
On the First-Order Reducibility of Unions of
Conjunctive Queries over Inconsistent Databases

Domenico Lembo, Riccardo Rosati, and Marco Ruzzi

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
{lembo,rosati,ruzzi}@dis.uniroma1.it

Abstract. Recent approaches in the research on inconsistent databases
have started analyzing the first-order reducibility of consistent query an-
swering, i.e., the possibility of identifying classes of queries whose con-
sistent answers can be obtained by a first-order (FOL) rewriting of the
query, which in turn can be easily formulated in SQL and directly evalu-
ated through any relational DBMS. So far, the investigations in this di-
rection have only concerned subsets of conjunctive queries over databases
with key dependencies. In this paper we extend the study of first-order re-
ducibility of consistent query answering under key dependencies to more
expressive queries, in particular to unions of conjunctive queries. More
specifically: (i) we analyze the applicability of known FOL-rewriting tech-
niques for conjunctive queries in the case of unions of conjunctive queries.
It turns out that such techniques are applicable only to a very restricted
class of unions of conjunctive queries; (ii) to overcome the above limita-
tions, we define a new rewriting method which is specifically tailored for
unions of conjunctive queries. The method can be applied only to unions
of conjunctive queries that satisfy an acyclicity condition on unions of
conjunctive queries.

1 Introduction

Consistent query answering. Research in consistent query answering (CQA)
studies the definition (and computation) of “meaningful” answers to queries
posed to databases whose data do not satisfy the integrity constraints (ICs)
declared on the database schema [2, 11, 4].

Recent studies in this area have established declarative semantic characteri-
zations of consistent query answering over relational databases, decidability and
complexity results for consistent query answering, as well as techniques for query
processing [2, 6, 11, 4, 3, 5]. In particular, it has been shown that computing con-
sistent answers of conjunctive queries (CQs) is coNP-hard in data complexity,
i.e., in the size of the database instance, even in the presence of very restricted
forms of ICs (single, unary keys).

From the algorithmic viewpoint, the approach mainly followed is query an-
swering via query rewriting: (i) First, the query that must be processed (usually

a conjunctive query) is reformulated in terms of another, more complex query.
Such a reformulation is purely intensional, i.e., the rewritten query is indepen-
dent of the database instance; (ii) Then, the reformulated query is evaluated over
the database instance. Due to the semantic nature and the inherent complex-
ity of consistent query answering, Answer Set Programming (ASP) is usually
adopted in the above reformulation step [11, 3, 5], and stable model engines like
DLV [13] can be used for query processing.

First-order reducibility of Consistent Query Answering. An orthogonal
approach to consistent query answering is the one followed by recent theoretical
works [2, 6, 10, 12], whose aim is to identify classes of first-order reducible queries,
i.e., queries whose consistent answers can be obtained by rewriting the query in
terms of a first-order (FOL) query.

The advantage of such an approach is twofold: first, this technique allows for
computing consistent answers efficiently in data complexity. More specifically,
in this case, the data complexity of consistent query answering is the one of
standard evaluation of FOL queries over databases, i.e., LogSpace. Second,
consistent query answering in these cases can be performed through standard
database technology, since the FOL query synthesized can be easily translated
into SQL and then evaluated by any relational database management system.
On the other hand, this approach is only limited to particular subclasses of
the problem. In particular, Fuxman and Miller in [10] have studied databases
with key dependencies, and have identified a broad subclass of CQs that can be
treated according to the above strategy.

Our contribution. In this paper we study first-order reducibility of consis-
tent query answering for unions of conjunctive queries in the presence of key
dependencies. More specifically, our contribution can be summarized as follows:

1. first, we analyze the direct applicability of the rewriting technique of [10] to
unions of conjunctive queries. In particular, we characterize the subclass
of unions of conjunctive queries for which a first-order rewriting can be
computed in a modular way, such that the FOL rewriting of a union of
conjunctive queries corresponds to the union of the FOL rewritings of each
single conjunctive query. Each query belonging to such a subclass is a union
of conjunctive queries in which (i) every disjunct can be rewritten exploiting
the rewriting technique presented in [10], and (ii) repetition of atom symbols
in different disjuncts is limited according to a suitable condition (see Section
3). It turns out that this way of FOL-reducing unions of conjunctive queries
is possible only for a very restricted class of unions of conjunctive queries;

2. to overcome the limitations of the previous approach, we define a new rewrit-
ing method which is specifically tailored for unions of conjunctive queries.
The method can be applied only to a subclass of unions of conjunctive
queries, in particular the queries that satisfy an acyclicity condition on
unions of conjunctive queries: for each such query q, the method produces
a FOL-rewriting of the query whose evalutation produces the consistent an-
swers to q. Note that this new defined subclass, properly contains the one
described in the previous item.

