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Abstract. Relational algebra has been a crucial foundation for relational database
systems, and has played a large role in enabling their success. A correspond-
ing XML algebra for XML query processing has been more elusive, due to the
comparative complexity of XML, and its history. We argue that having a sound
algebraic basis remains important nonetheless. In this paper, we show how the
complexity of XML can be modeled effectively in a simple algebra, and how the
conceptual clarity attained thereby can lead to significant benefits.

1 Introduction

XML is in wide use today, in large part on account of its flexibility in allowing repeated
and missing sub-elements. However, this flexibility makes it challenging to develop an
XML data management system.

The first XML enabled systems used a native navigational model to query docu-
ments. They showed a lot of promise and the interest shifted into them. In such model,
an XML document is first loaded into memory as one big tree and then path expres-
sions are matched via traversals in this tree. Examples of systems using this model
include [?,?,?]. A big limitation of such systems is that the biggest XML document
they can process is limited by the amount of physical memory in the system. Since they
are essentially instance-at-a-time systems, they have little room for optimization and
indices. In general they are known to provide full support of XQuery but poor perfor-
mance – a traversal for a descendant node can force a search of the entire database.

Another popular approach (perhaps, due to existing system support) was to use rela-
tional databases and map XML documents into relations. Such solutions were presented
in [?,?,?,?,?]. But these mappings may come at the expense of efficiency and perfor-
mance since relational databases were not designed for XML data. The data transforma-
tion process and the query time can be lengthy. Many expensive operations (e.g. joins)
needed to determine structural relationships between elements. Due to the variations
possible in parallel elements within XML, and the possibility of repeated and missing
sub-elements, the mapping becomes non-trivial, and frequently requires liberal use of
null values or of un-normalized relations. Overall, with relational support for XML ex-
pressiveness is not the issue - with sufficient effort, many mappings are possible. The
issue is how natural the mapping is, how well it preserves the original structure and how
expensive the resulting relational expressions can be to evaluate.

The solution to this problem would be to use a native XML system while taking
advantage of the knowledge of many years of research in the relational world. For ex-
ample, one of the lessons we learned is that for efficiency purposes, it is essential to use
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Fig. 1. A pattern tree corresponding to the query ‘Select articles with some author and
with title that contains Transaction’.

‘set-at-a-time’ processing instead of ‘instance-at-a-time’. We also know that the care-
ful choice of evaluation plan can make orders of magnitude difference in query cost.
And finally, the relational algebra is long recognized as a useful intermediate form in
query processing. From all of the above we conclude that a set-oriented bulk algebra is
essential in XML query processing.

Yet, although native algebraic solutions appear to be the better system approach
(with significant existing efforts like those in [?,?]), there is no universally accepted
XML algebra. In this paper we present our algebraic XML solution and demonstrate its
strengths. We start by introducing our basis, the pattern trees and show a Tree Algebra
for XML in Section 2. We continue with a discussion in XML and XQuery order re-
lated issues in Section 3. Then we show some practical advances in XML algebras in
Section 4 and some optimization opportunities that arise in Section 5. We conclude the
paper with a few final words in Section 6.

2 Ideal Algebra - Tree Algebra for XML

In the relational model, a tuple is the basic unit of operation and a relation is a set of
tuples. In XML, a database is often described as a forest of rooted node-labeled trees.
Hence, for the basic unit and central construct of our algebra, we choose an XML query
pattern (or twig), which is represented as a rooted node-labeled tree. An example of
such tree, we call it pattern tree, is shown in Figure 1. An edge in such tree represents
a structural inclusion relationship, between the elements represented by the respective
pattern tree nodes. The inclusion relationship can be specified to be either immedi-
ate (parent-child relationship) or of arbitrary depth (ancestor-descendant relationship).
Nodes in the pattern tree usually have associated conditions on tag names or content
values.

Given an XML database and a query pattern, the witness trees (pattern tree match-
ings) of the query pattern against the database are a forest such that each witness tree
consists of a vector of data nodes from the database, each matches to one pattern tree
node in the query pattern, and the relationships between the nodes in the database satisfy
the desired structural relationship specified by the edges in the query pattern. The set
of witness trees obtained from a pattern tree match are all structurally identical. Thus,
a pattern tree match against a variegated input can be used to generate a structurally
homogeneous input to an algebraic operator. Sample of witness trees can be found in
Figure 2.



