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Abstract. The wavelet decomposition is a proven tool for constructing
concise synopses of massive data sets and rapid changing data streams,
which can be used to obtain fast approximate, with accuracy guarantees,
answers. In this work we present a generic formulation for the problem of
constructing optimal wavelet synopses under space constraints for vari-
ous error metrics, both for static and streaming data sets. We explicitly
associate existing work and categorize it according to the previous prob-
lem formulation and, further, we present our current work and identify
its contributions in this context. Various interesting open problems are
described and our future work directions are clearly stated.

1 Introduction

Approximate query processing over compact precomputed data synopses has
attracted a lot of attention recently as an effective approach for dealing with
massive data sets in interactive decision support and data exploration envi-
ronments. In such settings, users typically pose complex queries, which require
considerable amounts of time to produce exact answers, over large parts of the
stored data. However, due to exploratory behavior, users can often tolerate small
imprecisions in query results, as long as these results are quickly generated and
accompanied with accuracy guarantees.

Several studies have demonstrated the applicability of wavelets as a data re-
duction tool for a variety of database problems. Briefly, the key idea is to first
apply the decomposition process over an input data set, thus producing a set of
wavelet coefficients. One, then, retains only a subset, composing the wavelet syn-
opsis, of the coefficients by performing a thresholding procedure. Clearly, such
a lossy compression procedure introduces some error when reconstructing the
original data. The bulk of recent work focuses on defining useful metrics that
capture this reconstruction error and, further, provide algorithms for construct-
ing optimal synopses given a space constraint.

In a data streaming setting, usually one needs to resort to approximation in
order to deal with the high volume and rate of incoming data. Wavelet synopses
seem to be an effective summarization technique that can be applied in such
a setting as well. Unfortunately, algorithms for constructing wavelet synopses



designed to operate on static disk-resident data cannot be easily extended to
process data streams. For example, most of the static algorithms require many
passes over the data, whereas, in a streaming context only one-pass algorithms
can be applied. In other words, once a data stream item has been processed
it cannot be examined again in the future, unless explicitly stored; of course,
explicitly storing the entire data stream is not an option.

In this work, we briefly introduce the wavelet decomposition in Section 2.
We present our problem formulation for constructing wavelet synopses, discuss
the challenges that arise within a data streaming environment and describe our
contributions in Section 3. Finally, we conclude our discussion and propose future
research directions in Section 4.

2 Background on Wavelet Decomposition

The wavelet decomposition is a mathematical tool for the hierarchical decom-
position of functions with a long history of successful applications in signal and
image processing [15]. Let us briefly introduce the wavelet decomposition process
through a simple example. Consider the data vector a = [2, 2, 0, 2, 3, 5, 4, 4], of
domain size N = 8. The Haar wavelet decomposition, the simplest of all wavelet
decompositions, of a is computed as follows. We first average the values together
pairwise to get a new “lower-resolution” representation of the data with the
pairwise averages [ 2+2

2 , 0+2
2 , 3+5

2 , 4+4
2 ] = [2, 1, 4, 4]. This averaging loses some of

the information in a. To restore the original a values, we need detail coefficients,
that capture the missing information. In the Haar decomposition, these detail
coefficients are the differences of the (second of the) averaged values from the
computed pairwise average. Thus, in our simple example, for the first pair of
averaged values, the detail coefficient is 0 since 2− 2 = 0, for the second it is −1
since 1 − 2 = −1. No information is lost in this process – one can reconstruct
the eight values of the original data array from the lower-resolution array con-
taining the four averages and the four detail coefficients. We recursively apply
this pairwise averaging and differencing process on the lower-resolution array of
averages until we reach the overall average, to get the full Haar decomposition,
depicted in Figure 1(a). The transform of a is given by wa = [11/4, −5/4, 1/2,
0, 0, −1, −1, 0], that is, the overall average followed by the detail coefficients
in order of increasing resolution. Each entry in wa, be it a detail or average, is
called a wavelet coefficient.

A B-term wavelet synopsis is simply defined as any subset Λ ⊂ wa of wavelet
coefficients, where usually B = |Λ| � N . Implicitly, all non-stored coefficients
are set to 0. Thus, a wavelet synopsis is typically stored by B 〈coeff-index, coeff-
value〉 pairs.

