Conflict Resolution in Updates through XML views

André Prisco Vargds Vanessa P. Braganhdland Carlos A. Heusér

1 Instituto de Informética - Federal University of Rio GrarateSul - Brazil
2 COPPE - Federal University of Rio de Janeiro - Brazil
[apvar gas, heuser] @ nf . ufrgs. br, vanessa@os. ufrj. br

Abstract. In this paper, we focus on B2B scenarios where XML views are ex
tracted from relational databases and sent over the Webdihemapplication
that edits them and sends them back after a certain (usoally period of time.

In such transactions, it is unrealistic to lock the basedsithat are in the view to
achieve concurrency control. Thus, there are some issaesgked to be solved:
first, to identify what changes were made in the view and sgcanidentify and
solve conflicts that may arise due to changes in the datatatealsiring the trans-
action. We address both of these issues in this paper by girgpan approach
that uses our XML view update system PATAXO.

1 Introduction

XML is increasingly being used as an exchange format betvbesimess to business
(B2B) applications. In this context, a very common scené&ione in which data is
stored in relational databases (mainly due to the matufithe technology) and ex-
ported in XML format [14, 9] before being sent over the WebeTroposes in [14,

9], however, address only part of the problem, that is, theywkhow to generate and
query XML views over relational databases, but they do notkhow to update those
views. In B2B environments, enterprises need not only taiobXML views, but also

to update them. An example is a compabybuyer) that buys products from another
companys (supplier). One could think o askingS for anorder form B would them
receive this form (an empty XML view) in a PDA of one of its eropées who would

fill it in and send it back te5. S would them have to process it and place the new order
in its relational database. This scenario is not so comglibasince the initial XML
view was empty. There are, however, more complicated cE&sesider the case where
B changes its mind and askSsits order back, because it wants to change the quantities
of some of the products it had ordered before. In this cageinitial XML view is not
empty, andS needs to know what changésmade to it, so it can reflect the changes
back to the database.

In previous work [2], we have proposed PATAXO, an approaahydate relational
databases through XML views. In this approach, XML views ewastructed using
UXQuery [3], an extension of XQuery, and updates are isshexligh a very simple
update language. The scenario we address in this papefréasedif in the following
senses: (i) In PATAXO [2], updates are issued through an tegddaguage that allows
insertions, deletions and modifications. In this paper, ®ad dith updates done directly
over the XML view, that is, users directbdit the XML view. Thus, we need to know

exactly what changes were made to the view. We address thialbylating thedelta
between the original and the updated view. Algorithms eréture [6,4,17,7] may be
used in this case, but need to be adapted for the speciatdésaifithe updatable XML
views produced by PATAXO; (i) In PATAXO [2], we rely on theamsaction manager of
the underlying DBMS. As most DBMS apply the ACID transactiondel, this means
that we simple lock the database tuples involved in a vievil afitthe updates have
been translated to the database. In B2B environments, ghisgractical because the
transactions may take a long time to complete [5]. Returtongur example, company
B could take days to submit the changes to its order back t6he problem in this
case is what to do when the database state changes durirrgribadtion (because of
external updates). In such cases, the original XML view mztye valid anymore, and
conflicts may occur.

In this paper, we propose an approach to solve the open pnsbisted above. We
use PATAXO [2] to both generate the XML view and to transléie apdates over the
XML view back to the underlying relational database. Fos thibe possible, the update
operations that were executed over the XML view need to bectkt and specified us-
ing the PATAXO update language. It is important to notice tiat all update operations
are valid in this context. For example, PATAXO does not altdwanging the tags of the
XML elements, since this modifies the view schema — this kiindadification can not
be mapped back to the underlying relational database.

We assume the XML view is updatable. This means that all @sdapplied to it
can be successfully mapped to the underlying relationaldese. In [2], we present a
set of rules the view definition query must obey in order fertbsulting XML view to
be updatable. Basically, this means that primary keys aegoved in the view, joins
are made by key-foreign keys, and nesting is done from thesovefation to the owned
relation. An example of non-updatable view would be a vieat tepeats the customer
name for each item of a given order. This redundancy causégons in updates, thus
the view is not updatable.

Application Scenario Consider companie8 andsS, introduced above. Compatsyhas

a relational DB that stores orders, products and custoriiées DB schema is shown
in Figure 1(a). Now, let's exemplify the scenario previgudescribed. Companys
requests its order to compa#syso it can alter it. The result of this request is the XML
view shown in Figure 2 (the numbers near the nodes, showaliim tke Figure, are used
so we can refer to a specific node in our examples). While cosnpas analyzing the
view and deciding what changes it will make over it, the iielzal database of company
S is updated as shown in Figure 1(b). These updates may haueisee directly over
the database, or through some other XML view. The main peititat the update over
LineOrderaffects the XML view that is being analyzed by compdhnySpecifically, it
changes the price of one of the products thdtas ordered (blue pen).