Relevance of our results. We believe that the relevance of our study is twofold:

1. Extending the study of first-order reducibility of consistent query answering
from conjunctive (i.e., select-project-join) queries to more expressive queries
is certainly interesting: in this respect, the extension to unions of conjunctive
queries is particularly important, since the possibility of expressing unions
is probably the most important expressive feature which is missed by the
language of conjunctive queries.

2. As explained in Section 5, we argue that the ability of handling unions of
conjunctive queries is necessary in order to extend the first-order reduc-
tion techniques of consistent query answering to other forms of integrity
constraints, specifically to inclusion dependencies. Besides key dependen-
cies, inclusion dependencies, and in particular foreign keys, are certainly the
most important form of integrity constraints in relational schemas. At the
best of our knowledge this problem has not been studied yet. Notably, the
analysis of first-order reduction of consistent query answering of unions of
conjunctive queries constitutes a necessary first step in order to arrive at the
definition of analogous methods for (unions of) conjunctive queries under
key and foreign key dependencies.

Structure of the paper. In the next section, we present some preliminary
definitions. In Section 3 we recall the method for first-order reducibility of con-
junctive queries under key dependencies and study under which conditions this
technique can be directly applied to unions of conjunctive queries. Then, in Sec-
tion 4 we define a new query rewriting algorithm specifically designed for unions
of conjunctive queries, and discuss formal properties of the method. Finally, we
conclude in Section 5.

2 Inconsistent databases and consistent answers

Syntax. We consider to have an infinite, fixed alphabet Γ of constants repre-
senting real world objects, and we take into account only database instances
having Γ as domain. Moreover, we assume that different constants in Γ denote
different objects, i.e., we adopt the so-called unique name assumption.

A database schema S is constituted by a relational signature A, i.e., a set
of relation symbols in which each relation is associated with an arity (positive
integer) indicating the number of its attributes, and a set of integrity constraints
specified over A. An attribute of a relation symbol r is an integer b such that
1 ≤ b ≤ n, where n is the arity of r. We consider schemas which contain only key
dependencies specified over A. A key dependency (KD) over A is an expression
of the form key(r) = {i1, . . . , ik}, where r is a relation symbol of A, and, if n is
the arity of r, 1 ≤ ij ≤ n for each j such that 1 ≤ j ≤ k. We assume that at
most one KD is specified over a relation r and we say that an attribute of r is a
key attribute if it belongs to the set key(r) (otherwise we say that it is a non-key
attribute). We denote with the pair 〈A,K〉, a database schema S with signature
A and set of key dependencies K over A.

A term is either a variable or a constant of Γ . An atom is an expression of
the form p(t1, . . . , tn) where p is a relation symbol of arity n and t1, . . . , tn is a
sequence of n terms. An atom is called fact if all the terms occurring in it are
constants. A database instance D for S is a set of facts over A. We denote as rD

the set {t | r(t) ∈ D}.
A union of conjunctive queries (UCQ) q of arity n over a (database schema

with) signature A is an expression of the form

h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm

where the atom h(x1, . . . , xn) is called the head of the query (denoted by head(q)),
d1 ∨ . . . ∨ dm is called the body of the query (denoted by body(q)), and for
each i ∈ {1 . . .m}, di, called the i-th disjunct of q, is a conjunction of atoms
ai,1 ∧ . . . ∧ ai,k, whose predicate symbols are in A, such that all the variables
occurring in the query head also occur in di. If m = 1, q is simply called conjunc-
tive query (CQ). In a UCQ q, we say that a variable is a head variable if it occurs
in the query head, while we say that a variable is existential if it only occurs in
the query body. Moreover, we call an existential variable shared in a disjunct d
of q if it occurs at least twice in d (otherwise we say that it is non-shared in d).
Obviously, if q is a CQ, an existential variable shared (resp. non-shared) in the
unique disjunct of q will be simply called shared (resp. non-shared) in q.

A FOL query of arity n is an expression of the form

{x1, . . . , xn | Φ(x1, . . . , xn)}

where x1, . . . , xn are variable symbols and Φ is a first-order formula with free
variables x1, . . . , xn.

Semantics. First, we briefly recall the standard evaluation of queries over a
database instance. Let q be the UCQ h(x1, . . . , xn) :– d1 dm and let
t = 〈c1, . . . , cn〉 be a tuple of constants of Γ . A set of facts I is an image of t
w.r.t. q if there exists a substitution σ of the variables occurring in a disjunct di

of q such that σ(head(q)) = h(t) and σ(di) = I. Given a database instance D,
we denote by qD the evaluation of q over D, i.e., qD is the set of tuples t such
that there exists an image I of t w.r.t. q such that I ⊆ D.

