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Abstract. Current methods for data integration are as difficult to use as
they are powerful. Motivated by our work with clinical data and the peo-
ple who analyze it, we present two components that allow non-technical
users that are domain experts to create and reuse complex data inte-
gration processes. The GUAVA (GUI As View Apparatus) component
enables data analysts to make informed data integration decisions based
on detailed accounts of the user interface that was used to generate
the data. The MultiClass component allows analysts to revisit decisions
made for prior studies and reuse them or not each time the data is used.
We describe these two components with examples where a warehouse of
clinical data is used to support research studies. We describe the state
of our implementation and why we believe the two components can be
automatically translated into ETL workflows.

1 Introduction

In a traditional data warehouse, database specialists construct an ETL (Extract-
Transform-Load) workflow to combine, and transform data from heterogeneous
data sources and accumulate it in a central place. Because ETL can include pro-
gramming code of any complexity, if a warehouse-building process can be done,
it can be done using ETL. However, an ETL workflow, once defined, encapsu-
lates only one set of decisions about how to integrate various source databases,
and is almost entirely inaccessible to those who are not database experts or pro-
grammers. If health-related databases are to be used in research, data must be
extracted from data sources and transformed differently for different studies, at
multiple points in time, using methods to be specified by clinical experts rather
than database experts.

In a clinical setting, there are additional weaknesses to the classical approach
of full data integration. First, it may be necessary to lose information. A data
source A with two categories, smokers or non-smokers, cannot be fully integrated
with a data source B with three related categories, non-smokers, cigar smokers,
or cigarette smokers without making a classification decision or declaring the
integration impossible. Many integration techniques [1,9,15] identify similari-
ties between data sources, without offering any guidance on how to answer the
classification decision appropriately.



Second, integration techniques that do address the classification decision [6,
7] assume that there will be a single, integrated data source. We are interested
in supporting an environment where data is used in different studies and may
require different classifiers.

Because data integration solutions often require a person to read and under-
stand a database, it is often left to technical experts to decide how to integrate
data, even if they do not fully understand the data they are integrating. But,
the data in the database is not sufficient for most clinical inquiries. The user
interface of a software tool used to capture data defines the precise meaning
of data. A “1” in the field “smoker” might mean that the patient is a current
smoker, or instead could mean that they quit smoking one year ago.

We present two complementary components that allow domain experts to
make their own integration and classification decisions, as needed, for each study.
The first, GUI As View Apparatus (GUAVA), provides the user with a rich query
interface that is derived from the same GUI that clinical providers used to as-
semble and view the data originally. Users can thus view data in its original
context rather than the potentially obscure environment of a database. The sec-
ond component, MultiClass, allows domain experts to integrate and classify data
again and again, as needed. MultiClass captures these decisions and uses them
to generate ordinary ETL workflows. Analysts are also able to use MultiClass to
document, inspect, reuse, and modify integration decisions from prior studies.

Section 2 motivates this work by describing patient data used in clinical out-
comes research. We describe the GUAVA and MultiClass components in Section
3. Section 4 looks at current results. Section 5 briefly presents related research.
Section 6 describes our plans for future work and offers some conclusions.

2 The Status Quo

The primary actor in our scenario is the data analyst, a person trained in statis-
tical methodology with good domain knowledge. For clinical studies, this means
the analyst understands medical terminology and data. The data analysts that
we are observing work for the Clinical Outcomes Research Initiative® (CORI),
an organization that studies clinical data to improve the practice of clinical en-
doscopy. To encourage clinics to submit data, CORI developed a software report-
ing tool that clinics can use to document endoscopic procedures. Data from the
CORI software tool is periodically sent for inclusion in the CORI warehouse. An
ETL workflow performs schema transformation and data cleaning while moving
the data into the warehouse. Analysts then identify and extract relevant reports
for import into a statistical package for each study. Here are two studies that
the analysts may run:

Study 1: We would like to find out, of all patients undergoing upper GI
endoscopy, how many (what proportion) had the indication of “Asthma-specific
ENT/Pulmonary Reflux symptoms”? Of these, include only those with no history

3 More information about CORI can be found at http://www.cori.org.



of renal failure and with cardiopulmonary and abdominal examinations within
normal limits. How many of these suffered the complication of transient hypozia?
Of these, how many required each of the following interventions: surgery, IV
fluids, or oxygen administration?