Sample matching sub-trees for the DBLP dataset�

article�

title:�
Transaction�

Mng ...�

author:�
Silberschatz�

article�

title:�
Overview of�
Transaction�

Mng�

author:�
Silberschatz�

author:�
Garcia-�
Molina�

author:�
Thompson�

article�

title:�
Overview of�
Transaction�

Mng�

article�

title:�
Transaction�

Mng ...�

Fig. 2. A sample of the resulting witness trees produced from the matching of the tree
in Figure 1 to the DBLP dataset.

1. ORDER BY clause,
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Fig. 3. Ordering Requirements for XML and XQuery

Using this basic primitives, we developed an algebra, called Tree Algebra for XML
(TAX), for manipulating XML data modeled as forests of labeled ordered trees. Moti-
vated both by aesthetic considerations of intuitiveness, and by efficient computability
and amenability to optimization, we developed TAX as a natural extension of relational
algebra, with a small set of operators. TAX is complete for relational algebra extended
with aggregation, and can express most queries expressible in popular XML query lan-
guages. Details about the algebra, with illustrative examples can be found in [?].

3 Ordering and Duplicates

XML itself incorporates semantics in the order data is specified. XML queries have to
respect that and produce results based on the order of the original document. XQuery
takes this concept even further and adds an extra implicit ordering requirement. The
order of the generated output is sensitive to the order the variable binding occurred
in the query, we call this notion ‘binding order’. Additionally, a FLWOR statement
in XQuery may include an explicit ORDERBY clause, specifying the ordering of the
output based on the value of some expression – this is similar in concept with ordering
in the relational world and SQL. To facilitate our discussion we summarize the XML
and XQuery order properties in Figure 3.

Although XML and XQuery require ordering, many “database-style” applications
could not care less about order. This leaves the query processing engine designer in
a quandary: should order be maintained, as required by the semantics, irrespective of
the additional cost; or can order be ignored for performance reasons. What we would
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Fig. 4. Collections with Ordering Specification O-Spec. A “fully-ordered” collection in
(1), two variations of a “partially-ordered” collection in (2.a) and (2.b) and an unordered
collection in (3). Duplicates are allowed in these examples, so (3) is not a set.

like is an engine where we pay the cost to maintain order when we need it, and do not
incur this overhead when it is not necessary. In algebraic terms, the question we ask is
whether we are manipulating sets, which do not establish order among their elements,
or manipulating sequences, which do.

The solution we propose is to define a new generic Hybrid Collection type, which
could be a set or a sequence or even something else. We associate with each collection
an Ordering Specification O-Spec that indicates precisely what type of order, if any, is
to be maintained in this collection.

As an example, in Figure 4, we can see a few ordered collections using the Ordering
Specification. A simple sorting procedure using all B nodes (identifiers), sorting them
in ascending order and placing all empty entries in the beginning is described by (B,
asc, l). In part (1) of the Figure we see a “fully-ordered” collection; all the nodes in
every tree were used to perform the sort. A “fully-ordered” collection has one and only
one way that the trees can be ordered (absolute order). In parts (2.a) and (2.b) we see
the same “partially-ordered” collection; only nodes in parts of every tree were used to
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Fig. 5. Collections of trees coupled with their Duplicate Specification D-Spec. All types
of duplicates are allowed in (1), deep-tree comparison is used to eliminate duplicates in
(2) and duplicates are eliminated in (3) using a partial comparison on B and E nodes.
Both (2) and (3) can be thought as sets since no duplicates exist.

perform the sort. A “partially-ordered” collection can potentially have multiple ways it
can be ordered. Parts (2.a) and (2.b) show the same collection ordered by the same key
with clearly more than one representations of the absolute tree order. In part (3) we see
a collection with unspecified order (any order).

Duplicates in collections are also a topic of interest, not just for XML, but for rela-
tional data as well. In relational query processing, duplicate removal is generally con-
sidered expensive, and avoided where possible even though relational algebra formally
manipulates sets that do not admit duplicates.The more complex structure of XML data
raises more questions of what is equality and what is a duplicate. Therefore there is
room for more options than just sets and multi-sets. Our solution is to extend the Hy-
brid Collection type with an explicit Duplicate Specification D-Spec as well.