Meanwhile,B is still analyzing its order (XML view) and deciding what tbange.
It does not have any idea that product "BLUEPEN" had its pitmebled. After 5 hours,
it decides to make the changes shown in Figure 3 (the chamgeshawn in boldface
in the figure). The changes are: increase the quantity offimes to 200, increase the
quantity of red pens to 300, and order a new item (100 noteb{dkBK)). Notice

Custo_mar (custid, nane, address), /lincreases price of "blue pen"
primary key (custld) UPDATE Pr oduct

Product (prodld, description, curPrice), SET curPrice = 0.10
primary key (prodld) _ g -

O der (nunOrder, date, custld, status), VHERE prodid = "BLUEPEN';
primary key (nunOrder),
foreign key (custld) references Custoner

Li neOrder (numOrder, prodld, quantity, price),
pri mary key (numOrder, prodid),
foreign key (prodld) references Product,
foreign key (numOrder) references Order

Fig. 1. (a) Sample database of compasiyb) Updates made over the database

UPDATE Li neOr der
SET price = 0.10
VWHERE prodld = "BLUEPEN' AND
nunOrder | N (SELECT nun®Order
FROM Order WHERE st at us="open");

orders viewld="786"

@numOrdep~Cudfld line-items

123 995 “Company B”

prodld

“BLUEPEN" 100 0.05 “REDPEN" 200 0.05

Fig. 2. Original XML view

there that, in order to add a new product in its ordehas to quenys for a catalog of
products. We assume this has already been done.

WhenS receives the updated view, it will have to: (i) Detect whatevihe changes
made byB in the XML view; (ii) Detect that the updates shown in Figui®)laffect
the view returned byB, and detect exactly what are the conflicts; (iii) Decide how t
solve the conflicts, and update the database using PATAXO.

Contributions and Organization of the Text The main contributions of this paper are:
(i) A delta detection technique tailored to the PATAXO XMLewis; (ii) An approach
to verify the status of the database during the transaclibis. is done by comparing
the status of the database in the beginning of the transaetith the status of the
database in the time the updated view is returned to theray§ig A conflict resolution
technique, based on the structure of the XML view; (iv) A neeedgorithm to XML
views that emphasizes the conflicts caused by changes irathbate state during the
transaction.

The remaining of this paper is organized as follows. Sec#aliscusses related
work. Section 3 presents an overview of the PATAXO appro&eittion 4.1 presents
our technique to detect deltas in XML views, and Section 4e3@nts a solution to the
problems caused by conflicts. Finally, we conclude in Sadio

2 Related Work

Extended TransactionsAs we mentioned in the introduction, in this paper we do not
rely only on the ACID transaction model implemented by mdshe DBMS. Instead,

orders viewld="786"

@numOrdep-tugfld line-items

123 995 “Company B” item

“BLUEPEN" 200 0.05 “REDPEN" 300 0.05 “NTBK” 100 3.50

Fig. 3. XML view updated by companyB and returned to comparty

we propose a mechanism to detect changes that were done offtirs mechanism is
responsible for detecting the cases where the offline clsadgee through the view
may conflict to changes done directly through the datab&jealicusses the effects
of transaction on objects and the interactions betweesaiions on several extended
transaction models. In our paper, we use the terminologyemted in [5], but do not
use any of the extended transaction models proposed thereisauss the reason for
that below.

In our paper, although we externally detect conflicts betwgmlate operations, we
still depend on the ACID transaction model, since the upate actually executed by
the underlying DBMS (we do not want to change the DBMS in angwBecause of
this, even if we have several views being updated at the Sameit is enough to detect
conflicts between the database and the view that has justéened to the system. To
exemplify, assume we have a datab&send a set of view¥7, ..., V,, specified ovelD
using the exact same view definition query (i.e., the vievesidentical). Assume also
that all of these views are being updated offline. When thetgatlviews are returned
to PATAXO, we have an order in which they will be analyzed. émse this order is
Vi, ..., V,, (the order in which the views were returned to the system)th&la compare
V1 with the current state ab to detect conflicts, and translate non conflicting updates
to D. Then, we proceed with the next view in the queue. Noticettihatipdates done
throughV; are already reflected i, so we do not need to compaVvg with V5 to
detect conflicts. Thus, we have isolated transactions.

On a similar line of thought, [1] criticizes the ANSI SQL-%vlation Levelsand
discusses the problems that may occur when several traovsagtteract over the same
data. Since we are not proposing a new transaction managar approach, we claim
we do not need to worry about such things in our approach.

