 1990 ACM conference on
Computer-supported cooperative work (1990) 357–370

12. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Advances in
Computers (1998)

13. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR
(1981)

14. Tolksdorf, R.: Coordination Technology for Workflows on the Web: Workspaces.
In COORDINATION ’00: Proceedings of the 4th International Conference on Co-
ordination Languages and Models, Springer-Verlag (2000) 36–50

15. Microsoft Corporation: http://msdn.microsoft.com/webservices/building/interop/
(2003)

16. Workflow Management Coalition: Terminology and Glossary (1996)


