
Conflict Resolution in Updates through XML views

André Prisco Vargas1, Vanessa P. Braganholo2, and Carlos A. Heuser1

1 Instituto de Informática - Federal University of Rio Grandedo Sul - Brazil
2 COPPE - Federal University of Rio de Janeiro - Brazil

[apvargas,heuser]@inf.ufrgs.br, vanessa@cos.ufrj.br

Abstract. In this paper, we focus on B2B scenarios where XML views are ex-
tracted from relational databases and sent over the Web to another application
that edits them and sends them back after a certain (usually long) period of time.
In such transactions, it is unrealistic to lock the base tuples that are in the view to
achieve concurrency control. Thus, there are some issues that need to be solved:
first, to identify what changes were made in the view and second, to identify and
solve conflicts that may arise due to changes in the database state during the trans-
action. We address both of these issues in this paper by proposing an approach
that uses our XML view update system PATAXÓ.

1 Introduction

XML is increasingly being used as an exchange format betweenbusiness to business
(B2B) applications. In this context, a very common scenariois one in which data is
stored in relational databases (mainly due to the maturity of the technology) and ex-
ported in XML format [14, 9] before being sent over the Web. The proposes in [14,
9], however, address only part of the problem, that is, they know how to generate and
query XML views over relational databases, but they do not know how to update those
views. In B2B environments, enterprises need not only to obtain XML views, but also
to update them. An example is a companyB (buyer) that buys products from another
companyS (supplier). One could think onB askingS for anorder form. B would them
receive this form (an empty XML view) in a PDA of one of its employees who would
fill it in and send it back toS. S would them have to process it and place the new order
in its relational database. This scenario is not so complicated, since the initial XML
view was empty. There are, however, more complicated cases.Consider the case where
B changes its mind and asksS its order back, because it wants to change the quantities
of some of the products it had ordered before. In this case, the initial XML view is not
empty, andS needs to know what changesB made to it, so it can reflect the changes
back to the database.

In previous work [2], we have proposed PATAXÓ, an approach toupdate relational
databases through XML views. In this approach, XML views areconstructed using
UXQuery [3], an extension of XQuery, and updates are issued through a very simple
update language. The scenario we address in this paper is different in the following
senses: (i) In PATAXÓ [2], updates are issued through an update language that allows
insertions, deletions and modifications. In this paper, we deal with updates done directly
over the XML view, that is, users directlyedit the XML view. Thus, we need to know

exactly what changes were made to the view. We address this bycalculating thedelta
between the original and the updated view. Algorithms in literature [6, 4, 17, 7] may be
used in this case, but need to be adapted for the special features of the updatable XML
views produced by PATAXÓ; (ii) In PATAXÓ [2], we rely on the transaction manager of
the underlying DBMS. As most DBMS apply the ACID transactionmodel, this means
that we simple lock the database tuples involved in a view until all the updates have
been translated to the database. In B2B environments, this is impractical because the
transactions may take a long time to complete [5]. Returningto our example, company
B could take days to submit the changes to its order back toS. The problem in this
case is what to do when the database state changes during the transaction (because of
external updates). In such cases, the original XML view may not be valid anymore, and
conflicts may occur.

In this paper, we propose an approach to solve the open problems listed above. We
use PATAXÓ [2] to both generate the XML view and to translate the updates over the
XML view back to the underlying relational database. For this to be possible, the update
operations that were executed over the XML view need to be detected and specified us-
ing the PATAXÓ update language. It is important to notice that not all update operations
are valid in this context. For example, PATAXÓ does not allowchanging the tags of the
XML elements, since this modifies the view schema – this kind of modification can not
be mapped back to the underlying relational database.

We assume the XML view is updatable. This means that all updates applied to it
can be successfully mapped to the underlying relational database. In [2], we present a
set of rules the view definition query must obey in order for the resulting XML view to
be updatable. Basically, this means that primary keys are preserved in the view, joins
are made by key-foreign keys, and nesting is done from the owner relation to the owned
relation. An example of non-updatable view would be a view that repeats the customer
name for each item of a given order. This redundancy causes problems in updates, thus
the view is not updatable.

Application ScenarioConsider companiesB andS, introduced above. CompanyS has
a relational DB that stores orders, products and customers.The DB schema is shown
in Figure 1(a). Now, let’s exemplify the scenario previously described. CompanyB
requests its order to companyS so it can alter it. The result of this request is the XML
view shown in Figure 2 (the numbers near the nodes, shown in red in the Figure, are used
so we can refer to a specific node in our examples). While company B is analyzing the
view and deciding what changes it will make over it, the relational database of company
S is updated as shown in Figure 1(b). These updates may have been made directly over
the database, or through some other XML view. The main point is that the update over
LineOrderaffects the XML view that is being analyzed by companyB. Specifically, it
changes the price of one of the products thatB has ordered (blue pen).