Study 2: Of all procedures on ex-smokers, how many had a complication of
hypozxia?

These research studies as performed by an analyst are more than just queries.
A study comprises all of the decisions that a data analyst makes from the time
a request arrives to when final statistical analyses are run, and those decisions
can change over time. Those decisions are also based on the precise semantics
of both the study and the data; if a study defines an ex-smoker to be someone
who has quit in the last year, but the user interface indicates that an ex-smoker
is anyone who has ever smoked, the data may not be appropriate to use in that
study.

The technical demands of writing an ETL workflow are beyond the capabil-
ities of the CORI analysts. It is left to the development team to write the ETL
workflow, and as a consequence, the analysts do not completely understand the
process by which data arrives in the warehouse. Thus, they also cannot mod-
ify that process as new research questions arise. To complicate matters, several
commercial reporting tool vendors have expressed an interest in contributing
data to CORI’s clinical data warehouse. Each new vendor necessitates a new
ETL workflow, potentially for each study.

3 Architectural Overview

MultiClass

Classifiers Study Studies
Schemas

............. i
Study 1
Study 2

Fig. 1. GUAVA and MultiClass components and how they interface
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The GUAVA and MultiClass components of our architecture enable data
analysts to express their own data extraction, integration, and cleaning for each
study. We introduce three artifacts (Figure 1):

— GUAVA trees (g-trees) that allow an analyst to explore the user interface of
a data capture tool to select the data of interest

— Study schemas that document the data that analysts want in studies

— Classifiers that relate elements of g-trees with the study schema

Anyone using the system can annotate and timestamp each of these artifacts,
as well as the studies themselves, so that it is clear who generated them, when,
and why.

To perform a study, the data analyst chooses data elements from (or adds
data elements to) a study schema, writes conditions similar to a WHERE clause
in SQL to filter out unwanted data, and then selects or defines new classifiers.
The analyst may choose to look at other studies that use the same study schema
to make informed decisions as to which classifiers to use.

MultiClass uses the specifications set out by the analyst to create an ETL
workflow that is tailored to a specific study. Thus, we can leverage existing ETL
and still offer the flexibility that analysts require when running studies over
semantically-rich data.

3.1 Scope

We do not expect our architecture to be a universal data integration solution.
GUAVA expects that a GUI accompanies each data source. The user interfaces
that interest us are reporting tools, where the primary purpose of the interface
is to facilitate data entry.

We are not working on resolving naming conflicts or automated schema
matching [1,10]. We assume that, because data analysts are domain experts,
they are capable of making judgments about domain-specific vocabulary, such
as the fact that “interventions” in one source refers to the same data as “compli-
cations” in another source. Note that controlled vocabularies [4] or ontology, or
other automated schema matching tools [10] may be useful in conjunction with
GUAVA to assist the user.

Also, we are not addressing instance identification problem [15]. Since an
endoscopy report is likely not created twice, MultiClass simply unions together
the results of ETL workflows from different contributors.

3.2 GUAVA: GUI As View Apparatus

Each contributor schema in Figure 1 is associated with a GUAVA tree (or g-
tree) that captures the structure and content of the user interface (Figure 2).
The g-tree demonstrates relationships that may not be present in the database
alone, such as a question that becomes enabled only if one answered a previous
question in a specific way. Each node in a g-tree (Figure 3) captures context
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Fig. 2. An example dialog from a clinical tool and its corresponding g-tree. There is
a node in the g-tree for every control on the screen, even those that do not normally
store data, such as group boxes. Because the “frequency” textbox does not become
enabled until someone answers the “smoking” question, the “frequency” node appears
as a child of the “smoking” node

information about a control on the interface, including the exact wording of
a control’s question and answer options, whether there is a default value, and
whether the control is required to be filled in.

