
Event-Condition-Action Rule Languages for the

Semantic Web

Alexandra Poulovassilis, George Papamarkos, Peter T. Wood

London Knowledge Lab, Birkbeck, University of London, London WC1E 7HX
email: {ap,gpapa05,ptw}@dcs.bbk.ac.uk

Abstract. The Semantic Web is based on XML and RDF as stan-
dards for exchanging and storing information on the World Wide Web.
Event-Condition-Action rules are a possible candidate technology for
distributed web-based applications that require timely notification and
propagation of events and information between different sites. This pa-
per discusses the provision of ECA rules for XML and RDF data, and
highlights some of the challenges that arise.

1 Introduction

XML and RDF are becoming dominant standards for storing and exchanging
information on the World Wide Web, and are being increasingly used in dis-
tributed web-based applications in areas such as e-business, e-science, e-learning
and e-government. Such applications may need to be reactive, i.e. to be able to
detect the occurrence of specific events or changes within information reposi-
tories, and to respond by automatically executing the appropriate application
logic. Event-condition-action (ECA) rules are one way of providing this kind of
functionality. An ECA rule is of the form on event if condition do actions. The
event part specifies when the rule is triggered. The condition part is a query
which determines if the information system is in a particular state, in which
case the rule fires. The action part states the actions to be performed if the rule
fires. These actions may in turn cause further events to occur, which may in turn
cause more ECA rules to fire1.

References [24, 20] discuss ECA rules (triggers) in databases. More broadly,
ECA rules are used in workflow management, network management, personali-
sation, publish/subscribe technology, and specifying and implementing business
processes. In the distributed web-based applications that we envisage, rules are
likely not to be hand-crafted but automatically generated by higher-level pre-
sentation and application services.

For some applications, content-based publish/subscribe [9] may be an alter-
native or complementary technology to ECA rules. Publish/subscribe systems
1 Non-termination of rule execution is generally a possibility and thus much research

has focussed on the development of static and dynamic analysis techniques for de-
tecting possibly non-terminating ECA rule sets. There has also been considerable
research into techniques for verifying the confluence of ECA rules.



such as [7, 23] support more sophisticated distributed event definition and de-
tection than ECA rules. On the other hand, ECA rules allow the definition and
execution of more complex actions than just simple notifications.

This paper discusses the provision of ECA rules for XML and RDF data,
and highlights some of the issues that arise in the context of such data. This
work has been motivated by our participation in the EU FP5 “SeLeNe: Self
e-Learning Networks” project (see http://www.dcs.bbk.ac.uk/selene/). The
aim of this project was to investigate techniques for managing evolving dis-
tributed repositories of educational metadata and for providing a variety of
services over such repositories, including syndication, notification and person-
alisation services. Peers in a SeLeNe (self e-learning network) store metadata
relating to learning objects (LOs) registered with the SeLeNe, and also meta-
data relating to users of the SeLeNe. SeLeNe’s reactive functionality includes
features such as propagating changes in the description of a LO to those of com-
posite LOs dependent on it; propagating changes in a learner’s history of accesses
to LOs to the learner’s personal profile; notifying users of the registration of new
LOs of interest to them; and notifying users of changes in the description of
LOs of interest to them. We investigated the provision of this kind of reactive
functionality by means of ECA rules over SeLeNe’s metadata, considering first
XML and then RDF encodings of the metadata.

2 ECA Rules for XML

In [4, 5] we introduced a language for defining ECA rules on XML data, based on
XPath and XQuery. This language uses a fragment of XPath for selecting and
matching sub-documents of XML documents within the event and condition
parts of ECA rules, while a fragment of XQuery is used within insertion actions
where there is a need to be able to construct new XML sub-documents. We also
developed techniques for analysing the triggering and activation relationships
between such rules2 which can be ‘plugged into’ existing generic frameworks for
ECA rule analysis and optimisation.

The semistructured nature of XML data gives rise to a number of issues in
the context of ECA rules:

– Event semantics: For relational data, the semantics of data manipulation
events is straightforward, since insert, delete or update events occur when
a relation is inserted into, deleted from, or updated. With XML, specifying
where data has been inserted or deleted within an XML document is more
complex, and path expressions that identify locations within the document
are necessary.

