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Abstract. One of the goals of cleaning an inconsistent database is to
remove conflicts between tuples. Typically, the user specifies how the
conflicts should be resolved. Sometimes this specification is incomplete,
and the cleaned database may still be inconsistent. At the same time,
data cleaning is a rather drastic approach to conflict resolution: It re-
moves tuples from the database, which may lead to information loss and
inaccurate query answers.
We investigate an approach which constitutes an alternative to data
cleaning. The approach incorporates preference-driven conflict resolu-
tion into query answering. The database is not changed. These goals
are achieved by augmenting the framework of consistent query answers
through various notions of preferred repair. We axiomatize desirable
properties of preferred repair families and propose different notions of
repair optimality. Finally, we investigate the computational complexity
implications of introducing preferences into the computation of consis-
tent query answers.

1 Introduction

In many novel database applications, violations of integrity constraints cannot
be avoided. A typical example is integration of two consistent data sources that
contribute conflicting information. At the same time the sources are autonomous
and cannot be changed. Inconsistencies also occur in the context of long running
operations. Finally, integrity enforcement may be neglected because of efficiency
considerations.

Integrity constraints, however, often capture important semantic properties
of the stored data. These properties directly influence the way a user formulates
a query. Evaluation of the query over an inconsistent database may negatively
affect the meaning of the answers.

Example 1. Consider the schema

Mgr(Name, Dept, Salary, Reports)
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together with with two key dependencies:

Dept → Name Salary Reports, (fd1)
Name → Dept Salary Reports, (fd2)

In an instance of this schema a tuple (x, y, z, v) denotes the fact that x manages
the department y, receives a salary z, and is required to write v reports annually.

Now suppose we integrate the following (consistent) sources:

s1 = {(Mary, R&D, 40k, 3)}, s2 = {(John, R&D, 10k, 2)},
s3 = {(Mary, IT, 20k, 1), (John, PR, 30k, 4)}.

The integrated instance r = s1 ∪ s2 ∪ s3 contains 3 conflicts:

1. (Mary, R&D, 40k, 3) and (John, R&D, 10k, 2) w.r.t. fd1,
2. (Mary, R&D, 40k, 3) and (Mary, IT, 20k, 1) w.r.t. fd2,
3. (John, R&D, 10k, 2) and (John, PR, 30k, 4) w.r.t. fd2.

These inconsistencies may result from changes that are not yet fully propagated.
For example, Mary may have been promoted to manage R&D whose previous
manager John was moved to manage PR, or conversely, John may have been
moved to manage R&D, while Mary was moved from R&D to manage IT .

Consider the query Q1 asking if John earns more than Mary:

∃x1, y1, z1, x2, y2, z2.Mgr(Mary, x1, y1, z1) ∧ Mgr(John, x2, y2, z2) ∧ y1 < y2.

The answer to Q1 in r is true but this is misleading because r may not correspond
to any actual state of the world.

One way to deal with the impact of inconsistencies in the results of the query
evaluation is data cleaning [18]. Although there exist a wide variety of tools for
automatic elimination of duplicates, extraction and standardization of informa-
tion, there are practically no tools that automatically resolve integrity constraint
violations [20]. Usually, the user is responsible for providing a procedure that
decides how the conflicts should be resolved. The standard repertoire of actions
that can be performed on a conflicting tuple is [24]: removing the tuple, leaving
the tuple, or reporting the tuple to an auxiliary (contingency) table. Typically,
the data cleaning system provides useful information which may include:

– the timestamp of creation/last modification of the tuple (the conflicts can
be resolved by removing from consideration old, outdated tuples),

– the source of the information of the tuple (a user can consider the data from
one source more reliable than the data from the other).

Applying of data cleaning has several shortcomings:

– If the user provides insufficient information to resolve all the conflicts then
data cleaning results in an inconsistent database; this again may lead to
misleading answers.



– Physically removing the tuples from the database may lead to information
loss.

– Data cleaning does not allow to utilize the incomplete information often
present in inconsistencies.

The framework of repairs and consistent query answers [1] incorporates an
alternative approach to deal with inconsistent databases, geared toward utiliz-
ing incomplete information. A repair is a consistent database minimally different
from the given one, and a consistent answer to a query is the answer present
in every repair. This approach does not remove physically any tuples from the
database. The framework of [1] has served as a foundation for most of the sub-
sequent work in the area of querying inconsistent databases (for recent develop-
ments see [5, 13], for the surveys of the area see [4, 3, 8]).

Example 2. The instance r of Example 1 has 3 repairs:

r1 = {(Mary, R&D, 40k, 3), (John, PR, 30k, 4)},
r2 = {(John, R&D, 10k, 2), (Mary, IT, 20k, 1)},
r3 = {(Mary, IT, 20k, 1), (John, PR, 30k, 4)}.

Because Q1 is false in r1 and r2, true is not a consistent answer to Q1.

The standard framework of consistent query answers does not contain any
way to incorporate additional user input about how to resolve some conflicts.
One can attempt to first clean the database and then use the consistent query
answers approach. However, this is a radical approach: removing tuples may lead
to information loss. Instead, we propose to use additional user input in the form
of preferences to select only the preferred repairs. Query answers present in every
preferred repair are called preferred consistent query answers.