Harmony Work related to our approach is the Harmony Project [13], lricl the au-
thors propose the use t#dnsesto synchronize data in different formats. In [10], the
authors propose to use the semantic foundatiolemmsesto support updates through
views. Their formal framework treats the database as a etmtwrmat, and views over
the database as an abstract format. Then, lenses are usegh toomcrete data to ab-
stract views get component and the inverse mapping (the one required to update the
database putback componeptlerives automatically from the get component. After

defined, two abstract views andv, can be synchronized. Comparing to our scenario,
we may assume; is the original view and, is the updated view. The concrete for-
mat of v is the databas®, while the concrete format af; is v itself (in this case
we use the identity lens to perform the mapping frofto v;). When the database is
updatedy; reflects the changes. The problem here is that when we symizbrg and
v2, We may erroneously reinsert old things in the database.nfaxample, suppose
we have tuple$; andt, in D. Suppose also that andt, are both inv;. View v, at
the beginning, is equal to,, so it also hag; andt,. Suppose that, while, is being
updatedD is updated to delete. Thus,v; will reflect this change, and now it has only
t1. Meanwhile,vs is updated to inseti, and so it now hag,, t2 andts. Whenwv, is
synchronized withy,, the system finds out that and¢s needs to be inserted intg
(and consequently int®). It is thus erroneously reinsertirtg. Our approach, in this
case, would insert onlys.

Consistency control of disconnected replicag problem closely related to our work
is the problem of consistency control of disconnected degabeplicas [11, 15, 12]. To
solve such problem, Phatak and Badrinath [12] propose aod@dion phase that syn-
chronizes operations. [11] uses conflict detection andnidgrecies between operations.
However, these approaches do not deal with the XML viewslprolor require the se-
mantics of the data to be known. In our paper, we use some afidfaes of [11] in the
XML context.

3 The PATAXO approach

As mentioned before, PATAXO [2] is a system that is capablemfstructing XML
views over relational databases and mapping updates gakaifer this view back into
the underlying relational database. To do so, it uses atimgiapproach on updates
through relational views [8]. Basically, a view query ddfim expressed in UXQuery
[3]is internally mapped to a query tree [2]. Query trees dm@malism that captures the
structure and the source of each XML element/attribute@MRIL view, together with
the restrictions applied to build the view. As an example gbery tree that corresponds
to the view query that generates the XML view of Figure 2 isvahd Figure 4. The
interested reader can refer to [2] for a full specificationjoéry trees.

In this paper, it will be importantto recognize certain tgppénodes in the query tree
and in the corresponding view instance. In the query treeigiire 4, nodeorder is a
starred-nodg*-node)3. Each starred node generates a collection of (possibly Esnp
elements. Each such element carries data from a databdsedufsom a join between
two or more tuples (tables Customer and Order, in the exampe call each element

3 Notice that, despite the fact that the conditimmmOrder=123restricts this view to a single
order, nodeorder is defined as a starred node. This is because the formal defioit query
trees requires that nodes wihurce annotationbe starred [2]. In [2], this decision was made
to simplify the mapping to relational views — this way, thgaithm does not need to check
thewhereannotations to find out whether a given node will have singlauoltiple instances.
More details about the formal definition of query trees cafolbed in [2]. Notice further that
this view would not beupdatableif it had multiple orders, since theameof the customer
could be redundant. To solve this problem, orders would kabe nested within customer.

[name = ‘orders’ J

1

(name = ‘order
[$c := table(“Customer”)]
[$0 := table(“Order")]
[where $c.custld = $o/custid
9 and $c/custld = “995 and $o/numOrder = “123”
-———

name = ‘@numOrde| name = ‘custid’ name = ‘name’ — ifnei)
value = $o/num0rd91 value = $c/cust|d] [value = $c/name] l name = fine-items J

4

name = ‘item’
[$] := table(“LineOrder")]
where $o/numOrder = $l/numOrder]

—_—
[name = ‘prodld’] [name = ‘quantity“l [name = ‘price’]

value = $l/prodid value = $l/quantity| value = $l/price

Fig. 4. Query tree that generated the XML view of Figure 2

of this collection astarred subtreeThe element itself (the root of the subtree), is called
starred elementn the example of Figure 2 (which is generated from the qtrewy of
Figure 4), nodes 2, 7 and 11 astarred elementésince they are produced by starred
nodes of the corresponding query tree).

Updates in PATAXO As mentioned before, PATAXO uses a very simple update lan-
guage. Basically, it is expressed by a tripleA, ref), wheret is the type of the opera-
tion (insert deleteor updatg, A is the subtree to be inserted or an atomic value to be
modified, andef is a path expression that points to the update point in the Xiéiv.
The update pointef is expressed by a simple XPath expression that only conthitts
access (/) and conjunctive filters.