Meanwhile,B is still analyzing its order (XML view) and deciding what to change.
It does not have any idea that product "BLUEPEN" had its pricedoubled. After 5 hours,
it decides to make the changes shown in Figure 3 (the changes are shown in boldface
in the figure). The changes are: increase the quantity of bluepens to 200, increase the
quantity of red pens to 300, and order a new item (100 notebooks (NTBK)). Notice

(a)
Customer (custId, name, address),

primary key (custId)
Product (prodId, description, curPrice),

primary key (prodId)
Order (numOrder, date, custId, status),

primary key (numOrder),
foreign key (custId) references Customer

LineOrder (numOrder, prodId, quantity, price),
primary key (numOrder, prodId),
foreign key (prodId) references Product,
foreign key (numOrder) references Order

(b)
//increases price of "blue pen"
UPDATE Product
SET curPrice = 0.10
WHERE prodId = "BLUEPEN";

UPDATE LineOrder
SET price = 0.10
WHERE prodId = "BLUEPEN" AND
numOrder IN (SELECT numOrder

FROM Order WHERE status="open");

Fig. 1. (a) Sample database of companyS (b) Updates made over the database

price

orders viewId=“786”

order

custId

995

1

2

4

prodId

“BLUEPEN”

line-items

item

quantity

100

6

8

7

9

name

“Company B”

5

price

0.05

10

prodId

“REDPEN”

item

quantity

200

12

11

13

0.05

14

@numOrder

3

123

price

orders viewId=“786”

order

custId

995

1

2

4

prodId

“BLUEPEN”

line-items

item

quantity

100

6

8

7

9

name

“Company B”

5

price

0.05

10

prodId

“REDPEN”

item

quantity

200

12

11

13

0.05

14

@numOrder

3

123

Fig. 2.Original XML view

there that, in order to add a new product in its order,B has to queryS for a catalog of
products. We assume this has already been done.

WhenS receives the updated view, it will have to: (i) Detect what were the changes
made byB in the XML view; (ii) Detect that the updates shown in Figure 1(b) affect
the view returned byB, and detect exactly what are the conflicts; (iii) Decide how to
solve the conflicts, and update the database using PATAXÓ.

Contributions and Organization of the Text The main contributions of this paper are:
(i) A delta detection technique tailored to the PATAXÓ XML views; (ii) An approach
to verify the status of the database during the transaction.This is done by comparing
the status of the database in the beginning of the transaction with the status of the
database in the time the updated view is returned to the system; (iii) A conflict resolution
technique, based on the structure of the XML view; (iv) A merge algorithm to XML
views that emphasizes the conflicts caused by changes in the database state during the
transaction.

The remaining of this paper is organized as follows. Section2 discusses related
work. Section 3 presents an overview of the PATAXÓ approach.Section 4.1 presents
our technique to detect deltas in XML views, and Section 4.2 presents a solution to the
problems caused by conflicts. Finally, we conclude in Section 5.

2 Related Work

Extended TransactionsAs we mentioned in the introduction, in this paper we do not
rely only on the ACID transaction model implemented by most of the DBMS. Instead,

orders viewId=“786”

order

custId

995

1

2

4

prodId

“BLUEPEN”

line-items

item

quantity

200

6

8

7

9

name

“Company B”

5

price

0.05

10

prodId

“REDPEN”

item

quantity

300

12

11

13

price

0.05

14

@numOrder

3

123

prodId

“NTBK”

item

quantity

100

16

15

18

price

3.50

17

orders viewId=“786”

order

custId

995

1

2

4

prodId

“BLUEPEN”

line-items

item

quantity

200

6

8

7

9

name

“Company B”

5

price

0.05

10

prodId

“REDPEN”

item

quantity

300

12

11

13

price

0.05

14

@numOrder

3

123

prodId

“NTBK”

item

quantity

100

16

15

18

price

3.50

17

Fig. 3.XML view updated by companyB and returned to companyS

we propose a mechanism to detect changes that were done offline. This mechanism is
responsible for detecting the cases where the offline changes done through the view
may conflict to changes done directly through the database. [5] discusses the effects
of transaction on objects and the interactions between transactions on several extended
transaction models. In our paper, we use the terminology presented in [5], but do not
use any of the extended transaction models proposed there. We discuss the reason for
that below.

In our paper, although we externally detect conflicts between update operations, we
still depend on the ACID transaction model, since the updates are actually executed by
the underlying DBMS (we do not want to change the DBMS in anyway). Because of
this, even if we have several views being updated at the same time, it is enough to detect
conflicts between the database and the view that has just beenreturned to the system. To
exemplify, assume we have a databaseD and a set of viewsV1, ..., Vn specified overD
using the exact same view definition query (i.e., the views are identical). Assume also
that all of these views are being updated offline. When the updated views are returned
to PATAXÓ, we have an order in which they will be analyzed. Assume this order is
V1, ..., Vn (the order in which the views were returned to the system). Wethen compare
V1 with the current state ofD to detect conflicts, and translate non conflicting updates
to D. Then, we proceed with the next view in the queue. Notice thatthe updates done
throughV1 are already reflected inD, so we do not need to compareV1 with V2 to
detect conflicts. Thus, we have isolated transactions.