2 A rule ri may trigger a rule rj if execution of the action of ri may generate an event
which triggers rj . A rule ri may activate another rule rj if rj ’s condition may be
changed from False to True after the execution of ri’s action. A rule ri may activate
itself if its condition may be True after the execution of its action.



– Action semantics: Again for relational data, the effect of data manipulation
actions is straightforward, since an insert, delete or update action can only
affect tuples in a single relation. With XML, actions now manipulate entire
subdocuments, and the insertion or deletion of subdocuments can trigger a
set of different events.

– Rule analysis: The determination of triggering and activation relationships
between ECA rules is more complex for XML data than for relational data.
The associations between actions and events/conditions are more implicit,
and more sophisticated semantic comparisons between sets of path expres-
sions are required.

Details of the syntax and rule execution semantics of our XML ECA rule
language can be found in [5]. Reference [3] describes a prototype implementation
the language: A Parser component parses and checks the syntactic validity of
new ECA rules. Valid rules are stored in a Rule Base. An Execution Engine
encapsulates the rule processing functionality, comprising an Event Dispatcher, a
Condition Evaluator and an Action Scheduler. All of these components interface
with a Wrapper which sends/receives data to/from the underlying XML files.
The Action Scheduler places the updates resulting from rules that have fired at
the head of an Execution Schedule. If multiple rules have fired, then the updates
that result from their actions are prefixed to the schedule in order of the rules’
specified priorities3.

A number of other ECA rule languages for XML have also been proposed,
although none of this other work has focussed on analysing rule behaviour. Most
notably, Active XQuery [6] is an ECA rule language for XML based on the SQL3
triggers standard [13]. This language is more complex than ours as it allows full
XPath in the event parts of rules, and full XQuery in the condition and action
parts. However, analysing the behaviour of ECA rules expressed in this more
complex language has not been considered. The rule execution model is also
different to ours: we treat insertions or deletions of XML fragments as atomic
updates and ECA rule execution is invoked only after the completion of such an
update, whereas in Active XQuery such updates are broken up into a sequence
of finer granularity requests each of which may invoke the ECA rule execution.
In general, these semantics may produce different results for the same initial
update.

ARML [8] provides an XML-based rule description for rule sharing among
different heterogeneous ECA rule processing systems. In contrast to our language
and Active XQuery, conditions and actions are defined abstractly as XML-RPC
methods which are later matched with system-specific methods. Active XML [1]
provides similar functionality to that provided by XML ECA rules by embedding
calls to web services within XML documents via special tags, aiming to integrate
distributed data and distributed computation in P2P architectures.

3 This prefixing to the schedule is Immediate rule scheduling, and other rule scheduling
alternatives would also be possible e.g. Deferred and Detached, where updates are
appended to the transaction or are executed as a separate transaction, respectively.



In the commercial arena, triggers on XML data are now supported by all
the major relational DBMS vendors and also by some native XML repository
vendors. However, this is confined to document-level triggering and only events
concerning the insertion, deletion or update of an XML document can be caught.
In relational DBMS it is however possible to decompose XML documents into
a set of relational tables, potentially allowing developers to exploit existing re-
lational triggering functionality in order to define finer-grain triggers over XML
data.

3 ECA Rules for RDF

XML ECA rule languages can be used for RDF data which has been serialised
as XML. However, we have also developed an RDF ECA rule language, RDFTL,
that will operate directly on a graph/triple representation [17, 18]. To our knowl-
edge, this is the first ECA rule language developed specifically for RDF.

Languages for updating RDF descriptions have been considered in [15, 14].
The Modification Exhange Language (MEL) of [15] is based on an RDF represen-
tation of Datalog and is used for updating RDF in the distributed environment of
Edutella [16] while RUL (RDF Update Language) [14] is based on the RQL [12]
query language.

RDFTL operates over RDF graphs and it is assumed that these RDF graphs
conform to one or more RDFS schemas, in the sense that (a) every resource
in the RDF graph belongs to an RDFS class (in addition to belonging to the
default rdfs:Resource class); (b) every property in the RDF graph is declared
in the RDFS schema, along with domain and range constraints; (c) the subject
and object of every property in the RDF graph are of the declared subject and
object type of the property in the RDFS schema.