Not all update specifications are valid, since they need tmapped back to the
underlying relational database. Mainly, the updates agp the view need to follow
the view DTD. PATAXO generates the view together with its DEDd both the view
and the DTD are sent to the client application. The DTD of tiMD4&iew of Figure
2 is available in [16]. The remaining restrictions regaglirpdates are as follows: (i)
subtrees inserted must represent a (possibly complerthedatabase tuple. This re-
striction corresponds to adding only subtrees rooted atestanodes in the query trees
of [2]. Such elements correspond to elements with cardin&lf in the DTD. Thus,
in this paper, it is enough to know that only subtrees rootedkaments with cardinality
""" in the DTD can be inserted. In Figure 3 the inserted subtreem(node 15) satis-
fies this condition. (i) The above restriction is the samedieletions. Subtrees deleted
must be rooted at a starred node in the query tree. This meanisathe example view,
we could deleter der andi t emsubtrees.

All of these restrictions can be verified by checking the updaXML view against
the DTD of the original view. As an example, it would not be gibte to delete node
name (which is not a starred element, and so contradicts rulafigve), since this is
a required element in the DTD. Also, it is necessary to chbek tipdates, insertions
and deletions satisfy the view definition query. As an exanipivould not be possible
to insert anothesr der element in the view, since the view definition requires that t

view has only an order withuntr der equals "123" (see the restrictions on nadéer
of Figure 4).

Notice that we do not support "?" cardinality in our modelisTis because we map
updates over the view to updates of the same type in theae#dtilatabase (insertions
map to insertions, deletions map to deletions, and so opp&ting optional elements
would make us to break this rule. Inserting an optional ldafment would map to
modifying a database tuple. In the same way, deleting amogtielement would map
to modifying the corresponding tuple to NULL. We discuss tinimore details in [3].

4 Supporting Disconnected Transactions

In this section, we describe our approach and illustratsiitgithe order example of
Section 1. Our architecture [16] has three main modulestidesaction ManageDiff
Finder andUpdate ManagerThe Transaction Manageis responsible for controlling
the currently opened transactions of the system. It resedveiew definition query,
passes it to PATAXO, receives PATAXO’s answer (the resglt¢ML view and its
DTD), and before sending it to the client, it: (i) addswarew d to the root of the XML
view (this attribute is set to 786 in the example view of Fgar the value that will be
assigned to attributei ewl d is controlled by a sequential counter in the Transaction
Manager); (ii) adds this same attribute, with the same valé¢he root of the view
definition query; (iii) adds an attribute declaration in thiew DTD for thevi ew d;
(iv) stores the XML view, the view definition query and thewi®TD in a Temporary
Storagefacility, since they will have to be used later when the updatiew is returned
to the system.

When the updated view is returned by the user to the systenTrdnsaction Man-
ager checks itsi ewl d (it is a requirement of our approach that thieew D is not
modified during the transaction) and uses it to find the viewbDdand the definition
query, which are stored in the Temporary Storage facilihefit uses the DTD to val-
idate the updated view. If the view is not valid, then the $&tion is aborted and the
user is notified. In the case it is valid, then the Transad#lanager sends the view def-
inition query to PATAXO, and receives a new XML view reflegithe database state
at this moment as a response (we will caNigw’). This new XML view will be used
to check the database state. If it is exactly the same as ifi@arXML view (which
is also stored in the temporary storage facility), then theates made to the database
during this transaction do not affect the XML view. In thisseaall view updates made
in the updated XML view may be translated back to the datalidsgce that, at this
stage, we have three copies of the XML view in the system:

— Theoriginal XML view (O): the view that was sent to the client at the first place.
In our example, the original view is shown in Figure 2.

— TheupdatedXML view (U): the view that was updated by the client and returned
to the system. The updated XML view is shown in Figure 3.

— Theview’: a new XML view which is the result of running the view defioiti
guery again, right after the updated view arrives in theesysView’ is used to
capture possible conflicts caused by external updates ibbdke tuples that are

(a) orders viewld="786"

(b)

E1(O — U) = Update(9, 200),

Update(13, 300), Insert(, 6))

tl = <itenp
<pr odl d>NTBK</ pr odl d>
<quantity>100</quatity>
<price>3.50</price>

<litenp

E5(O — view’) = Update(10, 0.10)
“BLUEPEN” 100 0.10 “REDPEN" 200 0.05

Fig. 5. (a) View’ (b) Edit scripts for our example

in the original view. As an example, view’ is shown in Figur@p Notice that it
reflects the base updates shown in Figure 1(b).