Example 3. Suppose the user finds the source s3 to be less reliable than s1 and
less reliable than s2. The user does not know, however, the relative reliability
of the sources s1 and s2. The cleaning of r with this information yields an
inconsistent database:

r′ = {(Mary, R&D, 40k, 3), (John, R&D, 10k, 2)}.
Consider the query Q2 asking if Mary earns more and has fewer reports to write
than John:

∃x1, y1, z1, x2, y2, z2.Mgr(Mary, x1, y1, z1)∧Mgr(John, x2, y2, z2)∧y1 > y2∧z1 < z2.

The answer to this query in the “cleaned” database r′ is false. False is also the
consistent answer to Q2 in r′. Note, however, that, neither false nor true is a
consistent answer to Q2 in r.

Intuitively, however, the repairs r1 and r2 incorporate more of reliable infor-
mation than the repair r3 (all tuples of r3 come from a less reliable source s3).
If we consider r1 and r2 as the only preferred repairs, then true is the preferred
consistent answer to Q2.



In this paper we extend the framework of consistent query answers with
additional input consisting of preference information Φ. We use Φ to define the
set of preferred repairs RepΦ. When we compute preferred consistent answers,
instead of considering the set of all repairs Rep, we use the set of preferred
repairs. We assume that there exists a (possibly partial) operation of extending
Φ with some additional preference information and we write Φ ⊆ Ψ when Ψ is
an extension of Φ. Φ is total if it cannot be extended further. We identify the
following desirable properties of families of preferred repairs:

P1 Non-emptiness
RepΦ �= ∅.

P2 Monotonicity: extending preferences can only narrow the set of preferred
repairs

Φ ⊆ Ψ ⇒ RepΨ ⊆ RepΦ.

P3 Non-discrimination: if no preference information is given, then no repair
is removed from consideration

Rep∅ = Rep.

P4 Categoricity: given maximal preference information we obtain exactly one
repair

Φ is total ⇒ |RepΦ| = 1.

We also note that properties P2 and P3 imply an important property

P5 Conservativeness: preferred repairs are a subset of all repairs

RepΦ ⊆ Rep.

In Section 3 we also study various notions of repair optimality which ensure a
proper use of preference information to select preferred repairs.

2 Preliminaries

In this paper, we work with databases over a schema consisting of only one
relation R with attributes from U . We use A, B, . . . to denote elements of U and
X, Y, . . . to denote subsets of U . We consider two disjoint domains: uninterpreted
names D and natural numbers N . Every attribute in U is typed. We assume that
constants with different names are different and that symbols =, �=, <, > have
the natural interpretation over N .

The instances of R, denoted by r, r′, . . . , can be seen as finite, first-order
structures, that share the domains D and N . For any tuple t from r by t.A
we denote the value associated with the attribute A. In this paper we consider
first-order queries over the alphabet consisting of R and binary relation symbols
=, �=, <, and >.

The limitation to only one relation is made only for the sake of clarity and
along the lines of [9] the framework can be easily extended to handle databases
with multiple relations.



2.1 Inconsistency and repairs

The class of integrity constraints we study consists of functional dependencies
(FD). We use X → Y to denote the following constraint:

∀t1, t2 ∈ R.
∧

A∈X

t1.A = t2.A ⇒
∧

B∈Y

t1.B = t2.B (1)

We identify conflicts as follows: tuples t1 and t2 are mutually conflicting in the
database r w.r.t. the set of functional dependencies F if t1 and t2 belong to r and
there exists a functional dependency of the form (1) in F such that t1.A = t2.A
for all A ∈ X and t1.B �= t2.B for some B ∈ Y . A database r is inconsistent
with a set of constraints F if and only if r contains some conflicting tuples w.r.t.
F . Otherwise, the database is consistent.

In the framework of [1] when repairing a database two operations are con-
sidered: adding or removing a tuple. In the presence of functional dependencies
adding new tuples cannot remove conflicts and hence only repairs obtained by
deleting tuples have to be considered.

Definition 1 (Repair). Given a database r and a set of integrity constraints
F , a database r′ is a repair of r w.r.t. F if r′ is a maximal subset of r consistent
with F . By Rep(r, F ) we denote the set of all repairs of r w.r.t F .

A repair can be viewed as the result of a process of cleaning the input relation.
Note that since every conflict can be resolved in two different ways and conflict
are often independent, there may be an exponential number of repairs.

Example 4. For any natural number n consider an instance

rn = {(0, 0), (0, 1), . . . , (n − 1, 0), (n − 1, 1)}

of the schema R(A, B). Note that the set of all repairs of rn w.r.t. the functional
dependency A → B is equal to the set of all functions from {0, . . . , n − 1} to
{0, 1}.
Also note that the set of repairs of a consistent relation r contains only r.

Given a relation instance r and a set of functional dependencies F , a conflict
graph G(r, E) is a graph whose vertices are the tuples of r and two tuples are
adjacent if only if they are mutually conflicting w.r.t. F . Conflict graphs are
compact representations of repairs because the set of all repairs is equal to the
set of all maximal independent sets of the corresponding conflict graph.

Example 5. The conflict graph for the instance rn for n = 4 and the functional
dependency A → B from Example 4 is presented in Figure 1.