On a similar line of thought, [1] criticizes the ANSI SQL-92Isolation Levels, and
discusses the problems that may occur when several transactions interact over the same
data. Since we are not proposing a new transaction manager inour approach, we claim
we do not need to worry about such things in our approach.

Harmony Work related to our approach is the Harmony Project [13], in which the au-
thors propose the use oflensesto synchronize data in different formats. In [10], the
authors propose to use the semantic foundation oflensesto support updates through
views. Their formal framework treats the database as a concrete format, and views over
the database as an abstract format. Then, lenses are used to map concrete data to ab-
stract views (get component), and the inverse mapping (the one required to update the
database -putback component) derives automatically from the get component. After

defined, two abstract viewsv1 andv2 can be synchronized. Comparing to our scenario,
we may assumev1 is the original view andv2 is the updated view. The concrete for-
mat of v1 is the databaseD, while the concrete format ofv2 is v2 itself (in this case
we use the identity lens to perform the mapping fromv2 to v2). When the database is
updated,v1 reflects the changes. The problem here is that when we synchronizev1 and
v2, we may erroneously reinsert old things in the database. As an example, suppose
we have tuplest1 andt2 in D. Suppose also thatt1 andt2 are both inv1. View v2, at
the beginning, is equal tov1, so it also hast1 andt2. Suppose that, whilev2 is being
updated,D is updated to deletet2. Thus,v1 will reflect this change, and now it has only
t1. Meanwhile,v2 is updated to insertt3, and so it now hast1, t2 andt3. Whenv1 is
synchronized withv2, the system finds out thatt2 andt3 needs to be inserted intov1

(and consequently intoD). It is thus erroneously reinsertingt2. Our approach, in this
case, would insert onlyt3.

Consistency control of disconnected replicasA problem closely related to our work
is the problem of consistency control of disconnected database replicas [11, 15, 12]. To
solve such problem, Phatak and Badrinath [12] propose a reconciliation phase that syn-
chronizes operations. [11] uses conflict detection and dependencies between operations.
However, these approaches do not deal with the XML views problem or require the se-
mantics of the data to be known. In our paper, we use some of theideas of [11] in the
XML context.

3 The PATAXÓ approach

As mentioned before, PATAXÓ [2] is a system that is capable ofconstructing XML
views over relational databases and mapping updates specified over this view back into
the underlying relational database. To do so, it uses an existing approach on updates
through relational views [8]. Basically, a view query definition expressed in UXQuery
[3] is internally mapped to a query tree [2]. Query trees are aformalism that captures the
structure and the source of each XML element/attribute of the XML view, together with
the restrictions applied to build the view. As an example, the query tree that corresponds
to the view query that generates the XML view of Figure 2 is shown if Figure 4. The
interested reader can refer to [2] for a full specification ofquery trees.

In this paper, it will be important to recognize certain types of nodes in the query tree
and in the corresponding view instance. In the query tree of Figure 4, nodeorder is a
starred-node(*-node)3. Each starred node generates a collection of (possibly complex)
elements. Each such element carries data from a database tuple, or from a join between
two or more tuples (tables Customer and Order, in the example). We call each element

3 Notice that, despite the fact that the conditionnumOrder=123restricts this view to a single
order, nodeorder is defined as a starred node. This is because the formal definition of query
trees requires that nodes withsource annotationsbe starred [2]. In [2], this decision was made
to simplify the mapping to relational views – this way, the algorithm does not need to check
thewhereannotations to find out whether a given node will have single or multiple instances.
More details about the formal definition of query trees can befound in [2]. Notice further that
this view would not beupdatableif it had multiple orders, since thenameof the customer
could be redundant. To solve this problem, orders would haveto be nested within customer.

name = ‘orders’

name = ‘order’
[$c := table(“Customer”)]

[$o := table(“Order”)]
[where $c.custId = $o/custId

and $c/custId = “995 and $o/numOrder = “123”]

name = ‘custId’
value = $c/custId

name = ‘item’
[$l := table(“LineOrder”)]

[where $o/numOrder = $l/numOrder]

name = ‘prodId’
value = $l/prodId

name = ‘name’
value = $c/name

*

*

name = ‘line-items’

name = ‘quantity’
value = $l/quantity

name = ‘price’
value = $l/price

name = ‘@numOrder’
value = $o/numOrder

name = ‘orders’

name = ‘order’
[$c := table(“Customer”)]

[$o := table(“Order”)]
[where $c.custId = $o/custId

and $c/custId = “995 and $o/numOrder = “123”]

name = ‘custId’
value = $c/custId

name = ‘item’
[$l := table(“LineOrder”)]

[where $o/numOrder = $l/numOrder]

name = ‘prodId’
value = $l/prodId

name = ‘name’
value = $c/name

*

*

name = ‘line-items’

name = ‘quantity’
value = $l/quantity

name = ‘price’
value = $l/price

name = ‘@numOrder’
value = $o/numOrder

Fig. 4. Query tree that generated the XML view of Figure 2

of this collection astarred subtree. The element itself (the root of the subtree), is called
starred element. In the example of Figure 2 (which is generated from the querytree of
Figure 4), nodes 2, 7 and 11 arestarred elements(since they are produced by starred
nodes of the corresponding query tree).