An example of collections with D-Spec describing how duplicates were previously
removed from them can be found in Figure 5. Notice the duplicates that exist in part (1),
how the last tree from (1) is removed in part (2) and how multiple trees are removed in
part (3).

Using our Hybrid Collections we extended our algebra. Thus, we were able to de-
velop query plans that maintain as little order as possible during query execution, while
producing the correct query results and managing to optimize duplicate elimination
steps. Formal definitions of our collections, extensions to algebraic operations along
with the algorithm for correct order can be found in [?]. We believe our approach can
be adopted in any XML algebra, providing correctness and flexibility.

4 Tree Logical Classes (TLC) for XML

XQuery semantics frequently requires that nodes be clustered based on the presence of
specified structural relationships. For example the RETURN clause requires the com-
plete subtree rooted at each qualifying node. A traditional pattern tree match returns a
set of ‘flat’ witness trees satisfying the pattern, thus requiring a succeeding grouping



(a)�

A�1�

E�1�

A�2�

B�1�

C�
1�

D�1� D�2�
A�3�

B�2�

C�
3�

E�3� C�2�

Input Trees�

E�2�

D� C�

B�

Annotated�
Pattern Tree�

(b)�

?�

A�

E�

+�

*�

Matching Witness Trees & Logical Class ‘A’ for each tree�(c)�

A�1�

E�1�

A�2�

B�1�
C�1�

D�1�

A�1�

E�1�

A�2�

B�1�
C�1�

D�2�

A�3�

B�2�

C�3�E�3�E�2�

-�

Fig. 6. A sample match for an Annotated Pattern Tree.

step on the parent (or root) node. Additionally, in tree algebras, each algebraic operator
typically performs its own pattern tree match, redoing the same selection time and time
again. Intermediate results may lose track of previous pattern matching information and
can no longer identify data nodes that match to a specific pattern tree node in an earlier
operator. This redundant work is unavoidable for operators that require a homogeneous
set as their input without the means for that procedure to persist.

The loss of Structural Clustering, the Redundant Accesses and the Redundant Tree
Matching procedures are problems caused due to the witness trees having to be sim-
ilar to the input pattern tree, i.e. have the same size and structure. This requirement
resulted in homogeneous witness trees in an inherently heterogeneous XML world with
missing and repeated sub-elements, thus requiring extra work to reconstruct the appro-
priate structure when needed in a query plan. Our solution uses Annotated Pattern Trees
(APTs) and Logical Classes (LCs) to overcome that limitation.

Annotated Pattern Trees accept edge matching specifications that can lift the restric-
tion of the traditional one-to-one relationship between pattern tree node and witness tree
node. These specifications can be “-” (exactly one), “?” (zero or one),“+” (one or more)
and “*” (zero or more). Figure 6 shows the example match for an annotated pattern tree.
The figure illustrates how annotated pattern trees address heterogeneity on both dimen-
sions (height and width) using variations of annotated edges. So A1, A2 and E2, E3 are
matched into clustered siblings due to the “+” and “*” edges in the APT. On the flip
side D1, D2 matchings will produce two witness trees for the first input tree (the second
tree is let through, although there is no D matching) due to the “?” edge in the APT.

Once the pattern tree match has occurred we must have a logical method to access
the matched nodes without having to reapply a pattern tree matching or navigate to
them. For example, if we would like to evaluate a predicate on (some attribute of) the
“A” node in Figure 6, how can we say precisely which node we mean? The solution to
his problem is provided by our Logical Classes. Basically, each node in an annotated



FOR $a IN distinct-values(document(“bib.xml”)//author)
RETURN

<authorpubs>
{ $a }
{FOR $b IN document(“bib.xml”)//article

WHERE $a = $b/author
RETURN $b/title}

</authorpubs>

Fig. 7. Query 1: Group by author query (After XQuery use case 1.1.9.4 Q4).

pattern tree is mapped to a set of matching nodes in each resulting witness tree – such
set of nodes is called a Logical Class. For example in Figure 6, the red(gray) circle
indicates how the A nodes form a logical class for each witness tree. Every node in
every tree in any intermediate result is marked as member of at least one logical class1.
We also permit predicates on logical class membership as part of an annotated pattern
tree specification, thus allowing operators late in the plan to reuse pattern tree matches
computed earlier.