For a given tuple t, by n(t) we denote its neighborhood in the conflict graph, i.e.
all tuples conflicting with t; and the vicinity of t is v(t) = {t} ∪ n(t).
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Fig. 1. A conflict graph.

2.2 Priorities and preferred repairs

For the clarity of presentation we assume a fixed database instance r with a fixed
set of functional dependencies F .

To represent the preference information, we use acyclic orientations of some
(not necessarily all) edges of the conflict graph. Orientations allow us to express
the preferences at the level of single conflicts and acyclicity ensures unambiguity
of the preference.

Definition 2 (Priority). A priority (in r w.r.t. F ) is a binary relation 
 ⊆
r×r such that 
 is acyclic and x 
 y implies that x and y are mutually conflicting
(in r w.r.t. F ). If x 
 y we say that that x dominates y. A priority 
 is total if
for every pair x, y of mutually conflicting tuples (in r w.r.t. F ) either x 
 y or
y 
 x.

From the point of the user interface it is often more natural to define the priority
as some acyclic binary relation on r and then consider the priority relation only
on conflicting tuples. Naturally, those approaches are equivalent.

Extending an orientation consists of orienting some conflicting edges that
were not oriented before; formally, a priority 
′ is an extension of 
 if 
′ ⊇ 
.
Note that an extension 
′ is also a priority and therefore 
′ is acyclic and
defined only on mutually conflicting tuples. Also observe that a priority cannot
be extended further if and only if it is total.

Conflict resolution A total priority provides an unambiguous information on
how each conflict should be resolved. The Algorithm CR uses a total priority
to construct a consistent database by iteratively selecting tuples that are not
dominated by any other tuples, i.e. tuples selected by the winnow operator [7]:

ω�(r) = {t ∈ r|¬∃t′ ∈ r.t′ 
 t}.

After selecting a tuple t, t is removed together with its neighbors from further
consideration.

Proposition 1. Given a total priority 
, the Algorithm CR computes a unique
repair for any sequence of choices in Step 3.



Algorithm CR: Conflict Resolution

1: r′ ← ∅

2: while ω�(r) �= ∅ do
3: choose any x ∈ ω�(r)
4: r′ ← r′ ∪ {x}
5: r ← r \ `{x} ∪ n(x)

´
� where n(x) – the neighborhood of x.

6: return r′

Preferred repairs In our work we investigate families of preferred repairs.
Formally, a family of preferred repairs is a function X -Rep defined on triplets
(r, F,
), where 
 is a priority in r w.r.t. a set of FDs F , such that X -Rep(r, F,
)
is a set of repairs. We say that a family X1-Rep subsumes a family X2-Rep,
denoted X1-Rep � X2-Rep, if for every (r, F,
) we have that X1-Rep(r, F,
) ⊆
X2-Rep(r, F,
).

2.3 Preferred consistent query answers

We generalize the notion of consistent query answer [1] by considering only
preferred repairs when evaluating a query (instead of all repairs). We only study
closed first-order logic queries. We can easily generalize our approach to open
queries along the lines of [1, 9]. For a given query Q we say that true is an answer
to Q in r, if r |= Q in the standard model-theoretic sense.

Definition 3 (X -Consistent query answer). Given a database r, a set of
FDs F , a closed query Q, a priority 
, and a family of repairs X -Rep, true
(false) is the X -consistent query answer to a query Q in r w.r.t. F and 
 if for
every repair r′ ∈ X -Rep(r, F,
) we have r′ |= Q (resp. r′ �|= Q).

Note that we obtain the original notion of consistent query answer [1] if we
consider the whole set of repairs Rep(r, F ).

3 Priority-based repairing

The main purpose of introducing P1–P4 is the identification of the desired prop-
erties of families of preferred repairs. We note that all properties except for P4
do not require any use of the priority itself to eliminate repairs. This makes it
possible to construct a family of preferred repairs which satisfies P1–P4 but
which practically makes no use of the given priority.

Example 6. Consider a family of repairs, which for a total priority consists of
the clean database obtained with Algorithm CR and for non-total priorities it
consists of all repairs. This family of repairs fulfills properties P1–P4.

Thus we investigate a number of increasingly complex notions of repair optimal-
ity that ensure an effective use of the preference information:



1. r′ is a locally optimal repair, if no tuple x from r′ can be replaced with a
tuple y such that y 
 x and the resulting set of tuples is consistent;

2. r′ is a Pareto optimal if no nonempty subset X of tuples from r′ can be
replaced with a tuple y such that ∀x ∈ X.y 
 x and the resulting set of
tuples is consistent;

3. r′ is a globally optimal if no nonempty subset X of tuples from r can be
replaced with a set of tuples Y such that ∀x ∈ X.∃y ∈ Y.y 
 x and the
resulting set of tuples is consistent.

We note that global optimality implies Pareto optimality which in turn implies
local optimality. Intuitively, global optimality makes an aggressive use of priori-
ties to select repairs, while local optimality does so in a less aggressive manner.

3.1 Locally optimal repairs

By L-Rep we denote the family selecting all locally optimal repairs. The following
example illustrates that the notion of local optimality allows to effectively use
priorities to handle relations with one key dependency.