Given a FOL query q and a database instance D, we denote by qD the
evaluation of q over D, i.e., qD = {〈c1, . . . , cn〉 | D |= Φ(c1, . . . , cn)}, where each
ti is a constant symbol and Φ(c1, . . . , cn) is the first-order sentence obtained from
Φ by replacing each free variable xi with the constant ci.

Then, we define the semantics of queries over inconsistent databases. A
database instance D violates the KD key(r) = {i1, . . . , ik} iff there exist two
distinct facts r(c1, . . . , cn), r(d1, . . . , dn) in D such that cij

= dij
for each j such

that 1 ≤ j ≤ k.
Let S = 〈A,K〉 be a database schema. A database instance D is legal for S

if D does not violate any KD in K.
A set of ground atoms D′ is a repair of D under S iff: (i) D′ ⊆ D; (ii) D′ is

legal for S; (iii) for each D′′ such that D′ ⊂ D′′ ⊆ D, D′′ is not legal for S. In
words, a repair for D under S is a maximal subset of D that is legal for S.

The problem in which we are interested is consistent query answering [2, 6]:
given a database schema S, a database instance D, and a UCQ q, return all
tuples t of constants of Γ such that, for each repair D′ of D under S, t ∈ qD

′
.

Each such tuple is called consistent answer to q in D under S.

Furthermore, analogously to [10], we say that consistent query answering for a
class C of UCQs is FOL-reducible (or simply that the class C is FOL-reducible), if
for every database schema S = 〈A,K〉 and every query q ∈ C over A, there exists
a FOL query qf over A such that for every database instance D, t is a consistent
answer to q in D under S iff t ∈ qDf . We call such a qf a FOL-rewriting of q under
S. Notice that FOL-reducibility is a very interesting property from a practical
point of view, since FOL queries correspond to queries expressed in relational
algebra (i.e., in SQL). Observe also that every FOL query can be evaluated in
LogSpace wrt data complexity, i.e., computational complexity w.r.t. the size of
the database instance (see e.g., [1]). It follows that if a class C is FOL-reducible,
then consistent query answering for C is in LogSpace wrt data complexity.

3 FOL-rewriting of UCQs via FOL-rewriting of CQs

It is well known that the consistent query answering problem studied in this
paper is coNP-hard in data complexity for generic conjunctive queries (and thus
for generic unions of conjunctive queries) [4, 6]. As a consequence, the issue of
scalability of query answering with respect to (large) database instances turns
out to be crucial [3, 8]. In this respect, an interesting approach is the one that
aims at identifying subclasses of queries for which the problem is tractable [7, 6],
or FOL-reducible [2, 10, 9]. In particular, in [10] the authors study the problem
for the class of conjunctive queries, and define a subclass of CQs, called Ctree, for
which they provide an algorithm for FOL-rewriting under schemas which contain
only KDs. The class Ctree is based on the notion of join graph: a join graph of
a conjunctive query q is the graph that contains (i) a node Ni for every atom
in the query body, (ii) an arc from Ni to Nj if an existential shared variable
occurs in a non-key position in Ni and occurs also in Nj , (iii) an arc from Ni

to Ni if an existential shared variable occurs at least twice in Ni, and at least
one occurrence is in a non-key position. According to [10], Ctree is the class
of conjunctive queries (a) without repeated relation symbols, (b) in which every
join from non-key to key attributes involves the entire key of at least one relation
and (c) whose join graph is acyclic. As pointed out in [10], this class of queries
is very common, since cycles are rarely present in queries used in practice.

A class of CQs slightly more general than Ctree, called C+tree, has been con-
sidered in [12], and a new algorithm, called CQ-FolRewrite, for FOL-rewriting
of such CQs has been proposed. Conjunctive queries belonging to such a class
respect condition (a) and (c) above, but admit also joins from non-key attributes

that not necessarily involve the entire key of a relation (i.e., condition (b) above
has been removed)1.

In what follows we consider the algorithm CQ-FolRewrite and study a possible
extension of it in order to deal with queries specified in the more expressive
language of unions of conjunctive queries. In particular, we consider UCQs where
each disjunct is of class C+tree. Notice that, even if CQA of CQs in the class C+tree
is FOL-reducible, CQA for queries that are unions of C+tree queries is not in
general FOL-reducible as shown by the following theorem.

Theorem 1. Let S = 〈A,K〉 be a database schema, D a database instance for
S, q a UCQ of arity n over S, and t an n-tuple of constants in Γ . The problem
of establishing whether t is a consistent answer to q in D under S is coNP-hard
with respect to data complexity.