These views are sent to thsff Finder module. In this module, two comparisons
take place. First, theriginal view is compared to thapdatedview, to find what were
the updates made over the view. Next, triginal view is compared twiew’ to find
out if the database state has changed during the transd8gmtion 4.1). The deltas
found byDiff Finder are sent to th&Jpdate Managerwhich analyzes them and detects
conflicts. In case there are no conflicts, the Update Managesforms the updates into
updates using the PATAXO update language and sends themTXEA PATAXO
then translates them to the relational database. If thereaflicts we try to solve them
(Section 4.2), and then notify the user of the result of théatigs (Section 4.3).

4.1 Detecting deltas in XML views

As mentioned before, thBiff Finder is responsible for detecting the changes made
in the XML view, and also in the database (through the consparpfview’ with the
original view). To accomplish this, it makes use of an erigiiiff algorithm that finds
deltasbetween two XML views. Aleltais a set of operations that denotes the difference
between two data structuréy and D, in a way that if we applyleltato D,, we obtain

Ds,. Using the notation of [17], this delta can be expressed@fy; — D-).

We adopt X-Diff [17] as our diff algorithm, mainly becausésitapable of detecting
the operations supported by PATAXO (insertion of subtrelesetion of subtrees and
modification of text values), and considers an unorderedatdH-DIFF [4] does not
support insertion and deletion of subtrees, (it supportg msertion and deletion of
single nodes), thus it is not appropriate in our context.D{ff-[6] and XMLTreeDiff
[7] consider ordered models, which does not match the umeddeodel of our source
data (relations).

X-DIFF. According to [17], the operations detected by X-Diff are alofvs:

Insertion of leaf node The operatiorinsert(xz(name, value)y) inserts a leaf node
with namenameand valuevalue Nodez is inserted as a child af.

Deletion of leaf node OperatiorDelete() deletes a leaf node.

Modification of leaf value A modification of a leaf value is expressed @pdate(,
new-value)and it changes the value of nod¢o new-value

Insertion of subtree Operationnsert(l’,,) inserts a subtre€, (rooted at node) as
a child of nodey.

Deletion of subtree The operatiorDelete((},) deletes a subtre&, (rooted at node
x). When there is no doubts about whichais this operation can be expressed
asDelete(r).

An important characteristic of X-Diff is that it uses paratild relationships to
calculate the minimum-cost matching between two tfBeandT5. This parent-child
relationship is captured by the use of a ng@matureand also by a hash function. The
hash function applied to nodeconsiders its entire subtree. Thus, two equal subtrees
in Ty andT» have the same hash value. The node signature of amndexpressed by
Namef)/.../Nameg,,)/Namef)/Typet), where (1/.../z,,/x) is the path from the root
to z, andTypef) is the type of node. In caser is not an atomic element, its signature
does notinclud@ypef) [17]. Matches are made in a way that only nodes with the same
signature are matched. Also, nodes with the same hash vaideatical subtrees, and
thus they are matched by X-Diff.

To exemplify, Figure 5(b) shows the edit script generatedyiff for the original
(O) and updatedl() views. This Figure also shows the edit script for the oadjif®))
view and view’, which is also calculated Biff Finder.

Update Manager The Update Manager takes the edit script generated by Xabif
produces a set of update operations in the PATAXO updateukegey Here, there are
some issues that need to be taken care of. The main one repangsdate path ex-
pressiongthey are referred to agf in the update specification). In PATAXO, update
operations need to specify an update path, and those areawidgd by the edit script
generated by X-Diff.

To generate the update patf, we use the DB primary keys as filters in the path
expression. Notice that keys must be kept in the view for idaipdatable [2]. Specif-
ically, for an operation on node, we take the patlp from z to the view root, and find
all the keys that are descendants of nodes in

In our example, the keys aceistld, numOrdeandprodld. The rules for translating
an X-Diff operation into a PATAXO operation are as follow$iélfunctiongenerateRef
uses the primary keys to construct filters, as mentionedeablive general form of a
PATAXO update operation i&, A, ref).