Example 7. Consider the relational schema R(A, B) with a key dependency F =
{A → B} and take an instance r = {ta = (1, 1), tb = (1, 2), tc = (1, 3)} with
the priority 
 = {(ta, tc), (ta, tb)}. Figure 2 contains the corresponding conflict
graph and its orientation. The repairs are Rep(r, F ) = {r1 = {ta}, r2 = {tb}, r3 =
{tc}}. Only r1 is locally preferred.

Proposition 2. L-Rep satisfies properties P1–P3.

As it’s shown on the following example, locally optimal repairs do not satisfy
P4.

Example 8. Consider the relational schema R(A, B, C) with a functional depen-
dency A → B and take an instance r = {ta = (1, 1, 1), tb = (1, 1, 2), tc = (1, 2, 3)}
with the total priority 
 = {(tc, ta), (tc, tb)}. The corresponding conflict graph
can be found in Figure 3. The set of repairs consists of two repairs Rep(r, F ) =
{r1 = {ta, tb}, r2 = {tc}}. All repairs are locally optimal.

ta

tb tc

Fig. 2. Use of L-Rep.

tc

ta tb

Fig. 3. Non-categoricity of L-Rep.



3.2 Pareto optimal repairs

In Example 8, we note that even though the priority suggests rejecting r1 from
consideration, the notion of local optimality is too weak to do so. The main
reason is the existence of violations of functional dependency with duplicates
(ta and tb which are not conflicting, but both of them conflict with tc). The
notion of Pareto optimality, on the other hand, effectively applies the priority
in the situations of violations of one non-key functional dependency: the repair
r1 is not Pareto optimal and r2 is. By P -Rep we denote the family selecting all
Pareto optimal repairs. We note that P -Rep is as effective in enforcing priorities
as L-Rep.

Proposition 3. P -Rep satisfies properties P1–P4. Moreover P -Rep � L-Rep
and for one key dependency L-Rep coincides with P -Rep.

3.3 Globally optimal repairs

Pareto optimality selects repairs whose compliance with the priority cannot be
improved by exchanging a set of tuples with a dominating tuple. The following
example presents a situation where one may decide to use global optimality to
provide a finer selection of repairs.

Example 9. Consider the schema R(A, B, C, D) with two functional dependen-
cies F = {A → B, C → D} and suppose we have a database: r = {ta =
(1, 1, 0, 0), tb = (1, 2, 0, 0), tc = (1, 1, 1, 1), td = (1, 2, 2, 1), te = (0, 0, 2, 2)} with
a priority 
 = {(ta, tb), (tb, tc), (tc, td), (td, te)}. The conflict graph is presented
on Figure 4. The set of repairs is Rep(r, F ) = {r1 = {tb, te}, r2 = {tb, td}, r3 =
{ta, tc, te}}. Repairs r2 and r3 are Pareto optimal. However, only the repair r3

is globally optimal.

ta

tb

tc

td

te

Fig. 4. Pareto vs. global optimality.

Let G-Rep be the family selecting all globally optimal repairs.

Proposition 4. G-Rep satisfies properties P1–P4. Moreover G-Rep � P -Rep
and for one functional dependency G-Rep coincides with P -Rep.

Globally optimal repairs can be characterized in an alternative way.

Proposition 5. For a given priority 
 and two repairs, we say that r2 is pre-
ferred over r1, denoted r1 
 r2, if

∀x ∈ r1 \ r2. ∃y ∈ r2 \ r1. y 
 x.



A repair r′ is globally optimal if and only if it is 
-maximal (there is no repair
r′′ such that r′ 
 r′′).

This particular “lifting” of a preference on objects to a preference on sets of
objects can be found in other contexts. For example, a similar definition is used
for a preference among different models of a logic program [22], or for a preference
among different worlds [17].

3.4 Common optimal repairs

Now, we investigate the question whether there are repairs common for any
family of optimal repairs that satisfies the properties P1 and P2, i.e. given any
(r, F,
) is there a repair r′ which is in X -Rep(r, F,
) for any family X -Rep
of optimal repairs satisfying P1 and P2? The answer is negative for families
of locally optimal repairs. For instance we can construct two families of locally
optimal repairs that define the same set of preferred repairs as L-Rep except
that for the setting in Example 8 one returns only r1 while the other only
r2. Surprisingly, the situation is different for families of Pareto (and thus also
globally) optimal repairs.

Theorem 1. For every instance r, every set of functional dependencies F ,
and every priority 
 in r w.r.t. F , there exists a repair r′ such that r′ ∈
X -Rep(r, F,
) for any family X -Rep of Pareto optimal repairs that satisfies P1
and P2.

We define a new family of C -Rep which selects only common repairs of all families
of Pareto optimal repairs satisfying the properties P1 and P2. C -Rep is another
family of preferred repairs that satisfies all properties.

Proposition 6. C -Rep is a family of globally optimal repairs, i.e. C -Rep �
G-Rep, and C -Rep satisfies properties P1-P4.

Interestingly the family of common repairs has an alternative procedural charac-
terization.

Proposition 7. For a given instance r, a given set of functional dependencies
F , and a given priority 
, the set C -Rep(r, F,
) consists of all results of Algo-
rithm CR for any sequence of choices in Step 3.

We also note that under some conditions, the properties P1 and P2 specify
exactly one family of globally optimal repairs.