A useful conceptual tool for visualizing and understanding the hierarchical
nature of the Haar decomposition process is the error tree structure [12] (shown
in Fig. 1(b) for the example array a). Each internal tree node ci corresponds to
a wavelet coefficient (with the root node c0 being the overall average), and leaf
nodes a[i] correspond to the original data-array entries. This view allows us to
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Fig. 1. Example error-tree structure for the example array a.

see that the reconstruction of any a[i] depends only on the log N +1 coefficients
in the path between the root and a[i]. Without going into detail, observe that
a[5] can be reconstructed by adding or subtracting coefficients in the path from
the root down to a[5], depending on whether we descend to a left or right child
respectively; i.e., a[5] = c0− c1 + c3− c6 ⇔ 5 = 11

4 −
(−5

4

)
+ 0− (−1). Similarly,

notice that the value of a wavelet coefficient only depends on a subset of the
original values, depending on the height of the tree they belong to; e.g., the
value of coefficient c5 depends only on the values a[2] and a[3].

Intuitively, wavelet coefficients towards the root of the error tree carry a
higher weight in the reconstruction of the original data values. To equalize the
importance of all coefficients, a common normalization scheme is to scale the
coefficient values at level l by a factor of

√
N/2l. Letting c∗i denote the normal-

ized coefficient values, this fact has two important consequences: (1) The energy
(a.k.a., the L2 norm) of the a vector is preserved in the wavelet domain, that
is, ||a||22 =

∑
i a[i]2 =

∑
i(c

∗
i )

2 (by Parseval’s theorem); and, (2) Retaining the
B largest coefficients in terms of absolute normalized value gives the (provably)
optimal B-term wavelet synopsis in terms of Sum-Squared-Error (SSE) in the
data reconstruction (for a given budget of coefficients B) [15]. More formally,
assuming a synopsis Λ and denoting by ã the vector of reconstructed data values,
the SSE is defined as

∑
i(a[i]− ã[i])2 =

∑
∀cj �∈Λ(c∗j )

2, where the latter equation
is due to Parseval’s theorem. In other words, SSE is equal to the sum of squared
normalized values of the non-stored coefficients, hence the previous observation.

3 Constructing Optimal Wavelet Synopses

In this section we present a generic problem formulation for constructing optimal
wavelet synopses. To this end we distinguish among various error metrics and also
differentiate on static (disk-resident) and streaming data. Further, we explicitly
relate the contributions of our current work with respect to the aforementioned
problem formulation.



A B-term optimal wavelet synopsis is a wavelet synopsis that minimizes some
aggregate reconstruction error metric under a space constraint of B coefficients
— therefore, its construction depends on the definition of such an error metric.

Minimizing weighted Lp norm of point errors. Given a wavelet synopsis Λ
of some data vector a, let err(i) denote the point error, that is, the reconstruction
error for the i-th data value a[i]. In Section 2 we considered the point to be the
absolute error errabs(i) = |a[i]− ã[i]| and further applied the L2 norm to aggre-
gate across all data values, leading to the SSE error metric. Finding the optimal
wavelet synopsis for SSE is quite trivial, as discussed. However, the extension to
other point errors, such as, for example, the relative error (with sanity bound s)
errrel(i) = |a[i]−ea[i]|

max{s,a[i]} and using other norms, such as the maximum L∞ norm,
to aggregate individual data reconstruction errors, is not as straightforward.

Let err(i) denote the i-th point error and wi denote a weight (or, importance)
assigned to this error. Using a weighted Lp norm for aggregation we obtain the
following generic error metric:

∑
i wi · (err(i))p. Unfortunately, since Parseval’s

theorem can only be applied in the unweighted L2 norm of absolute errors, no
easy to process rewriting of arbitrary aggregate error metrics exists.

There are two approaches to constructing an optimal wavelet synopsis for
general weighted aggregated point errors. The first approach, used in [16] for
the weighted L2 error, tries to incorporate the error metric in the decomposition
process. The decomposition step for obtaining the average coefficient changes
to a weighted average, that is, for two values a, b we obtain waa+wbb

2 , where
weights wa, wb can be constructed from the given reconstruction error weights.
This approach leads to a different, Haar-like, decomposition in which the SSE
metric is exactly the weighted L2 error metric measured in the conventional
Haar decomposition. Therefore, the construction of the optimal, under weighted
L2 norm, synopsis problem translates to the conventional SSE minimization
problem.