Insert ((name, value)y) is mapped tdinsert x, generateRef (y)

Delete () is mapped tqdelete { }, generateRef (%)

Update (¢, new-value)s mapped tgmodify, {new-valué, generateRef (X)
Insert (T, y) is mapped tdinsert T, generateRef ()

Delete () is mapped tqdelete { }, generateRef (X)

FunctiongenerateRdfr) works as follows. First, it gets the parent of x, then
the parentr,,_; of x,,, and continues to get their parents until the root is reachied
obtained elements form a path= z/.../x,,_1/x,/xz. Then, for each nodg in p, it
searches for leaf children that are primary keys in the icelat database. Use this set
of nodes to specify a conjunctive filter that uses the nodezreamd its value in the view.
As an example, we show the translation of an operatiah;offigure 5(b)):

— Update(9, 200 <maodify, {200}, orders/order[@numOrder="123" and custld=
"995")/line-item/item[prodid="BLUEPEN"]/quantity-

PATAXO uses the values in the filters in the translation of ifications and dele-
tions, and the values of leaf nodes in the path from the upuiite to the root in the
translation of insertions. This approach, however, caaggsblem when some of these
values were modified by the user in the view. To solve this, eedrto establish an or-
der for the updates. This order must make sure that if an epgfsration. references
a node valuer that was modified in the view, then the update operation traatifies
x must be issuetieforeu. Given this scenario, we establish the following order Far t
updates: (1) Modifications; (2) Insertions; (3) Deletions.

There is no possibility of deleting a subtree that was prgslipinserted, since this
kind of operation would not be generated by X-Diff. When thés more than one
update in each category, then the updates that have theeshopdate pathréf) are
issued first. To illustrate, consider a case where the nue@sdchangedu(;), and the
quantity of an item is changed hy. Since the numOrder is referenced in the filter of
the update path of, thenwu; has to be issued first, so that whenis executed, the
database already has the correct value of the numOrdeceNibtit this example is not
very common in practice, since normally primary key valuesret changed.

4.2 Guaranteeing database consistency

The detection of conflicts is difficult, because a conflict bame different impacts de-
pending on the application. To illustrate, in our exampleoafers, the removal of a
product from the database means that the customer can nat ibranymore. As a
counter example, if a user increases the quantity of an iteits iorder, she may not
want to proceed with this increase when she knows that tloe jofi the item has in-
creased.

The issues above are semantic issues. Unfortunately, aigesystem does not
know about these issues, and so we take the following apprd&eDiff Finder uses
X-Diff to calculate the edit script for the original XML vie® and the view that has the
current database stateigw’). If the edit script is empty the updates over the updated
view can be translated to the database with no conflict. ldhge, the Update Man-
ager translates the updates to updates in the PATAXO upaatriage (Section 4.1)
and sends them to PATAXO so it can map them to the underlyiagjoeal database.

However, most of the times the view®@ @nd view’) will not be equal, which implies
in conflicts. A conflict is any update operation that has bessned in the database
during the transaction lifetime, and that affects the upslamade by the user through
the view. We will provide more details on this later on.

In our approach, there are thregerational modeto deal with conflictsrestrictive,
relaxedand super-relaxednodes. The first one, thestrictive modeno updates are
translated when there are differences between the viewgaliand view'. This is a
very restrictive approach, where all modifications made tive view are treated as a
single atomic transaction.

The secondrelaxed modgis a bit less restrictive. In this mode, updates that do
not cause conflicts are translated to the underlying da¢alid®e remaining ones are

aborted. To keep database consistency, we assume that pdatesimay coexist with
others done externally, without causing inconsistenciethé database. To recognize
such cases, we define a set of rules that are based on the vimtugt only. Notice
that we do not know the semantics of the data in the view nonéndatabase. Thus,
sometimes we may detect an operation to cause conflict eugh semantically it does
not cause conflicts. This is the price we pay for not requithmg user to inform the
semantics of the data in the view.

Conflict Detection Rules for Relaxed ModeéWe now present rules for the resolution
of conflicts in modifications for the relaxed mode. We leaseiions and deletions for
future work.

RuULE 1 (Leaf node within the same starred-element) Let {l1,...,0,} (n > 1))
be the set of leaf nodes descending from a starred roifea given XML vieww.
Additionally, ensure that is the first starred ancestor of the nodeslinif any(; € L
is modified in the updated view, and sofnés modified in view' { = j or i # j), then
the updates in nodes éfare rejected.

An example of such case can be seen in the modification of n{gigedtity of blue
pens) in Figure 3 from 100 to 200. This operation can not prddeecause it conflicts
with the update of node 10 (price of blue pens) in view'.

RULE 2 (Dependant starred-subtrees) Lgtand s, be two starred subtrees in a given
XML vieww. Let Ly = {l1,,...,11,, } (n > 1)) be the set of leaf nodes descending from
s1, but not from its starred subtrees, add = {ls,,...,l2, } (k > 1)) be the set of
leaf nodes descending frosg, but not from its starred subtrees. Further, lgtbe an
ancestor ofs,. If anyl,, € Lo is modified in the updated view, and sofpec L; is
modified in view’, then the updates conflict, and the modificadf -, is aborted.