Theorem 2. C -Rep and G-Rep coincide for priorities that cannot be extended
to a cyclic orientation of the conflict graph.

4 Computational properties

In this section we study the computational implications of using priorities to
handle inconsistent databases. Because of space restriction we skip the proofs
(they can be found in [10] or derived using the techniques presented there).



4.1 Data complexity

In our paper we use the notion of data complexity [23] which captures the com-
plexity of a problem as a function of the number of tuples in the database.
The input consists of the relation instance and the priority relation, while the
database schema, the integrity constraints, and the query are assumed to be
fixed. For a family X -Rep of preferred repairs we study two fundamental com-
putational problems:

(i) X -repair checking – determining if a database is a preferred repair of a given
database i.e., the complexity of the following set

BX
F = {(r,
, r′) : r′ ∈ X -Rep(r, F,
)}.

(ii) X -consistent query answers – checking if true is an answer to a given query
in every preferred repair i.e., the complexity of the following set

DX
F,Q = {(r,
) : ∀r′ ∈ X -Rep(r, F,
).r′ |= Q}.

4.2 Negative results

First we state that computing preferred consistent query answers with any family
of Pareto (and thus also globally) optimal repairs that satisfies P1 and P2 leads
to intractability.

Theorem 3. For any family X -Rep of Pareto optimal repairs that satisfies P1
and P2, there exists a set of two functional dependencies F and a quantifier-free
ground query Q (consisting of one atom) to which computing the X -consistent
answer is co-NP-hard.

Proof. We reduce computing X -consistent query answers to the complement of
SAT. Take then any CNF formula ϕ = c1∧ . . . ∧ ck over variables x1, . . . , xn and
let cj = lj,1 ∨ . . . ∨ lj,mj

. We assume that there are no repetitions of literals in
a clause (i.e., lj,k1 �= lj,k2). We construct a relation instance rϕ over the schema
R(A1, B1, A2, B2) in the presence of two functional dependencies F = {A1 →
B1, A2 → B2}. The instance rϕ consists of the following tuples:

• wi = (i, 1, i, 1) corresponds to the positive valuation of the variable xi (for
every i = 1, . . . , n),

• w̄i = (i,−1,−i, 1) corresponds to the negative valuation of the variable xi

(for every i = 1, . . . , n),
• vj

i = (n + j, 1,−i, 0) corresponds to the use of the literal xi in the clause cj ,
• vj

i = (n + j, 1, i, 0) corresponds to the use of the literal ¬xi in the clause cj ,
• dj = (n + j, 1, 0, 1) corresponds to the clause cj ,
• b = (0, 0, 0, 0) corresponds to the formula ϕ.



The constructed priority 
ϕ is the minimal priority on rϕ (w.r.t. F ) such that:

w̄i 
ϕ vj
i , vj

i 
ϕ dj , dj 
ϕ b,

wi 
ϕ v̄j
i , v̄j

i 
ϕ dj .

The query we consider is Q = ¬R(b). On Figure 5 we can find a conflict graph
of an instance received from reduction of a formula ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨
¬x4 ∨ x5 ∨ ¬x6).

w̄1 w1 w̄2 w2 w̄3 w3 w̄4 w4 w̄5 w5 w̄6 w6

v̄1
1 v1

2 v1
3 v2

3 v̄2
4 v2

5 v̄2
6

d1 d2

b

Fig. 5. Conflict graph for ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x4 ∨ x5 ∨ ¬x6) with �ϕ.

Now we show that

(rϕ,
ϕ) ∈ DF,Q ⇐⇒ ∀r′ ∈ X -Rep(rϕ, F,
ϕ).b �∈ r′ ⇐⇒ ϕ �∈ SAT.

⇒ Suppose there exists a valuation V such that V |= ϕ. Consider then the
following instance

r′ ={wi|V (xi) = true} ∪ {w̄i|V (xi) = false} ∪
{vj

i |V (xi) = true} ∪ {v̄j
i |V (xi) = false} ∪ {b}.

We claim that r ∈ X -Rep(rϕ, F,
ϕ). To prove this consider the follow-
ing priority 
′=
ϕ ∪{(vi, v̄i)|V (xi) = true} ∪ {(v̄i, vi)|V (xi) = false}.
By P1 we have that X -Rep(rϕ, F,
′) is non-empty. We can prove that
r′ belongs to X -Rep(rϕ, F,
′) using the fact that X -Rep is a family of
Pareto optimal repairs (for brevity we skip this step). And from P2 we
get that X -Rep(rϕ, F,
′ ) ⊆ X -Rep(rϕ, F,
ϕ) and hence r′ belongs to
X -Rep(rϕ, F,
′). Since b ∈ r this contradicts (rϕ,
ϕ) ∈ DF,Q.

⇐ For brevity we just sketch this part of the proof. Suppose there exists a repair
r′ ∈ X -Rep(rϕ, F,
ϕ) such that b ∈ r′. We can prove that the following



valuation

V (xi) =




true if vi ∈ r′,
false if v̄i ∈ r′,
true otherwise

satisfies ϕ which is a contradiction.