Updates in PATAXÓ As mentioned before, PATAXÓ uses a very simple update lan-
guage. Basically, it is expressed by a triple〈t, ∆, ref〉, wheret is the type of the opera-
tion (insert, deleteor update), ∆ is the subtree to be inserted or an atomic value to be
modified, andref is a path expression that points to the update point in the XMLview.
The update pointref is expressed by a simple XPath expression that only containschild
access (/) and conjunctive filters.

Not all update specifications are valid, since they need to bemapped back to the
underlying relational database. Mainly, the updates applied to the view need to follow
the view DTD. PATAXÓ generates the view together with its DTD, and both the view
and the DTD are sent to the client application. The DTD of the XML view of Figure
2 is available in [16]. The remaining restrictions regarding updates are as follows: (i)
subtrees inserted must represent a (possibly complex/nested) database tuple. This re-
striction corresponds to adding only subtrees rooted at starred nodes in the query trees
of [2]. Such elements correspond to elements with cardinality "*" in the DTD. Thus,
in this paper, it is enough to know that only subtrees rooted at elements with cardinality
"*" in the DTD can be inserted. In Figure 3 the inserted subtreeitem (node 15) satis-
fies this condition. (ii) The above restriction is the same for deletions. Subtrees deleted
must be rooted at a starred node in the query tree. This means that in the example view,
we could deleteorder anditem subtrees.

All of these restrictions can be verified by checking the updated XML view against
the DTD of the original view. As an example, it would not be possible to delete node
name (which is not a starred element, and so contradicts rule (ii)above), since this is
a required element in the DTD. Also, it is necessary to check that updates, insertions
and deletions satisfy the view definition query. As an example, it would not be possible
to insert anotherorder element in the view, since the view definition requires that this

view has only an order withnumOrder equals "123" (see the restrictions on nodeorder
of Figure 4).

Notice that we do not support "?" cardinality in our model. This is because we map
updates over the view to updates of the same type in the relational database (insertions
map to insertions, deletions map to deletions, and so on). Supporting optional elements
would make us to break this rule. Inserting an optional leaf element would map to
modifying a database tuple. In the same way, deleting an optional element would map
to modifying the corresponding tuple to NULL. We discuss this in more details in [3].

4 Supporting Disconnected Transactions

In this section, we describe our approach and illustrate it using the order example of
Section 1. Our architecture [16] has three main modules: theTransaction Manager, Diff
Finder andUpdate Manager. TheTransaction Manageris responsible for controlling
the currently opened transactions of the system. It receives a view definition query,
passes it to PATAXÓ, receives PATAXÓ’s answer (the resulting XML view and its
DTD), and before sending it to the client, it: (i) adds anviewId to the root of the XML
view (this attribute is set to 786 in the example view of Figure 2; the value that will be
assigned to attributeviewId is controlled by a sequential counter in the Transaction
Manager); (ii) adds this same attribute, with the same value, to the root of the view
definition query; (iii) adds an attribute declaration in theview DTD for theviewId;
(iv) stores the XML view, the view definition query and the view DTD in a Temporary
Storagefacility, since they will have to be used later when the updated view is returned
to the system.

When the updated view is returned by the user to the system, the Transaction Man-
ager checks itsviewId (it is a requirement of our approach that theviewID is not
modified during the transaction) and uses it to find the view DTD and the definition
query, which are stored in the Temporary Storage facility. Then it uses the DTD to val-
idate the updated view. If the view is not valid, then the transaction is aborted and the
user is notified. In the case it is valid, then the TransactionManager sends the view def-
inition query to PATAXÓ, and receives a new XML view reflecting the database state
at this moment as a response (we will call itview’). This new XML view will be used
to check the database state. If it is exactly the same as the original XML view (which
is also stored in the temporary storage facility), then the updates made to the database
during this transaction do not affect the XML view. In this case all view updates made
in the updated XML view may be translated back to the database. Notice that, at this
stage, we have three copies of the XML view in the system:

– Theoriginal XML view (O): the view that was sent to the client at the first place.
In our example, the original view is shown in Figure 2.

– TheupdatedXML view (U): the view that was updated by the client and returned
to the system. The updated XML view is shown in Figure 3.