Using this techniques we extended TAX into our Tree Logical Class (TLC) algebra.
We discuss our operators and our translation algorithm for XQuery to TLC along with
other details in [?]. We base our discussion on our physical algebra seen in [?].

5 Algebraic Optimizations

In this section we demonstrate some of the advantages we get by using algebraic prim-
itives to produce more efficient solutions. We discuss how we address grouping in
XQuery and also show some algebraic rewrites that focus on smart placement of or-
dering and duplicate operations.

Grouping: While SQL allows for grouping operations to be specified explicitly, XQuery
provides only implicit methods to write such queries. For example consider a query that
seeks to output, for each author, titles of articles he or she is an author of
(in a bibliography database). A possible XQuery statement for this query is shown in
Figure 7. A direct implementation of this query as written would involve two distinct
retrievals from the bibliography database, one for authors and one for articles,
followed by a join. Yet, one of our basic primitives of our algebra is a GROUPBY
operator, thus enabling us to produce a ‘smarter’ plan than the one dictated by XQuery.

The procedure uses a rewrite that operates in the following way. In the beginning,
the parser will ‘naı̈vely’ try to interpret the query from Figure 7 as a join following the
logic specified in XQuery. Then a rewrite will transform the plan into a more efficient
one using the GROUPBY operator. First, a selection will be applied on the database
using the pattern tree of Figure 8.a followed by a projection. This will produce a collec-
tion of trees containing all article elements and their author and title children.

1 Base data, read directly from the database, has no such association.
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Fig. 9. On the right the rewritten plan having pushed the Sort into the Select.

Next the input pattern tree to be used by the GROUPBY operator will be generated. For
Query 1 this is shown at Figure 8.b. The GROUPBY operator (grouping basis : author)
will be applied on the generated collection of trees and the intermediate tree structures
in Figure 8.c are produced. Finally a projection is done keeping only the necessary
nodes.

The power of the algebra allows for the transformation of the ‘naı̈ve’ join plan
into a more efficient query plan using grouping – overcoming the XQuery nuances and
making it similar to a relational query asking for the same information. Details of the
rewrite algorithm along with more complex scenarios can be found in [?].

Duplicates and Ordering: As we discussed in Section 3, smart operation placement of
ordering and duplicate elimination procedures can cause orders of magnitude difference
in evaluation performance. We show two examples of such rewrites. Details for both
techniques along with other examples are found in [?].

We start by showing an example on how we optimize ordering in Figure 9. The
rewrite takes advantage of our extended operations that use Ordering Specification an-
notations to push the Sort procedure into the original Select. Thus, the rewrite pro-
vides the cost based optimizer with the means to efficiently plan the pattern tree match
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Fig. 10. Minimizing Duplicate Elimination procedures.

using the appropriate physical access methods, without having to satisfy a blocking
Sort operation at the final step of the query plan.

Additionally, we show an example on how duplicate elimination procedures can be
minimized in Figure 10. First, we ‘naı̈vely’ force a duplicate elimination after every
operation to produce the correct behavior. Then our technique detects and removes all
redundant procedures by checking which operations will potentially produce duplicates.
With the last step, we take advantage of our ‘partial’ duplicate collections and manage
to remove the duplicate elimination procedure completely.

6 Final Words

The flexibility of XML poses a significant challenge to query processing: it is hard to
perform set-oriented bulk operations on heterogeneous sets. In this paper, we proposed
our algebraic framework as an effective means to address this problem. We introduced
the Pattern Tree as the basic unit of operations and developed an algebra that consumes
and produces collections of trees in TAX. We discussed how we address efficiently the
very complex ordering requirements of XML and XQuery using our Hybrid Collec-
tions. We showed some practical extensions to tree algebras with the Annotated Pattern
Trees and Logical Classes of TLC. Finally, we hinted on some optimization opportuni-
ties that arise with the use of algebra.

It is our belief that a good algebra is central to a good database system, whether
relational or XML. The algebraic infrastructure we described in this paper is the basis
for the TIMBER [?,?,?] native XML database system developed at the University of



Michigan. The experience we gained from implementing our system strengthens our
belief in an algebraic approach. We hope in the near future the XML community can
converge on an algebra that combines the best characteristics of the various proposed
solutions and provides an alternative formal representation of XQuery.