It’s an open question whether a similar statement holds for families of locally
optimal repairs. We note that computing preferred consistent query answers
is co-NP-hard if we consider slightly restricted locally optimal repairs: locally
optimal repairs for which there doesn’t exists a pair of tuples x1, x2 which can
be replaced with a tuple y such that y 
 x1 and y 
 x2 and the resulting set of
tuples is consistent. Therefore we state the following conjecture.

Conjecture 1. For any family X -Rep of preferred repairs satisfying P1, P2, and
global local optimality computing X -consistent answers is co-NP-hard.

Another argument for this conjecture is the intractability of computing L-consistent
query answers (the proof of co-NP-hardness is omitted here, however, it uses the
reduction from the proof of Theorem 3.)

Theorem 4. L-repair checking is in PTIME and L-consistent query answers
are co-NP-complete.

To find if a repair r′ is Pareto optimal we seek a tuple y ∈ r \ r′ whose
all neighbors in r′ are dominated by y. Such a tuple exists if and only if r′ is
not Pareto optimal. The tractability of P -checking implies that computing P -
consistent answers is in co-NP: the nondeterministic machine uses a polynomial
(in the size of r) number of nondeterministic steps to construct a repair r′, checks
if r′ is Pareto optimal; the machine finds the answer to the query in r′ (if r′ is
not Pareto then the machine halts with the answer ‘yes’). With Theorem 3 we
obtain:

Corollary 1. P -repair checking is in PTIME and P -consistent query answers
are co-NP-complete.

Checking if a repair is globally optimal requires, however, an essential use of non-
determinism. This also promotes computing preferred consistent query answers
to a higher level of the polynomial hierarchy (proofs of the following claims can
be found in [10].)

Theorem 5. G-repair checking is co-NP-complete and G-consistent query an-
swers are Πp

2 -complete.

The procedural nature of common repairs makes it possible to check if a
repair r′ belongs to C -Rep(r, F,
) with a simulation of Algorithm CR with the
choices in Step 3 restricted to ω�(r)∩r′. Naturally this process can be performed
in polynomial time. Again using Theorem 3 we get:

Corollary 2. C -repair checking is in PTIME and C -consistent query answers
is co-NP-complete.



4.3 Positive results

We show how to compute consistent query answers if only one key dependency is
present. Note that under one key dependency all previously introduced families of
repairs coincide and hence we simply talk about preferred repairs. We note that
under one key dependency the corresponding conflict graph consists of disjoint
cliques. A repair is obtained by choosing one tuple from each clique. If a priority
is given then a preferred repair is obtained by choosing a non-dominated tuple
from each clique, i.e. a tuple selected with the winnow operator.

Now, we show how to adopt the algorithm from [8] to find if true is the
preferred consistent answer to a query Φ in r for a given priority 
 w.r.t. one
key dependency. We assume that the query is in CNF: Φ = Φ1 ∧ . . . Φn. We note
that true is not a preferred consistent query answer if and only if there exists a
preferred repair r′ such that r′ �|= Φi for some i. The algorithm attempts to find
if such a repair exists for every i. If the algorithm is successful for some i then
the answer is false; otherwise the answer is true. Let’s fix i and consider ¬Φi

¬Φi = R(t1) ∧ . . . ∧ R(tk) ∧ ¬R(tk+1) ∧ . . . ∧ ¬R(tm).

We use the following test:

Claim. For every j ∈ {1, . . . , m} if tj ∈ r we identify the clique Cj the tuple tj
belongs to. A preferred repair r′ such that r′ |= ¬Φi exists if and only if:

1. {t1, . . . , tk} ⊆ r,
2. {t1, . . . , tk} is independent,
3. {t1, . . . , tk} ∩ {tk+1, . . . , tn} = ∅,
4. tj ∈ ω�(Cj) for every j ∈ {1, . . . , k},
5. ω�(Cj) \ {tk+1, . . . , tm} �= ∅ for every j ∈ {k + 1, . . . , n} such that tj ∈ r.

Proof. ⇒ The conditions 1, 2, and 3 are trivially implied. We observe that every
tuple in r′ is selected among non-dominated tuples from the clique it belongs to
(with {t1, . . . , tk} ⊆ r′ this proves 4) and r′ is maximal, i.e. r′ contains a tuple
selected from every clique (with {tk+1, . . . , tm} ∩ r′ = ∅ this proves 5).

⇐ We construct the repair r′ as follows. First, for every j ∈ {1, . . . , k} we
select the tuple tj from Cj (feasible by 1, 2, and 3). The condition 4 guarantees
that none of the tuples tk+1, . . . , tm is selected in this step. Next, for every
j ∈ {k+1, . . . , m}, such that tj ∈ r, from the clique Cj we select a tuple different
from tk+1, . . . , tm (feasible by 5). Finally, we select an arbitrary non-dominated
tuple from every remaining clique. Obviously, r′ |= ¬Φi.

We also observe that the described test can be performed in time polynomial in
the size of the database.

Along the lines of [2, 8] this algorithm can be further extended to handle one
functional dependency. Because for one FD the family of locally optimal repairs
does not coincide with other families of preferred repairs, we can extend this
algorithm is two different directions: computing the preferred consistent query
answers w.r.t. locally optimal repairs and w.r.t. Pareto optimal repairs.

Theorem 6. For one functional dependency computing preferred consistent query
answers is in PTIME for L-Rep, P -Rep, G-Rep, and C -Rep.