– The view’: a new XML view which is the result of running the view definition
query again, right after the updated view arrives in the system. View’ is used to
capture possible conflicts caused by external updates in thebase tuples that are

orders viewId=“786”

order

custId

995

1

2

4

prodId

“BLUEPEN”

line-items

item

quantity

100

6

8

7

9

name

“Company B”
5

price

0.10
10

prodId

“REDPEN”

item

quantity

200
12

11

13
0.05

14

@numOrder

3
123

price

(a) orders viewId=“786”

order

custId

995

1

2

4

prodId

“BLUEPEN”

line-items

item

quantity

100

6

8

7

9

name

“Company B”
5

price

0.10
10

prodId

“REDPEN”

item

quantity

200
12

11

13
0.05

14

@numOrder

3
123

price

(a)
(b)
E1(O → U) = Update(9, 200),
Update(13, 300), Insert(t1, 6))

t1 = <item>
<prodId>NTBK</prodId>
<quantity>100</quatity>
<price>3.50</price>

</item>

E2(O → view’) = Update(10, 0.10)

Fig. 5. (a) View’ (b) Edit scripts for our example

in the original view. As an example, view’ is shown in Figure 5(a). Notice that it
reflects the base updates shown in Figure 1(b).

These views are sent to theDiff Finder module. In this module, two comparisons
take place. First, theoriginal view is compared to theupdatedview, to find what were
the updates made over the view. Next, theoriginal view is compared toview’ to find
out if the database state has changed during the transaction(Section 4.1). The deltas
found byDiff Finder are sent to theUpdate Manager, which analyzes them and detects
conflicts. In case there are no conflicts, the Update Manager transforms the updates into
updates using the PATAXÓ update language and sends them to PATAXÓ. PATAXÓ
then translates them to the relational database. If there are conflicts we try to solve them
(Section 4.2), and then notify the user of the result of the updates (Section 4.3).

4.1 Detecting deltas in XML views

As mentioned before, theDiff Finder is responsible for detecting the changes made
in the XML view, and also in the database (through the comparison ofview’ with the
original view). To accomplish this, it makes use of an existing diff algorithm that finds
deltasbetween two XML views. Adeltais a set of operations that denotes the difference
between two data structuresD1 andD2 in a way that if we applydeltato D1, we obtain
D2. Using the notation of [17], this delta can be expressed byE(D1 → D2).

We adopt X-Diff [17] as our diff algorithm, mainly because itis capable of detecting
the operations supported by PATAXÓ (insertion of subtrees,deletion of subtrees and
modification of text values), and considers an unordered model. MH-DIFF [4] does not
support insertion and deletion of subtrees, (it supports only insertion and deletion of
single nodes), thus it is not appropriate in our context. Xy-Diff [6] and XMLTreeDiff
[7] consider ordered models, which does not match the unordered model of our source
data (relations).

X-DIFF. According to [17], the operations detected by X-Diff are as follows:

Insertion of leaf node The operationInsert(x(name, value),y) inserts a leaf nodex
with namenameand valuevalue. Nodex is inserted as a child ofy.

Deletion of leaf node OperationDelete(x) deletes a leaf nodex.
Modification of leaf value A modification of a leaf value is expressed asUpdate(x,

new-value), and it changes the value of nodex to new-value.

Insertion of subtree OperationInsert(Tx, y) inserts a subtreeTx (rooted at nodex) as
a child of nodey.

Deletion of subtree The operationDelete(Tx) deletes a subtreeTx (rooted at node
x). When there is no doubts about which isx, this operation can be expressed
asDelete(x).

An important characteristic of X-Diff is that it uses parent-child relationships to
calculate the minimum-cost matching between two treesT1 andT2. This parent-child
relationship is captured by the use of a nodesignatureand also by a hash function. The
hash function applied to nodey considers its entire subtree. Thus, two equal subtrees
in T1 andT2 have the same hash value. The node signature of a nodex is expressed by
Name(x1)/.../Name(xn)/Name(x)/Type(x), where (x1/.../xn/x) is the path from the root
to x, andType(x) is the type of nodex. In casex is not an atomic element, its signature
does not includeType(x) [17]. Matches are made in a way that only nodes with the same
signature are matched. Also, nodes with the same hash value are identical subtrees, and
thus they are matched by X-Diff.

To exemplify, Figure 5(b) shows the edit script generated byX-Diff for the original
(O) and updated (U) views. This Figure also shows the edit script for the original (O)
view and view’, which is also calculated byDiff Finder.

Update ManagerThe Update Manager takes the edit script generated by X-Diffand
produces a set of update operations in the PATAXÓ update language. Here, there are
some issues that need to be taken care of. The main one regardsthe update path ex-
pressions(they are referred to asref in the update specification). In PATAXÓ, update
operations need to specify an update path, and those are not provided by the edit script
generated by X-Diff.

To generate the update pathref, we use the DB primary keys as filters in the path
expression. Notice that keys must be kept in the view for it tobe updatable [2]. Specif-
ically, for an operation on nodex, we take the pathp from x to the view root, and find
all the keys that are descendants of nodes inp.