RDFTL uses a path-based query sublanguage, syntactically similar to XPath,
for defining queries over an RDF graph. Each RDFTL rule has an optional
preamble consisting of one or more namespace definition clauses and a set of
let-expressions of the form let variable := e associating a variable with a query.

The event part of an RDFTL rule describes updates whose occurrence will
cause the rule to trigger, and is an expression of one of the following three forms:

1. (INSERT | DELETE) e [AS INSTANCE OF class]
2. (INSERT | DELETE) triple

3. UPDATE upd triple

Form 1 detects insertions or deletions of resources specified by the expression
e. e is a query, which evaluates to a set of nodes. Optionally, class is the name
of the RDFS schema class to which at least one of the nodes identified by e
must belong in order for the rule to trigger. The rule is triggered if the set of
nodes returned by e includes any new node (in the case of an insertion) or any
deleted node (in the case of a deletion) that is an instance of class, if specified.
The system-defined variable $delta is available for use within the condition and



actions parts of the rule, and its set of instantiations is the set of new or deleted
nodes that have triggered the rule.

Form 2 detects insertions or deletions of arcs specified by triple, which has the
form (source node, arc name, target node) where source node and target node
may be expressions of the form e or variables defined in the rule’s preamble.
The wildcard ‘ ’ is allowed in the place of any of a triple’s components. The
rule is triggered if an arc labelled arc name from source node to target node is
inserted/deleted. The variable $delta has as its set of instantiations the triples
which have triggered the rule; the individual components of these triples are
identified by $delta.source, $delta.arc name or $delta.target.

Form 3 similarly detects updates to the target nodes of arcs, specified by
upd triple which has the form (source, arc name, old target → new target). The
wildcard ‘ ’ is allowed in the place of any of these components. The rule is
triggered if an arc labelled arc from source changes its target from old target to
new target. The variable $delta has as its set of instantiations the triples which
have triggered the rule and the components of these triples can be obtained by
$delta.source,$delta.arc name, $delta.old target or $delta.new target.

The condition part of rule is a boolean-valued expression which may consist
of conjunctions, disjunctions and negations of queries.

The actions part of a rule is a sequence of one or more actions. Actions can
INSERT or DELETE a resource — specified by its URI — and INSERT, DELETE or
UPDATE an arc. The actions language has the following form for each one of these
cases, where triples in the actions part have a similar form as in the event part:

1. INSERT e AS INSTANCE OF class
DELETE e [AS INSTANCE OF class]
for expressing insertion or deletion of a resource, where the AS INSTANCE OF
keyword classifies the resource to be deleted or inserted.

2. (INSERT | DELETE) triple (’,’ triple)*
for expressing insertion or deletion of the arcs(s) specified.

3. UPDATE upd triple (’,’ upd triple)*
for updating arc(s) by changing their target node.

The condition and action parts of a rule may contain occurrences of the
$delta variable in place of a named resource in a query, or a component of a
triple. If neither the condition nor the action part contain occurrences of $delta,
then the rule is a set-oriented rule, otherwise it is an instance-oriented rule. A
set-oriented rule fires if it is triggered and its condition evaluates to true. A
copy of the rule’s action part is executed as a new transaction (i.e. Detached
rule coupling). An instance-oriented rule fires if it is triggered and its condition
evaluates to true for some instantiation of $delta. A copy of the rule’s action
part is executed as a new transaction for each value of $delta for which the
rule’s condition evaluates to true, in each case substituting all occurrences of
$delta within the action part by one specific instantiation for $delta.

We refer the reader to [18] for full details of the syntax and execution seman-
tics of RDFTL, and that paper also discusses conservative tests for determining
the termination and confluence of sets of RDFTL rules.



3.1 RDFTL Rules in P2P Environments

We have developed a system for processing RDFTL rules in P2P environments.
The rule processing functionality is provided by a set of services that consti-
tute the RDFTL ECA Engine. This acts as a wrapper over a distributed set of
RDF/S repositories, exploiting their query, storage and update functionality. In
the current version of our system we are using ICS-FORTH RSSDB [2] as the
RDF repository. For the future we plan also to support Jena2 [11].