5 Related work

We limit our discussion to the work on using priorities to maintain consistency
and facilitate resolution of conflicts.

The first article to notice the importance of priorities in information systems
is [11]. The authors study there the problem of updates of databases containing
propositional sentences. The priority is expressed by storing a natural number
with each clause. If during an update (inserting or deleting a sentence) the in-
consistency arises, then the priorities are used in a fashion similar to G-repairs
to select minimally different repairs. We note, however, that the chosen repre-
sentation of priorities imposes a significant restriction on the class of considered
priorities. In particular it assumes transitivity of the priority on conflicting facts
i.e. if facts a, b, and c are pair-wise conflicting and a has a higher priority than
b and b has a higher priority than c, then the priority of a is higher than c. This
assumption cannot be always fulfilled in the context of inconsistent databases.
For example the conflicts between a and b, and between b and c may be caused
by violation of one integrity constraint while the conflict between a and c is
introduced by a different constraint. While the user may supply us with a rule
assigning priorities to conflicts created by the first integrity constraint, the user
may not wish to put any priorities on any conflicts created by the other con-
straint.

A similar representation of priorities used to resolve inconsistency in first-
order theories is studied in [6], where the inconsistent set of clauses is stratified
(again the lowest strata has the highest priority). Then preferred maximal con-
sistent subtheories are constructed in a manner analogous to C -repairs. Further-
more, this approach is generalized to priorities being a partial order, by con-
sidering all extensions to weak orders. Again, however, this approach assumes
the transitivity of priority on conflicts, which as we explained previously may be
considered a significant restriction.

In the context of logic programs, priorities among rules can be used to handle
inconsistent logic programs (where rules imply contradictory facts). More pre-
ferred rules are satisfied, possibly at the cost of violating less important ones. In
a manner analogous to Proposition 5, [22] lifts a total order on rules to a pref-
erence on (extended) answers sets. When computing answers only maximally
preferred answers sets are considered.

[21] investigate disjunctive logic programs with priorities on facts. A transi-
tive and reflexive closure of user supplied priorities on facts is used to define a
relation of preference on models of the program. The definition of preference on
models of the disjunctive program is essentially different from the characteriza-
tion of globally optimal repairs in Proposition 5. The answer to a program in the
extended framework consists of all maximally preferred answer sets. The main
shortcoming of using this framework is it computational infeasibility (which is
specific to decision problems involving general disjunctive programs): comput-
ing answers to ground queries to disjunctive prioritized logic programs under
cautious (brave) semantics is Πp

3 -complete (resp. Σp
3 -complete). We note that a



family of preferred repairs defined in analogous manner does not satisfy P2 and
P4 but satisfies P1, P3, and P5.

A simpler approach to the problem of inconsistent logic programs is presented
in [16]. There, conflicting facts are removed from the model unless the priority
specifies how to resolve the conflict. Because only programs without disjunction
are considered, this approach always returns exactly one model of the input
program. Constructing preferred repairs in a corresponding fashion (by removing
all conflicts unless the priority indicates a resolution) would similarly return
exactly one database instance (fulfillment of P1 and P4). However, if the priority
is not total, the returned instance is not a repair and therefore the P5 is not
satisfied. Such an approach leads to a loss of (disjunctive) information and does
not satisfy P2 and P3.

[12] proposes a framework of conditioned active integrity constraints, which
allows the user to specify the way some of the conflicts created with the constraint
can be resolved. This framework satisfies properties P1 and P3 and doesn’t sat-
isfy P2 and P4. [12] also describes how to translate conditioned active integrity
constraints into a prioritized logic program [21], whose preferred models corre-
spond to maximally preferred repairs. We note that the framework of prioritized
logic programming is computationally more powerful (computing answers under
the brave semantics is Σp

3 -complete) than required by the problem of finding if
an atom is present in any repair (Σp

2 -complete). It is yet to be seen if less power-
ful programming environments (like general disjunctive logic programs) can be
used to compute preferred answers.

[19] uses ranking functions on tuples to resolve conflicts by taking only the
tuple with highest rank and removing others. This approach constructs a unique
repair under the assumption that no two different tuples are of equal rank (satis-
faction of P4). If this assumption is not satisfied and the tuples contain numeric
values, a new value, called the fusion, can be calculated from the conflicting
tuples (then, however, the constructed instance is not a repair in the sense of
Definition 1 which means a possible loss of information).

A different approach based on ranking is studied in [15]. The authors consider
polynomial functions that are used to rank repairs. When computing preferred
consistent query answers, only repairs with the highest rank are considered. The
properties P3 and P5 are trivially satisfied, but because this form of preference
information does not have natural notions of extensions and maximality, it is
hard to discuss postulates P2 and P4. Also, the preference among repairs in this
method is not based on the way in which the conflicts are resolved.

An approach where the user has a certain degree of control over the way the
conflicts are resolved is presented in [14]. Using repair constraints the user can
restrict considered repairs to those where tuples from one relation have been
removed only if similar tuples have been removed from some other relation. This
approach satisfies P2 but not P1. A method of weakening the repair constraints
is propose to get P1, however this comes at the price of losing P2.