In our example, the keys arecustId, numOrderandprodId. The rules for translating
an X-Diff operation into a PATAXÓ operation are as follows. The functiongenerateRef
uses the primary keys to construct filters, as mentioned above. The general form of a
PATAXÓ update operation is〈t, ∆, ref〉.

– Insert (x (name, value),y) is mapped to〈insert, x, generateRef (y)〉.
– Delete (x) is mapped to〈delete, {}, generateRef (x)〉.
– Update (x, new-value)is mapped to〈modify, {new-value}, generateRef (x)〉.
– Insert (Tx, y) is mapped to〈insert, Tx, generateRef (y)〉.
– Delete (Tx) is mapped to〈delete, {}, generateRef (x)〉.

FunctiongenerateRef(x) works as follows. First, it gets the parentxn of x, then
the parentxn−1 of xn, and continues to get their parents until the root is reached. The
obtained elements form a pathp = x1/.../xn−1/xn/x. Then, for each nodey in p, it
searches for leaf children that are primary keys in the relational database. Use this set
of nodes to specify a conjunctive filter that uses the node name and its value in the view.
As an example, we show the translation of an operation ofE1 (Figure 5(b)):

– Update(9, 200)≡ <modify, {200}, orders/order[@numOrder="123" and custId=
"995"]/line-item/item[prodId="BLUEPEN"]/quantity>

PATAXÓ uses the values in the filters in the translation of modifications and dele-
tions, and the values of leaf nodes in the path from the updatepoint to the root in the
translation of insertions. This approach, however, causesa problem when some of these
values were modified by the user in the view. To solve this, we need to establish an or-
der for the updates. This order must make sure that if an update operationu references
a node valuex that was modified in the view, then the update operation that modifies
x must be issuedbeforeu. Given this scenario, we establish the following order for the
updates: (1) Modifications; (2) Insertions; (3) Deletions.

There is no possibility of deleting a subtree that was previously inserted, since this
kind of operation would not be generated by X-Diff. When there is more than one
update in each category, then the updates that have the shortest update path (ref) are
issued first. To illustrate, consider a case where the numOrder is changed (u1), and the
quantity of an item is changed byu2. Since the numOrder is referenced in the filter of
the update path ofu2, thenu1 has to be issued first, so that whenu2 is executed, the
database already has the correct value of the numOrder. Notice that this example is not
very common in practice, since normally primary key values are not changed.

4.2 Guaranteeing database consistency

The detection of conflicts is difficult, because a conflict canhave different impacts de-
pending on the application. To illustrate, in our example oforders, the removal of a
product from the database means that the customer can not order it anymore. As a
counter example, if a user increases the quantity of an item in its order, she may not
want to proceed with this increase when she knows that the price of the item has in-
creased.

The issues above are semantic issues. Unfortunately, a generic system does not
know about these issues, and so we take the following approach: TheDiff Finder uses
X-Diff to calculate the edit script for the original XML viewO and the view that has the
current database state (view’). If the edit script is empty the updates over the updated
view can be translated to the database with no conflict. In this case, the Update Man-
ager translates the updates to updates in the PATAXÓ update language (Section 4.1)
and sends them to PATAXÓ so it can map them to the underlying relational database.

However, most of the times the views (O and view’) will not be equal, which implies
in conflicts. A conflict is any update operation that has been issued in the database
during the transaction lifetime, and that affects the updates made by the user through
the view. We will provide more details on this later on.

In our approach, there are threeoperational modesto deal with conflicts:restrictive,
relaxedandsuper-relaxedmodes. The first one, therestrictive mode, no updates are
translated when there are differences between the views original and view’. This is a
very restrictive approach, where all modifications made over the view are treated as a
single atomic transaction.

The second,relaxed mode, is a bit less restrictive. In this mode, updates that do
not cause conflicts are translated to the underlying database. The remaining ones are

aborted. To keep database consistency, we assume that some updates may coexist with
others done externally, without causing inconsistencies in the database. To recognize
such cases, we define a set of rules that are based on the view structure only. Notice
that we do not know the semantics of the data in the view nor in the database. Thus,
sometimes we may detect an operation to cause conflict even tough semantically it does
not cause conflicts. This is the price we pay for not requiringthe user to inform the
semantics of the data in the view.

Conflict Detection Rules for Relaxed ModeWe now present rules for the resolution
of conflicts in modifications for the relaxed mode. We leave insertions and deletions for
future work.

RULE 1 (Leaf node within the same starred-element) LetL = {l1, ..., ln} (n ≥ 1))
be the set of leaf nodes descending from a starred nodes in a given XML viewv.
Additionally, ensure thats is the first starred ancestor of the nodes inL. If any li ∈ L

is modified in the updated view, and somelj is modified in view’ (i = j or i 6= j), then
the updates in nodes ofL are rejected.