Our system architecture is similar to the superpeer-based architecture of
Edutella [16]. Each peer in the network is supervised by a superpeer (each su-
perpeer supervises itself). The set of peers supervised by a superpeer is termed
its peergroup. At each superpeer there is an ECA Engine installed. Each peer or
superpeer hosts a fragment of an overall global RDFS schema. As in Edutella,
the metadata distribution in RDFTL allows hybrid fragmentation, with possi-
ble replication between peers. The fragment of the global RDFS schema stored
at a peer may change as a result of changes in the peer’s RDF/S descriptions.
Peers notify their supervising superpeer of any updates to their local RDF/S
repository. Peers may dynamically join or leave the network at any time.

Each superpeer’s RDFS schema is a superset of its peergroup’s individual
RDFS schemas. Each superpeer defines access privileges over the classes and
properties in its RDFS schema describing the corresponding access level to the
instances of each class and property. More fine-grained access privileges are also
allowed on specific RDF resources and triples. These facilities allow a superpeer
to specify which information can be shared with other superpeers outside its
peergroup.

An ECA rule generated at one site of the network might be replicated, trig-
gered, evaluated, and executed at different sites. Within the event, condition and
action parts of ECA rules there might be references to specific RDF resources.

Whenever a new ECA rule r is generated at a peer P , it is sent to P ’s
superpeer for syntax validation, translation into the local repository’s query and
update language, and storage. From there, r will also be forwarded to all other
superpeers, and a replica of it will be stored at those superpeers where an event
may occur that may trigger r’s event part, i.e. those superpeers that are e-
relevant to r (see below). A rule r has a globally unique identifier of the form
SPi.j, where SPi is the originating superpeer identifier and j a locally unique
identifier for the rule in SPi’s rule base.

At run-time rules are triggered by events occurring within a single peer’s local
RDF repository, i.e. there is no distributed event detection. Also, each particular
copy of a rule’s action part executes within a single peer’s RDF repository,
i.e. there is no distributed update execution. If there is a need to distribute a
sequence of updates across a number of peers in reaction to some event, then
rather than specifying one rule of the form on e if c do a1; . . . ; an instead, n
rules r1, . . . , rn can be specified, where each ri is on e if c do ai and r1 has a
higher precedence than r2, which has a higher precedence than r3 etc.

There are three types of relevance of a rule r to an RDF schema S:



– r is e-relevant to S if each of the queries that either appear in the event
part of r or are used by the event part through variable references, can be
evaluated on S, i.e., each step in each path expression exists in S.

– r is c-relevant to S if some step in one of the queries referenced by the con-
dition part of r can be evaluated on S (unlike events and actions, conditions
may be evaluated at multiple sites).

– r is a-relevant to S if all actions in the action part of r are a-relevant to S.
An individual action is a-relevant to S if it satisfies one of the following:
• If it is a deletion or insertion of resources that uses AS INSTANCE OF
class, then class must be in S.

• If it is a deletion of resources that does not use AS INSTANCE OF class,
then the most specific class of resources that the path expression in the
deletion would return must be in S.

• If it is an action over triples that uses a property p, then p must be in S.
If it is a deletion of triples that uses the wildcard ‘ ’ instead of a property
(the only action allowed to do this), then the classes of resources returned
by the path expressions involved in the deletion must exist in S.

A peer or superpeer is e-relevant, c-relevant or a-relevant to a rule r if r is
e-, c- or a-relevant, respectively, to the peer or superpeer’s RDFS schema.

At each superpeer, each rule is annotated with the IDs of local peers that
are e-relevant, c-relevant and a-relevant to it. These annotations are kept syn-
chronised with changes in peers’ and superpeers’ schemas.

3.2 P2P Rule Execution

The RDF graph is fragmented, and possibly replicated, amongst the peers, and
each superpeer manages its own local rule execution schedule. Each execution
schedule at a superpeer is a sequence of updates which are to be executed on
the fragment of the global RDF graph which is stored at the superpeer or its
local peergroup. Each superpeer coordinates the execution of transactions that
are initiated by that superpeer, or by any peer in its local peergroup.