The second approach, such as the one taken in [3, 4, 14, 6], is the design of
algorithms that incorporate the error metric in their operation by exploiting the
error tree structure. In short, due to the distributive nature of error metrics, the
algorithms solve a dynamic programming recurrence, where the optimal error
incurred at a node i in the error tree (for a specified space budget and for a
specified set of ancestor nodes retained in the synopsis) depends on the optimal
errors incurred at the two children nodes 2i, 2i+1. The choice to be made involves
distributing available space to children nodes and deciding whether to include
node i in the set of retained nodes, or not.

Recently [7], it has been observed that restricting the retained synopsis val-
ues to the actual decomposition values is suboptimal for other than SSE error
metrics. Indeed, consider the case where just one coefficient, the average, is to
be maintained in the synopsis. In the case of an SSE-optimal synopsis the opti-
mal value would be the value in the original decomposition, that is, the average.
However, in the case of the maximum absolute error metric the optimal value
would rather be (min + max)/2, where min and max are the minimum and max-
imum values, respectively, in the original data. In light of this observation, one



has to construct a synopsis by searching not only for the best coefficients to
choose, but also for their optimal values. The term used for this more generic
and computationally harder optimization problem is the construction of optimal
unrestricted wavelet synopses.

Extending results to multi-dimensional data sets is not straightforward, as
it usually requires the design of external memory algorithms. Our work in [9]
presents I/O efficient algorithms for constructing SSE optimal wavelet synopses
for massive multi-dimensional data sets. In brief, the main idea is to put into
memory a part of the data set such that when the wavelet decomposition is per-
formed on this data, we obtain an as large as possible set of finalized coefficient
values. The wavelet decomposition of the in-memory data values is performed
efficiently by the SHIFT and SPLIT operations, that intuitively: (i) shift the
indices of the detail coefficients to their corresponding indices in the final de-
composed data set; and (ii) split the energy of the average coefficients to properly
update some already calculated coefficients.

Minimizing weighted Lp norm of range-sum errors. For this case we define
the range-sum error, denoted by err(i : j), as the summation of reconstruction
errors for data values a[i] through a[j]: err(i : j) =

∑j
k=i err(k). Similar to the

case of point errors, one can use weighted Lp norms to aggregate across all
N(N + 1)/2 range-sum errors. Further, the first approach for finding a point
error optimal synopsis, described previously, apply to the case of range-sum
error optimal synopses as well. The work in [11] operates on the prefix-sum
array of a and show that one has to follow a similar to the SSE-optimal synopses
thresholding procedure for the case of unweighted L2 aggregation of range-sum
absolute errors. Unfortunately, the second approach of incorporating the error
metric in the synopsis construction algorithm cannot be directly applied, since
no nice distributive property for aggregating range-sum errors can be exploited.

3.1 Streaming Wavelet Synopses

A data streaming environment introduces resource restrictions to conventional
static data processing algorithms, due to the high volumes and rates associated
with incoming data. Namely: (i) there is not enough space to store the entire
stream, as it can be of potentially unbounded size, and thus, data stream items
can only be seen once; (ii) data stream items must be processed quickly in real
time; and (iii) queries over data streams are of persistent nature and must be
continuously and, most importantly, quickly evaluated. Under these restrictions,
data stream processing algorithms must have small space requirements and ex-
hibit fast per-item processing and querying time — here, small and quickly
should be read as poly-logarithmic to data stream size.

In our context, we are to construct and maintain the optimal wavelet synopsis
of a data vector a whose values are continuously updated by the data stream.
There are two conceptually different ways to model [5, 13] how the data stream
updates the values of a: (i) the time series model, where data stream items are
appended to the data vector a, that is, the i-th data stream item is the value



a[i]; and (ii) the turnstile model, where data stream items update the data vector
a, that is, each data stream item (i, u) is an update for one of the data values,
implying that anew[i]← aold[i] + u.