The g-tree behaves like a view; when analysts write classifiers, they express
queries against the g-trees. Thus, each node in the g-tree must refer back to the
contributor’s database to get data. As a normal part of using the reporting tool,
when the user enters data into a field, the reporting tool places that data into the
database. In GUAVA, we exploit that connection between Ul elements and the
database to generate mappings between the Ul and the database automatically.

One benefit of our approach comes from how we deal with schematic het-
erogeneity, when information of interest appears as schema (such as table or
column names) in one data source and as data (a field in a table extent) in
another data source. The most frequent type of schematic heterogeneity arises
because contributors often use a generic database layout, where each row in the
database looks like “Entity, Attribute, Value”. The user interface, however, is
not generic and does not have a generic layout; if one considers a single screen
in the interface as a row in the database, then each control represents a column.

Informally, we have noticed that reporting tools maintain an in-memory
structure with a simple design: each screen of the tool corresponds to a ta-
ble, and each control corresponds to a column. We call this design the naive
schema for a tool. The physical database design is far different, typically with a
generic layout. We believe that the differences between the naive schema and the
real database can be encapsulated by specific design patterns (Table 1). Each
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Fig. 3. Details for three nodes from the g-tree in Figure 2. The alcohol node (a) has
one data value each for the selections in the drop-down list, and an option for free
text. The smoking node (b) has an option for ”unselected” because the radio list starts
out with no option selected. The frequency node (c) records that the control does not
become enabled unless the smoking control has an answer

pattern describes a data transformation; several put together describe how to
translate a query against the g-tree into one against the database.

Since the code for a user interface can be arbitrarily complex, there may be an
arbitrarily complex relationship between the UI and the underlying data source.
By exploring the utility of database patterns, we hope to show that most such
complex relationships can be expressed using a small number of design patterns.

3.3 MultiClass: Study Schema

A study schema collects all of the things that analysts want to study — like
a patient’s gender or smoking habits — and organizes them at a conceptual
level. The study schema may be incomplete compared to a global schema. Data
elements not needed in any study are simply omitted. Analysts can expand the
study schema as needed for new studies. For the data analysts at CORI, the
primary entity of interest is always the procedure; we expect that CORI would
only need to have one study schema. We allow multiple study schemas, e.g., with
patient or medications as the primary entity of interest.

A study schema simplifies the traditional ER model in that the only relation-
ship type is “has-a” with a single entity of primary interest sitting atop a tree,
much like a “part-of” hierarchy in a CAD database [13]. Using such a hierarchi-
cal model (Figure 4) meets the needs of clinical studies where the primary entity
of interest is the procedure. The biggest difference between a study schema and
an ER diagram is the addition of multiple domains for an attribute. Depending
on the study, analysts may want to represent an attribute like smoking habits
in different ways (Table 2).



Table 1. Example database design patterns. Each design pattern represents a trans-
formation that one must perform when reading data into memory

Pattern Description Data Transformation

Naive  No transformations are applied to None — this is just the in-memory
the data. database

Merge Data from several forms are drawn Pull only data where C = form name
from the same table. (C is a column that holds forms)

Split Attributes from a single form are dis- Join
tributed over several tables

Generic Each row in a table represents an at- Execute an un-pivot operation, ei-
tribute, rather than each column.  ther in code or SQL if the operator

exists in the DBMS
Audit  No rows are ever deleted or updated. Pull only data where C = 0 (0 is a

Rows can be deprecated by setting sentinel to indicate that the row has
the value in a column. The reporting not been deleted)
tool only displays current data.
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* Boolean (yes/no)
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Entity: New Medication

Drug

* String (Name)

« String (Bar code)
Dosage

* Integer (mg)
Instructions

* String (full instructions)

* Integer (pills/day)

Fig. 4. A study schema. Entities have attributes, which in turn have domain(s) that
correspond to different ways to represent them. The dashed lines indicate ”has-a”
relationships between entities, with the primary entity ”"Procedure” at the top of the

tree

Table 2. Three different domains for the ”smoking” attribute. There is no way to
translate any one representation into another without losing information

Domain Elements Description

1 Positive Integers Number of packs smoked per day

2 None, Current, Previous No smoking, current smoker, or has
smoked in the past

3 None, Light, Moderate, Heavy General classification of smoking habits




3.4 MultiClass: Classifiers

An analyst creates a classifier to relate nodes in a g-tree with domain entries
in a study schema. Each classifier is a list of declarative statements of the form
A «— B, where A is an arithmetic calculation and B is a Boolean condition. Both
clauses use nodes in a g-tree as arguments (see Figure 5 for examples). Thus,
the input to a classifier is contributor data, but as displayed as it appears in a
user interface rather than as stored in a database.