6 Conclusions and future work

In this paper we proposed a general framework of preferred repairs and preferred
consistent query answer. We also proposed a set of desired properties a family
of preferred repairs should satisfy. We presented 4 families of preferred repairs:
L-Rep, P -Rep, G-Rep, and C -Rep. Figure 6 summarizes the computational com-
plexity results; its first row is taken from [8].

Repair Check
Consistent Answers to Possible

{∀,∃}-free queries conjunctive queries Applications

Rep PTIME PTIME co-NP-complete no priorities given

L-Rep PTIME co-NP-complete key

P -Rep PTIME co-NP-complete one FD

G-Rep co-NP-complete Π2
p -complete many FDs with

C -Rep PTIME co-NP-complete mutual conflicts

Fig. 6. Summary of complexity results.

We envision several directions for further work. Along the lines of [2], the
computational complexity results could be further studied, by assuming the con-
formance of functional dependencies with BCNF.

Extending our approach to cyclic priorities is an interesting and challenging
issue. Including priorities in similar frameworks of preferences [14] leads to los-
ing the monotonicity. A modified, conditional, version of monotonicity may be
necessary to capture non-trivial families of repairs.

Finally, one can extend our framework to handle a broader class of con-
straints. Conflict graphs can be generalized to hypergraphs [8], necessary to deal
with denial constraints. Then, more than two tuples can be involved in a single
conflict and the current notion of priority does not have a clear meaning.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In ACM Symposium on Principles of Database Systems (PODS), pages
68–79, 1999.

2. M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar
Aggregation in Inconsistent Databases. Theoretical Computer Science (TCS),
296(3):405–434, 2003.

3. L. Bertossi. Consistent Query Answering in Databases. SIGMOD Record, 2006.
To appear.

4. L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Ap-
plications of Databases, pages 43–83. Springer-Verlag, 2003.



5. P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A Cost-Based Model and Effec-
tive Heuristic for Repairing Constraints by Value Modification. In ACM SIGMOD
International Conference on Management of Data, 2005.

6. G. Brewka. Preferred Subtheories: An Extended Logical Framework for Default
Reasoning. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 1043 – 1048, 1989.

7. J. Chomicki. Preference Formulas in Relational Queries. ACM Transactions on
Database Systems (TODS), 28(4):427–466, December 2003.

8. J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Information and Computation, pages 90–121, 2005.

9. J. Chomicki, J. Marcinkowski, and S. Staworko. Computing Consistent Query
Answers Using Conflict Hypergraphs. In International Conference on Information
and Knowledge Management (CIKM), pages 417–426. ACM Press, November 2004.

10. J. Chomicki, J. Marcinkowski, and S. Staworko. Priority-Based Conflict Resolution
in Inconsistent Relational Databases. Technical Report cs.DB/0506063, arXiv.org
e-Print archive, June 2004.

11. R. Fagin, J. D. Ullman, and M. Y. Vardi. On the Semantics of Updates in
Databases. In ACM Symposium on Principles of Database Systems (PODS), pages
352–356, 1983.

12. S. Flesca, S. Greco, and E. Zumpano. Active Integrity Constraints. In ACM SIG-
PLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP), pages 98–107, 2004.

13. A. Fuxman, E. Fazli, and R. J. Miller. ConQuer: Efficient Management of Incon-
sistent Databases. In ACM SIGMOD International Conference on Management of
Data, 2005.

14. G. Greco and D. Lembo. Data Integration with Preferences Among Sources. In
International Conference on Conceptual Modeling (ER), pages 231–244. Springer,
November 2004.

15. S. Greco, C. Sirangelo, I. Trubitsyna, and E. Zumpano. Feasibility Conditions and
Preference Criteria in Quering and Repairing Inconsistent Databases. In Interna-
tional Conference on Database and Expert Systems Applications (DEXA), pages
44–55, 2004.

16. B. N. Grosof. Prioritized Conflict Handling for Logic Programs. In International
Logic Programming Symposium, pages 197–211, 1997.

17. J. Y. Halpern. Defining Relative Likehood in Partially-Ordered Preferential Struc-
tures. Journal of Artificial Intelligence Research, 1997.

18. D. B. Lomet. Letter from the Editor-in-Chief. IEEE Data Eng. Bull., 23(4), 2000.

19. A. Motro, P. Anokhin, and A. C. Acar. Utility-based Resolution of Data Inconsis-
tencies. In International Workshop on Information Quality in Information Systems
(IQIS), pages 35–43. ACM, 2004.

20. E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE
Data Eng. Bull., 23(4):3–13, 2000.

21. C. Sakama and K. Inoue. Prioritized logic programming and its application to
commonsense reasoning. Artificial Intelligence, 123:185–222, 2000.

22. D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Ordered Logic
Programs. In European Conference on Logics for Artificial Intelligence (JELIA),
pages 432–443. Springer-Verlag, LNCS 2424, 2002.

23. M. Y. Vardi. The Complexity of Relational Query Languages. In ACM Symposium
on Theory of Computing (STOC), pages 137–146, 1982.



24. P. Vassiliadis, Z. Vagena, S. Skiadopoulos, and N. Karayannidis. ARKTOS: A Tool
For Data Cleaning and Transformation in Data Warehouse Environments. IEEE
Data Eng. Bull., 23(4):42–47, 2000.