An example of such case can be seen in the modification of node 9(quantity of blue
pens) in Figure 3 from 100 to 200. This operation can not proceed because it conflicts
with the update of node 10 (price of blue pens) in view’.

RULE 2 (Dependant starred-subtrees) Lets1 ands2 be two starred subtrees in a given
XML viewv. LetL1 = {l11

, ..., l1n
} (n ≥ 1)) be the set of leaf nodes descending from

s1, but not from its starred subtrees, andL2 = {l21
, ..., l2k

} (k ≥ 1)) be the set of
leaf nodes descending froms2, but not from its starred subtrees. Further, lets1 be an
ancestor ofs2. If any l2i

∈ L2 is modified in the updated view, and somel1j
∈ L1 is

modified in view’, then the updates conflict, and the modification of l2i
is aborted.

This rule captures the dependency between starred subtrees. In the XML view of
Figure 3, it is easy to see that eachitemsubtree is semantically connected to its parent
order tree. Thus, rule 2 defines that modifications done in the database that affect the
order subtree conflicts with modifications to theitemsubtree done through the view.

Notice that in all the above rules, we need to know the correspondence of nodes in
views U andview’. For example, we need to know that node 12 in the updated view
(Figure 3) correspond to node 12 inview’ (Figure 5(a)). This can be easily done by
using a variation of ourmergealgorithm presented later on.

To check for conflicts, each modify operation detected inE1(O → U) is checked
against each modify operation inE2(O → view’) using the rules above. In [16], we
present the algorithm. The checking is very simple, and oncewe detect a conflict due
to one rule, we do not need to check the other one.

Conflict Detection Rules for Super-Relaxed ModeFinally, the third, less restrictive
operational mode is thesuper-relaxedmode. In this mode, we consider a conflict hap-
pens only when the update occurs over the same leaf node, or the tuple key has been
changed in the database. Formally, we have:

RULE 3 (Same leaf node) Letl be a leaf node in a given XML viewv. If l is modified in
the updated view to a valuev1, andl is modified in view’ to a valuev2, v1 6= v2, then
the update on nodel is rejected.

RULE 4 (Key node) Letl andk be two leaf nodes in a given XML viewv. Letk represent
the primary key of the tuple from whichl was extracted in the database. Ifl is modified
in the updated view, andk is modified in view’, then the update on nodel is rejected.

We consider this a conflict because we use the key value to translate the update. If
the key has changed, we can not reach the tuple to update it anymore.

4.3 Notifying the User

In all operational modes of our system, we need to inform the user of which update
operations were actually translated to the base tables, andwhich were aborted. To do
so, the system generates amergeof the updated data and the current database state.
The algorithm starts with the original XML view. ConsiderE1 = E(O → U) andE2 =
E(O → view’).

1. Take each delete operationu=Delete(x) in E2 and markx in the original XML
view. The markup is made by adding a new parentpataxo:DB-DELETEto x, where
pataxois a namespace prefix (we omit it in the remaining definitions). This new
element is connected to the parent ofx.

2. Take each insert operationu=Insert(Tx, y) in E2, insertTx undery and add a new
parentDB-INSERTto Tx. Connect the new element as a child ofy.

3. Take each modify operationu=Update(x, new-value) inE2, add aDB-MODIFY
element with valuenew-value. Connect it as a child ofx.

After this, it is necessary to apply the update operations that are in the updated view
to the original view, and mark them too. In this step, the markup elements receive a
STATUS attribute to describe if the update operation was accepted or aborted. Since we
are currently detecting conflicts only between modify operations, we are assuming the
remaining ones are always accepted.

1. Take each delete operationu=Delete(x) in E1, add a new parentCLIENT-DELETE
STATUS="ACCEPT"to x and connect it to the parent ofx.

2. Take each insert operationu=Insert(Tx, y) in E1, insertTx undery and add a new
parentCLIENT-INSERT STATUS="ACCEPT"to Tx. Connect the new created element
as a child ofy.

3. Take each modify operationu=Update(x, new-value) inE1, add a new element
CLIENT-MODIFYwith valuenew-value. Connect theCLIENT-MODIFYelement as a
child of x. If u is marked inE1, then add aSTATUSattribute to theCLIENT-MODIFY
with valueABORT. If not, then add theSTATUSattribute with valueACCEPT.

The result of this merge in our example is shown in Figure 6. There may be elements
with more than one conflict markup. For example, suppose the client had altered the
price of blue pens to 0.02 (the issue of whether this is allowed by the application or
not, is out of the scope of this paper). In this case, the element price would have two
markups.