MultiClass allows more than one classifier to map data from the same con-
tributor to the same domain. Different studies may interpret domain values
differently; a “previous” smoker may mean someone who has quit in the last
year, or in the last ten years, or at any time at all. MultiClass needs entity
classifiers to identify unique objects in a g-tree and bring them forward into a
study schema. An analyst creates an entity classifier just like any other classifier,
except the target object of the classifier is an entity rather than a domain. Also,
the classifier must refer to at least one node in the g-tree that represents a form
rather than an attribute.

Classifier Habits (Cancer)
Classifies packs per day according to
conversations with cancer study on 5/3/02

Classifier Tumor Size
Estimates tumor volume based on
dimensionsin 3-space. Assumes 52%

None <  PacksPerDay =0
Light < 0<PacksPerDay <2
Moderate €  2<PacksPerDay <5

Heavy €  PacksPerDay>5

occupancy from sphere-to-cube ratio.

TumorX * TumorY * & TumorX >0AND
TumorZ * 0.52 TumorY >0 AND

Classifier Habits (Chemistry) TumorZ >0

Classifies packs per day according to flier (b)
from chemical studies Entity Classifier Relevant Procedures

None <  PacksPerDay =0 Only consider procedures where surgery was
nght 0< PackSPerDay <1l performw

e
Moderate € 1< PacksPerDay <2 Procedure < Procedure AND
Heavy €  PacksPerDay>2 SurgeryPerformed = TRUE
@ ©

Fig. 5. Example classifiers. Two classifiers (a) can relate data from a contributor to the
same domain for different studies. Another classifier (b) shows how to write classifiers
that refer to more than one g-tree node. An entity classifier (c) tells MultiClass how to
relate forms in the application with entities in the study schema, where “Procedure”
is a node in the g-tree that represents the form in Figure 2

4 Analysis

We have shown a number of analysts our architecture with examples of g-trees,
classifiers, and study schemas and compared them with the statistical software
tools that they currently use. They confirm that g-trees are easy to read and
that classifiers are simple to write and organize.



4.1 Research Directions

In the process of our research, we will investigate the validity of three hypotheses.

Hypothesis #1: It is possible to automatically generate a g-tree and
database mappings using an Integrated Development Environment
(IDE). The prototype of GUAVA that we are developing extends Visual Studio
.Net to generate a g-tree from the code that makes up the GUI of a reporting
tool. The prototype allows the developer to specify database design patterns
that relate the g-tree to the database.

Hypothesis #2: The artifacts of GUAVA and MultiClass are simple
enough that data analysts can use them without technical assistance.
We assert that g-trees are significantly simpler to read than database schemas,
that classifiers are easy to specify, and that domains are simple to understand
because they are a concept from statistics. Usability testing will include measur-
ing precision and recall; analysts should be able to extract only and all relevant
data from contributors without technical help.

Hypothesis #3: It is possible to compile studies into ETL work-
flows. A study in MultiClass consists of classifiers that draw from databases
using GUAVA. At this early stage, we can show how to translate these objects
into an ETL workflow in specific cases. We aim to show that we can generate
ETL workflows by comparing the expressive power of our classifier language
against a set of common ETL components.

G-Tree Study Schema

Source i Study
GUAVA Classifiers Study Query
....................... > (RO Y [T S

Temporary DB Temporary DB

Fig. 6. Translating GUAVA and MultiClass artifacts into ETL

We believe that the classifier language as specified here is equivalent in ex-
pressive power to conjunctive queries with union. We can translate queries spec-
ified against the g-tree into predefined SQL queries and ETL components that
depend on the database patterns used. At present, a study created over GUAVA
and MultiClass has a logical translation to a sequence of three ETL components,
each executing a query over the previous one’s results (Figure 6).