Whenever an update u is executed at a peer P , P notifies its supervising
superpeer SP . SP determines whether u may trigger any ECA rule whose event
part is annotated with P ’s ID. If a rule r may have been triggered, then SP will
send r’s event query to P to evaluate.

If r has indeed been triggered, its condition will need to be evaluated, after
generating an instantiation of it for each value of the $delta variable if this
is present in the condition. If a condition evaluates to true, SP will send each
instance of r’s action part (one instance if r is a set-oriented rule, and one or more
instances if r is an instance-oriented rule) to the local peers that are a-relevant to
it. All instances of r’s actions part will also be sent to all other superpeers of the
network. All superpeers that are a-relevant to r will consult their schemas and
access privileges in order to determine whether the updates they have received
can be scheduled and executed on their local peergroup.



In summary therefore, local execution of the update at the head of a local
schedule may cause events to occur. These events may cause rules to fire, mod-
ifying the local schedule or remote schedules with new updates to be executed.
We refer the reader to [18] for full details of the P2P implementation of RDFTL.

Our current RDFTL implementation does not yet support any concurrency
control or recovery mechanisms. In principle, any distributed concurrency con-
trol protocol could be adapted to a P2P environment. For example, the AMOR
system adopts optimistic concurrency control [10]. The serialisation graph is dis-
tributed amongst those peers responsible for transaction coordination (analogous
to our superpeers). The AMOR system assumes that conflicts are only possible
between those transactions that are accessing a particular ‘region’ of resources
(analogous to our peers) and thus subgraphs of the global serialisation graph
are stored and replicated amongst those coordinators which service a particular
region. The regions are not static and these subgraphs are dynamically merged
and replicated as transactions execute and regions evolve.

In the classical approach to distributed transactions, global transactions hold
on to the resources necessary to achieve their ACID properties until such time as
the whole transaction commits or aborts. In a P2P environment this may not be
feasible: the resources available at peers may be limited, peers may not wish to
cooperate in the execution of global transactions, and peers may disconnect at
any time from the network, including during the execution of a global transaction
in which they are participating. The cascaded triggering and execution of ECA
rules will cause longer-running transactions which may further exacerbate these
problems. It is therefore necessary to relax the Atomicity and Isolation properties
of transactions.

In particular, subtransactions executing at different peers may be allowed
to commit or abort independently of their parent transaction committing or
aborting, and parent transactions may be able to commit even if some of their
subtransactions have failed. Subtransactions that have committed ahead of their
parent transaction committing can be reversed, if necessary, by executing com-
pensating subtransactions. These can be generated as transactions execute and
they reverse the effects of a transaction by compensating each of the trans-
action’s updates in reverse order of their execution. Generating compensating
updates is straight-forward for RDFTL updates: the insertion of a triple is re-
versed by deletion of the triple, the deletion of a triple by an insertion, and an
update by the restoration of the original value. If transactions have read from
committed (sub)transactions which are subsequently reversed, then a cascade of
compensations will result.

3.3 Performance

We have developed an analytical performance model for our P2P RDFTL rule
processing system, which is described in [19]. We use as the main performance
criterion the update response time i.e. the mean time required to complete all
rule processing resulting from a top-level update submitted to one of the peers
in the network. In [19] we examine how the update response time varies with



the network topology, number of peers, number of rules, and degree of data
replication between peers. We also describe a simulation of the system, and
present the results of similar performance and scalability experiments with the
simulator.

The two sets of experimental results show good agreement. Both sets of exper-
iments show that the system performance is significantly reliant on the network
topology between superpeers. In particular, if a Hypercup topology [22] is used
for interconnecting the superpeers, then rule processing shows good scalability,
pointing to its practical usefulness as a technology for real applications. For the
future we would like to conduct large-scale experiments with the actual RDFTL
system itself, possibly using the PlanetLab [21] infrastructure. As well as giving
insight into the actual system behaviour in a real P2P environment, this will
allow measurements on actual system workloads and rule sets, which can then
be fed into the analytical performance model and the simulator to allow more
accurate predictions from these.