After the execution of the merge algorithm, the TransactionManager receives the
newmergedview (notice that the merged view is an XML document not validaccording
to the view DTD, since new markup elements were added). It re-generates the view

<orders viewId="786">
<order numOrder="123">

<custId>995</custId>
<name>Company B</name>
<line-items>

<item>
<prodId>BLUEPEN</prodId>
<quantity>100

<pataxo:CLIENT-MODIFY STATUS="ABORT">200</pataxo:CLIENT-MODIFY>
</quantity>
<price>0.05

<pataxo:DB-MODIFY>0.10</pataxo:DB-MODIFY>
</price>

</item>
<item>

<prodId>REDPEN</prodId>
<quantity>200

<pataxo:CLIENT-MODIFY STATUS="ACCEPT">300<pataxo:CLIENT-MODIFY>
</quatity>
<price>0.05</price>

</item>
<pataxo:CLIENT-INSERT STATUS="ACCEPT">

<item>
<prodId>NTBK</prodId>
<quantity>100</quantity>
<price>3.50</price>

</item>
</pataxo:CLIENT-INSERT>

</line-items>
</order>

</orders>

Fig. 6.Result of themergealgorithm

(which is now the original viewO), and stores it in the temporary storage facility, since
now this is the neworiginal view. Then, it sends themergedview and viewO back to
the client application. The client may want to analyze the merged view and to resubmit
updates through viewO. This second "round" will follow the same execution flow as
before. The system will proceed as if it was the first time thatupdated view arrives in
the system.

5 Discussion and Future Work

We have presented an approach to support disconnected transactions in updates over
relational databases through XML views. Our approach uses PATAXÓ [2] to both gen-
erate the views and to translate the updates to the underlying relational database. In this
paper, we allow views to be edited, and we automatically detect the changes using X-
Diff [17]. We present an algorithm to transform the changes detected by X-Diff into the
update language accepted by PATAXÓ. Also, we present a technique to detect conflicts
that may be caused by updates over the base relations during the transaction execution.
Currently, we only detect conflicts for modifications.

One of the benefits of our approach is that it does not require that updates are
done online. In our previous approach [2], the client application must be connected
to PATAXÓ in order to issue updates. In this paper, however, we support offline update
operations that can be done in offline devices, like PDAs.

This scenario is very common in practice, and we believe thatindustry will greatly
benefit from our work. In the future, we plan to evaluate our approach in real enterprises.

Also, we are working on rules to detect conflicts on insertions and deletions. We plan
to work on algorithms to solve such conflicts.

References

1. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil and P. O’Neil. A critique of ANSI
SQL isolation levels. InSIGMOD, pages 1–10, San Jose, California, May 1995.

2. V. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view updates to relational
view updates: old solutions to a new problem. InVLDB, pages 276–287, Toronto, Canada,
Sept. 2004.

3. V. Braganholo, S. B. Davidson, and C. A. Heuser. PATAXÓ: A framework to allow updates
through XML views.ACM Transactions on Database Systems, TODS, to appear, 2006.

4. S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In
SIGMOD, pages 26–37, Tucson, Arizona, May 1997.

5. P. Chrysanthis and K. Ramamritham. Synthesis of extendedtransaction models using acta.
ACM Transactions on Database Systems, TODS, 19(3):450–491, 1994.

6. G. Cobena, S. Abiteboul, and A. Marian. Detecting changesin XML documents. InICDE,
pages 41–52, San Jose, California, Feb. 2002.

7. F. Curbera and D. Epstein. Fast difference and update of XML documents. InXTech, San
Jose, California, Mar. 1999.

8. U. Dayal and P. A. Bernstein. On the correct translation ofupdate operations on relational
views. ACM TODS, 8(2):381–416, Sept. 1982.

9. M. Fernández, Y. Kadiyska, D. Suciu, A. Morishima, and W.-C. Tan. Silkroute: A framework
for publishing relational data in XML.ACM TODS, 27(4):438–493, Dec. 2002.

10. J. Foster, M. Greenwald, J. Moore, B. Pierce and A. Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the view update problem. InSymposium on
Principles of Programming Languages (POPL), pages 233–246, Long Beach, CA, USA,
2005. ACM Press.

11. L. Klieb. Distributed disconnected databases. InSymposium on Applied Computing (SAC),
pages 322–326, New York, NY, USA, 1996. ACM Press.

12. S. H. Phatak and B. R. Badrinath. Conflict resolution and reconciliation in disconnected
databases. InDEXA, 1999.

13. B. Pierce, A. Schmitt and M. Greenwald. Bringing Harmonyto optimism: A synchroniza-
tion framework for heterogeneous tree-structured data. Technical Report MS-CIS-03-42,
University of Pennsylvania, USA, 2003. Superceded by MS-CIS-05-02.

14. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, andJ. Funderburk. Querying XML
views of relational data. InVLDB, Rome, Sept. 2001.

15. D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing
update conflicts in bayou, a weakly connected replicated storage system. InSOSP, pages
172–183, 1995.

16. A. Vargas, V. Braganholo, and C. Heuser. Conflict resolution and difference detection in up-
dates through XML views. Technical Report RP-352, UFRGS, Brazil, Dec. 2005. Available
atwww.cos.ufrj.br/~vanessa.

17. Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effectivechange detection algorithm for
XML documents. InICDE, pages 519–530, India, March 2003.