4.2 Implementation Status and Options

A prototype implementation of GUAVA is underway. Though we have identified
11 distinct database patterns so far, our initial prototype only considers the pat-
terns listed in Table 1. The prototype takes the standard .Net form components



and extends them with methods that allow the IDE to generate a g-tree. The
g-tree is stored as an XML Schema, which mimics the hierarchical nature of
the form interface and allows queries to return XML documents in a standard
format. Currently, we are working on developing the mechanism to translate
queries against the tree.

We are still in the early stages of development for MultiClass. We have de-
veloped the algorithms for translating the classifier language into XQuery. Our
approach is to identify all of the nodes in a g-tree that are referenced by the set
of classifiers. Then, treat each entity classifier as a “for-each” to iterate through
objects, each domain classifier as a variable assignment, and each rule in a clas-
sifier as a conditional statement. To date, we have successfully hand-translated
several collections of classifiers into both XQuery and Datalog.

We are still considering our options for implementing a study schema. The
nalve approach is to materialize the output of individual classifiers into relational
tables or XML documents. In the relational model, the result is a collection
of tables, one table per entity classifier per entity, with columns representing
classifier output (Figure 7). This option allows for simple data retrieval because
getting data from the study schema reduces to select-project-join queries. If
the classifiers/domains ratio is high, then a comprehensive materialized study
schema may be too large to manage. Alternatives include materializing only
often-used classifiers or determining relationships between classifiers. The latter
implies that if classifier A and classifier B share a simple algebraic relationship,
then we can materialize A’s output and compute B as needed.

Entity: Procedure, Data Source: CORI, Entity Classifier: Colonoscopies_Only
Smoking Alcohol Attributes

— ¥ T ¥ X

D4 D5 Domains

P O N

Cl C2 C3 C4 C5 C6 Cr C8 C9 CA CB CC Classifiers
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Fig. 7. A fully-materialized study schema must also materialize every classifier, where
each classifier serves as a column in the table

5 Related Work

SEMEX. The SEMantic EXplorer project [2] also supports on-demand data
integration by non-technical users. SEMEX uses outside sources such as search



engines to suggest matches, but does not consult any user interface that may
have generated data. Also, SEMEX does not provide any way to classify values.
Schematic Heterogeneity. SchemaSQL [8] and nD-SQL [5] demonstrate how
to extend SQL to accommodate schematic heterogeneity; however, few of these
features are available in commercial databases. They are also very difficult to
learn, even for expert SQL users, so even if we decide to use these languages in
our implementation, we will not require data analysts to learn them.
Mediated Schemas. A mediated schema serves a similar function as a study
schema: presenting a unified view of heterogeneous data sources to the end user
— in our case, a data analyst. A mediated schema uses Inter-schema Correspon-
dence Assertions (ICAs) to establish relationships between databases. Database
patterns and classifiers both act as ICAs, if one were to consider g-trees to be
schemas. There exist both a simple notation [12] and more complex notations
such as GLAV [7] for representing ICAs. These notations only express relation-
ships between sets of objects, such as equality or containment. They do not
express any transformation of data elements as is required for classifiers.
Context. The COIN project [11] stores context alongside data in the form of
metadata, and also automatically transforms data based on that context. Be-
cause a g-tree resides outside of the underlying database, GUAVA can attach
context information over an existing database regardless of implementation. Mul-
tiClass allows for multiple classifiers to transform data from the same context
to the same domain in different ways according to need.

6 Future Work and Conclusion

We want to extend the classifier language to allow data cleaning, since analysts
may also choose to discard data based on the needs of the particular study
they wish to run. We are also interested in handling new versions of a reporting
tool by propagating classifiers to the next version if their input nodes did not
change, and suggest new classifiers if there is a change. Finally, we are interested
in exploring whether GUAVA or MultiClass is able to provide benefits in other
domains, such as traffic data and financial applications.
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