4 Concluding Remarks

In this paper we have discussed the provision of ECA rules for XML and RDF
data, and have highlighted some of the new issues that arise in the context
of such data. We have described a language for ECA rules over XML data, a
language for ECA rules over RDF data, implementations of these languages, and
the results of a study into the performance and scalability of our RDF ECA rule
processing system in P2P environments.

Although conducted in the context of ECA rules operating on RDF, we
expect that similar behaviour would occur for P2P ECA rules operating on
other types of data e.g. XML and relational, and this is an area of planned
future work. Also planned for the future is a distributed version of our XML
ECA rule system, and a deeper study into expressiveness of our languages, in
terms of their update and constraint enforcement capabilities.

References

1. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
peer-to-peer data and web services integration. In Proc. 28th Int. Conf. on Very
Large Data Bases, pages 1087–1090, 2002.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc.
2nd. Int. Workshop on the Semantic Web, 2001.

3. J. Bailey, G. Papamarkos, A. Poulovassilis, and P. T. Wood. An Event-Condition-
Action Rule Language for XML. In M. Levene and A. Poulovassilis, editors, Web
Dynamics. Springer, 2004.

4. J. Bailey, A. Poulovassilis, and P.T. Wood. An Event-Condition-Action Language
for XML. In Proc. 11th Int. Conf. on the World Wide Web, pages 486–495, 2002.

5. J. Bailey, A. Poulovassilis, and P.T. Wood. Analysis and optimisation for event-
condition-action rules on XML. Computer Networks, 39:239–259, 2002.



6. A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. 18th Int.
Conf. on Data Engineering, pages 403–418, 2002.

7. P. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/subscribe for RDF-
based P2P networks. In Proc. ESWS 2004, Heraklion, Crete, pages 182–197, 2004.

8. E. Cho, I. Park, S. J. Hyun, and M. Kim. ARML: an active rule mark-up language
for heterogeneous active information systems. In Proc. RuleML 2002, Sardinia,
June 2002.

9. P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

10. K. Haller, H. Schuldt, and H.J. Schek. Transctional peer-to-peer information pro-
cessing: The AMOR approach. In 4th Int. Conf. on Mobile Data Management,
pages 356–362. Springer, 2003.

11. Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/.
12. G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis,

M. Scholl, and K. Tolle. RQL: A Functional Query Language for RDF. In Func-
tional Approaches to Computing Data, pages 592–603. Springer, 2003.

13. K. Kulkarni, N. Mattos, and R. Cochrane. Active database features in SQL3. In
N. Paton, editor, Active Rules in Database Systems, pages 197–219. Springer, 1999.

14. M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. RUL: A declar-
ative update language for RDF. In Proc. Fourth Int. Semantic Web Conference,
pages 506–521, 2005.

15. W. Nejdl, W. Siberski, B. Simon, and J. Tane. Towards a modification exchange
language for distributed RDF repositories. In Proc. First Int. Semantic Web Con-
ference, pages 236–249, 2002.

16. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer,
and T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In
Proc. 11th Int. Conf. on the World Wide Web, pages 604–615, 2002.

17. G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL: An Event-Condition-
Action Language for RDF. In Proc. 3rd Int. Workshop on Web Dynamics (in
conjunction with WWW2004), 2004.

18. G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action Rules
on RDF metadata in P2P environments, Technical Report BBKCS-05-05, to ap-
pear in Computer Networks, 2006.

19. G. Papamarkos, A. Poulovassilis, and P. T. Wood. Performance Modelling and
Evaluation of Event-Condition-Action Rules RDF in P2P networks, Technical Re-
port BBKCS-06-02, 2006.

20. N. Paton. Active Rules in Database Systems. Springer, 1999.
21. PlanetLab. http://www/.planet-lab.org.
22. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP – hypercubes, on-

tologies and efficient search on p2p networks. In First Int. Workshop on Agents
and P2P Computing, pages 112–124, 2002.

23. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A peer-
to-peer approach to content-based publish/subscribe. In DEBS ’03: Proceedings
of the 2nd international workshop on Distributed event-based systems, pages 1–8,
New York, NY, USA, 2003. ACM Press.

24. J. Widom and S. Ceri. Active Database Systems. Morgan-Kaufmann, San Mateo,
California, 1995.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