Time Series Model. In this data stream model, since the data stream items
are appended at the end of the data vector a, only those coefficients, termed the
wavelet fringe, in the path from the root down to the most recently appended
data value change. This means that the bulk of wavelet coefficients (except for
the logarithmically small subset that lies in the fringe) have a data value that it
is not going to be affected by subsequent data stream items. For a B-term SSE
optimal synopsis, this observation leads to a very simple algorithm [5]: maintain
the B highest in absolute normalized value coefficients among those whose value
is finalized and additionally keep all the coefficients in the fringe. Once a fringe
coefficient is finalized the algorithm simply needs to compare its value with the
B stored values and construct the new set of stored values by either dropping
the coefficient at hand or the smallest one in the stored set. However, in the
case of arbitrary error metrics no algorithm that produces an optimal synopsis
exists, to the best of our knowledge. The work in [10] provides with a heuristic
as to which coefficients to maintain for a maximum (relative or absolute) error
optimal synopsis in the time series model: each time a coefficient needs to be
dropped, the one which leads to the smallest increase in error is greedily picked.

For the problem of maintaining SSE optimal wavelet synopses, our work
in [9] introduces some interesting results. In data streaming applications, as also
argued in [2], it is often more appropriate to keep update times small to accom-
modate for multiple bursty streams, rather that try to save on memory footprint.
To this end, the SHIFT/SPLIT operations defined in [9] allow for a trade-off be-
tween per-item processing time and available space for maintaining streaming
wavelet synopses. Further, in [9] we present the first time and space require-
ments results for maintaining wavelet synopses over a multi-dimensional time
series data stream. All results are provided for both forms of multi-dimensional
wavelet decomposition, standard and non-standard [15].

Turnstile Model. The turnstile model is more general in that it allows arbitrary
updates to the data vector, and thus, potentially any wavelet coefficient can be
affected by a data stream item. This makes keeping track of wavelet coefficients a
very hard task, let alone constructing an optimal synopsis. The work in [5] uses a
sketch [1] as a means of (probabilistically) maintaining the energy/magnitude of
the data vector a. Then, one can estimate any wavelet coefficient by multiplying
the energy of the data vector with that of the corresponding wavelet basis vector,
as long as the angle among the two vectors is sufficiently large. Constructing an
optimal in terms of SSE synopsis, however, requires super-linear in N time. To
make matters worse, no results exist for other error metrics.

Our work in [2] deals with maintaining SSE optimal synopses under this
more general model (where sketching techniques are the only option) and of-
fers significant time improvements over previous approaches. The crux of our
work lies in two novel technical ideas. First, our algorithms work entirely in the
wavelet domain: instead of maintaining a sketch over a data vector we choose



to sketch its wavelet decomposition. This is possible as a single data stream
update item can be translated to only poly-logarithmically more update items
in the wavelet domain. Second and most importantly, our algorithms employ
a novel hierarchical group organization of wavelet coefficients to accommodate
for efficient binary-search-like identification of high in absolute normalized value
coefficients. In addition, a trade-off between query time and update time is es-
tablished, by varying the hierarchical structure of groups, allowing the right
balance to be found for specific data stream scenarios. The algorithms presented
in [2] can easily scale to large domain sizes and, further, can be applied to multi-
dimensional data streams for both decomposition forms.

4 Conclusions and Future Work Directions

In this work we have presented a problem formulation for constructing wavelet
synopses, general enough to embody the majority of existing work in this area.
Further, we have explicitly illustrated the contributions of our current work
and described, in context, how it relates to the general formulation. From our
discussion one can easily deduce that many interesting and challenging issues
remain open for constructing optimal wavelet synopses, especially in a data
streaming environment. Our future work will try to address some of these.

In particular, when aggregating point errors, the approach of incorporating
the desired minimization metric into the wavelet decomposition seems to be the
most promising one, as choosing the coefficients can be done in a similar to the
SSE minimization process. Further, such an approach can then be easily adapted
to operate over data streams for both models. However, similar results for other
Lp norms, including minimizing for the maximum error (L∞), do not exist. It
would be interesting to see whether modified Haar wavelet bases, or even other
wavelet bases, are suitable for this task.

Optimizing for arbitrary workloads, such as those that include range-sum
queries, seem more useful than simply optimizing for point query workloads.
However, as also discussed in [11], optimizing for arbitrary workloads seems to be
a difficult task. Perhaps, optimizing for a simpler case, such as that of a workload
containing just dyadic range-sum queries, can provide some nice heuristics for
arbitrary workloads.

Finally, another interesting issue to consider would be devising techniques
for space-efficient compression of wavelet synopses. As recently suggested in [8],
adaptive quantization can be applied to the coefficient values, and even some
clever indexing can be employed to reduce the overhead of identifying retained
wavelet coefficients.
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