This rule captures the dependency between starred sublinethe XML view of
Figure 3, it is easy to see that edtdm subtree is semantically connected to its parent
order tree. Thus, rule 2 defines that modifications done in the datakhat affect the
order subtree conflicts with modifications to titemsubtree done through the view.

Notice that in all the above rules, we need to know the comedpnce of nodes in
views U andview'. For example, we need to know that node 12 in the updated view
(Figure 3) correspond to node 12 wew’ (Figure 5(a)). This can be easily done by
using a variation of oumergealgorithm presented later on.

To check for conflicts, each modify operation detecte®ifO — U) is checked
against each modify operation il (O — view’) using the rules above. In [16], we
present the algorithm. The checking is very simple, and eveeletect a conflict due
to one rule, we do not need to check the other one.

Conflict Detection Rules for Super-Relaxed Modé~inally, the third, less restrictive
operational mode is theuper-relaxednode. In this mode, we consider a conflict hap-
pens only when the update occurs over the same leaf nodeg tugite key has been
changed in the database. Formally, we have:

RuULE 3 (Same leaf node) Lébe a leaf node in a given XML view If [is modified in
the updated view to a valug, and! is modified in view’ to a value,, v; # vs, then
the update on nodkis rejected.

RULE 4 (Key node) Letandk be two leaf nodes in a given XML viewletk represent
the primary key of the tuple from whi¢lwas extracted in the database! i modified
in the updated view, anklis modified in view’, then the update on ndds rejected.

We consider this a conflict because we use the key value tslatarthe update. If
the key has changed, we can not reach the tuple to updatenitary
4.3 Notifying the User

In all operational modes of our system, we need to inform ther of which update
operations were actually translated to the base tableswaiah were aborted. To do

so0, the system generatesreergeof the updated data and the current database state.

The algorithm starts with the original XML view. Considéd = £(O — U) andE2 =
E(O — view)).

1. Take each delete operatiarDelete() in £2 and markz in the original XML
view. The markup is made by adding a new pafetixo:DB-DELETEO «, where
pataxois a namespace prefix (we omit it in the remaining definitiofglis new
element is connected to the parentof

2. Take each insert operatiaxinsert(l, y) in £2, insertT,, undery and add a new
parentDB-INSERTto 7,. Connect the new element as a childyof

3. Take each modify operatiom=Updatef, new-value) inE2, add aDB-MODIFY
element with valumew-valueConnect it as a child of.

After this, it is necessary to apply the update operatioasale in the updated view
to the original view, and mark them too. In this step, the roprklements receive a
STATUS attribute to describe if the update operation wag i or aborted. Since we
are currently detecting conflicts only between modify ofiers, we are assuming the
remaining ones are always accepted.

1. Take each delete operatiorDelete() in E'1, add a new parer@LIENT-DELETE
STATUS="ACCEPTt0 x and connect it to the parent of

2. Take each insert operatiaxiInsert(;, y) in E1, insertT,, undery and add a new
parentCLIENT-INSERT STATUS="ACCEPT T,.. Connect the new created element
as a child ofy.

3. Take each modify operatias=Updatef, new-value) inE'1, add a new element
CLIENT-MODIFYwith valuenew-value Connect theeLIENT-MODIFYelement as a
child of z. If v is marked inE'1, then add &TATUSttribute to theCLIENT-MODIFY
with valueABORT. If not, then add th&TATUSattribute with valueACCEPT.

The result of this merge in our example is shown in Figure @r&imay be elements
with more than one conflict markup. For example, suppose libatdhad altered the
price of blue pens to 0.02 (the issue of whether this is altblwe the application or
not, is out of the scope of this paper). In this case, the aimece would have two
markups.

After the execution of the merge algorithm, the Transacktamager receives the
newmergedview (notice that the merged view is an XML document not validording
to the view DTD, since new markup elements were added). ¢fereerates the view

<orders view d="786">
<order nunOrder="123">
<cust | d>995</ cust | d>
<nane>Conpany B</ nane>
<line-itens>
<itenp
<pr odl d>BLUEPEN</ pr odl d>
<quantity>100
<pat axo: CLI ENT- MODI FY STATUS="ABORT" >200</ pat axo: CL| ENT- MODI FY>
</ quantity>
<price>0.05
<pat axo: DB- MODI FY>0. 10</ pat axo: DB- MODI FY>
</price>
</itemr
<itenp
<pr odl d>REDPEN</ pr odl d>
<quantity>200
<pat axo: CLI ENT- MODI FY STATUS="ACCEPT" >300<pat axo: CLI ENT- MODI FY>
</quatity>
<price>0.05</price>
</itemp
<pat axo: CLI ENT- | NSERT STATUS=" ACCEPT" >
<itenp
<pr odl d>NTBK</ pr odl d>
<quantity>100</quantity>
<price>3.50</price>
</itenp
</ pat axo: CLI ENT- | NSERT>
</line-itens>
</ or der >
</ or der s>

Fig. 6. Result of themergealgorithm

(which is now the original viewD), and stores it in the temporary storage facility, since
now this is the nevoriginal view. Then, it sends thenergedview and viewO back to
the client application. The client may want to analyze theged view and to resubmit
updates through view. This second "round" will follow the same execution flow as
before. The system will proceed as if it was the first time thadated view arrives in
the system.

5 Discussion and Future Work

We have presented an approach to support disconnecteddtions in updates over
relational databases through XML views. Our approach us&8X0 [2] to both gen-
erate the views and to translate the updates to the undgngiational database. In this
paper, we allow views to be edited, and we automaticallyaetes changes using X-
Diff [17]. We present an algorithm to transform the changetedted by X-Diff into the
update language accepted by PATAXO. Also, we present aigaiio detect conflicts
that may be caused by updates over the base relations doerigahsaction execution.
Currently, we only detect conflicts for modifications.

One of the benefits of our approach is that it does not reqbie updates are
done online. In our previous approach [2], the client agtian must be connected
to PATAXO in order to issue updates. In this paper, howeversupport offline update
operations that can be done in offline devices, like PDAs.

This scenario is very common in practice, and we believeitithtstry will greatly
benefit from our work. In the future, we plan to evaluate oygrapch in real enterprises.

Also, we are working on rules to detect conflicts on insediand deletions. We plan
to work on algorithms to solve such conflicts.

References

10.

11.

12.

13.

14.

15.

16.

17.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’'Neail BnO’Neil. A critique of ANSI
SQL isolation levels. I'SIGMOD, pages 1-10, San Jose, California, May 1995.

. V. Braganholo, S. B. Davidson, and C. A. Heuser. From XMéwiupdates to relational

view updates: old solutions to a new problem.MhDB, pages 276—287, Toronto, Canada,
Sept. 2004.

. V. Braganholo, S. B. Davidson, and C. A. Heuser. PATAXOraniework to allow updates

through XML views.ACM Transactions on Database Systems, TQD&ppear, 2006.

. S. S. Chawathe and H. Garcia-Molina. Meaningful changeatien in structured data. In

SIGMOD, pages 26-37, Tucson, Arizona, May 1997.

. P. Chrysanthis and K. Ramamritham. Synthesis of extetrdedaction models using acta.

ACM Transactions on Database Systems, TOI¥63):450—-491, 1994,

. G. Cobena, S. Abiteboul, and A. Marian. Detecting chamgedvL documents. INCDE,

pages 41-52, San Jose, California, Feb. 2002.

. F. Curbera and D. Epstein. Fast difference and update df Adtuments. InXTech San

Jose, California, Mar. 1999.

. U. Dayal and P. A. Bernstein. On the correct translationpafate operations on relational

views. ACM TODS 8(2):381-416, Sept. 1982.

. M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and®@VFan. Silkroute: A framework

for publishing relational data in XMLACM TODS 27(4):438—-493, Dec. 2002.

J. Foster, M. Greenwald, J. Moore, B. Pierce and A. S¢ch@dmbinators for bi-directional
tree transformations: a linguistic approach to the viewat@dgroblem. IrSymposium on
Principles of Programming Languages (PORIpages 233—-246, Long Beach, CA, USA,
2005. ACM Press.

L. Klieb. Distributed disconnected databasesSymposium on Applied Computing (SAC)
pages 322—-326, New York, NY, USA, 1996. ACM Press.

S. H. Phatak and B. R. Badrinath. Conflict resolution awbmnciliation in disconnected
databases. IDEXA 1999.

B. Pierce, A. Schmitt and M. Greenwald. Bringing Harmémyptimism: A synchroniza-
tion framework for heterogeneous tree-structured datachfiieal Report MS-CIS-03-42,
University of Pennsylvania, USA, 2003. Superceded by MS-05-02.

J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fanl. &uhderburk. Querying XML
views of relational data. INLDB, Rome, Sept. 2001.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Sprejtaad C. Hauser. Managing
update conflicts in bayou, a weakly connected replicatexhgiosystem. IIBOSP pages
172-183, 1995.

A. Vargas, V. Braganholo, and C. Heuser. Conflict resmiiind difference detection in up-
dates through XML views. Technical Report RP-352, UFRG&zBrDec. 2005. Available
atwwv. cos. ufrj . br/~vanessa.

Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effectiehange detection algorithm for
XML documents. INCDE, pages 519-530, India, March 2003.