Proof. (Sketch) The proof is by reduction of the three-colorability problem to
the complement of our problem.

For the sake of completeness, we show the algorithm CQ-FolRewrite and its
subroutine NodeRewrite in Figure 1 and Figure 2, respectively.

Algorithm CQ-FolRewrite(q,S)
Input: CQ q ∈ C+

tree with q = h(x1, . . . , xn) :– d

schema S = 〈A,K〉
Output: FOL query
begin

compute JG(q);

return {x1, . . . , xn |
^

N∈roots(JG(q))

NodeRewrite(JG(q), N,S)}

end

Fig. 1. The algorithm CQ-FolRewrite

In the algorithm, we exploit a refined notion of join graph, in which we
associate to each node an adornment which specifies the different nature of
terms in the atoms, as formally specified below.

Definition 1. Let S = 〈A,K〉 be a database schema, q be a CQ over A, and
a = r(x1, . . . , xn) be an atom (of arity n) occurring in the body of q. Then,
let key(r) = {i1, . . . , ik} belong to K, and let 1 ≤ i ≤ n. The type of the i-th
argument of a in q, denoted by type(a, i, q) is defined as follows:

1. If i1 ≤ i ≤ ik, then:
1 The algorithm CQ-FolRewrite takes into account also other forms of integrity con-

straints specified on the database schema (a.k.a. exclusion dependencies), which are
not considered in the present paper.

Algorithm NodeRewrite(JG(q), N,S)
Input: Join Graph JG(q);

node N of JG(q)
schema S = 〈A,K〉

Output: FOL formula
begin

let a = r(x1/t1, . . . , xn/tn) be the label of N ;
for i := 1 to n do

if ti ∈ {KB,B} then vi := xi

else vi := yi, where yi is a new variable
if each argument of a is of type B or KB then f1 := r(x1, . . . , xn)
else begin

let i1, . . . , im be the positions of the arguments of a of type S, U, KU;
f1 := ∃yi1 , . . . , yim . r(v1, . . . , vn)

end;
if there exists no argument in a of type B or S then return f1

else begin
let p1, . . . , pc be the positions of the arguments of a of type U, S or B;
let `1, . . . , `h be the positions of the arguments of a of type B;
for i := 1 to c do

if tpi = S then zpi := xpi else zpi := y′i, where y′i is a new variable
for i := 1 to n do

if ti ∈ {KB,KU} then wi := vi else wi := zi;

f2 := ∀zp1 , . . . , zpc . r(w1, . . . , wn) →

0@ ^
N′∈jgsucc(N)

NodeRewrite(JG(q), N ′,S)

1A∧^
i∈{`1,...,`h}

wi = xi

return f1 ∧ f2

end
end

Fig. 2. The algorithm NodeRewrite

– if xi is a head variable of q, a constant, or an existential shared variable,
then type(a, i, q) = KB;

– if xi is an existential non-shared variable of q, then type(a, i, q) = KU.
2. Otherwise (i /∈ {i1, . . . , ik}):

– if xi is a head variable of q or a constant, then type(a, i, q) = B;
– if xi is an existential shared variable of q, then type(a, i, q) = S;
– if xi is an existential non-shared variable of q, then type(a, i, q) = U.

Terms typed by KB or B are called bound terms, otherwise they are called
unbound. We call the typing of a in q the expression of the form r(x1/t1, . . . , xn/tn),
where each ti is the type of the argument xi in q.

In the algorithm, JG(q) denotes the join graph of q, in which each node
Ni is labelled with the typing of the corresponding atom ai in q, and jgsucc(N)

denotes the set of node which are successors on N in the join graph. Furthermore,
roots(JG(q)) denotes the set of nodes that are roots in JG(q) (notice that each
join graph for a query of class C+tree is actually a set of trees, i.e. a forest). For
a detailed description of the algorithm we refer the reader to [12], where also
soundness and completeness of CQ-FolRewrite with respect to the problem of
consistent query answering for CQs belonging to the C+tree class are established.

We are now ready to attack the study of consistent query answering for UCQs
specified over database schemas with key dependencies. We start by analyzing
the possibility of solving the problem for a UCQ q by simply applying the al-
gorithm CQ-FolRewrite to each disjunct di of q, and taking as result the query
qf obtained by the union of the FOL queries produced by each such execution
of CQ-FolRewrite. In order to do that, in the following we obviously consider
UCQs whose disjuncts are of class C+tree. Formally, we provide the algorithm
UCQ-FolRewrite shown in Figure 3.

Algorithm UCQ-FolRewrite(q,S)
Input: UCQ q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm such that di ∈ C+

tree for i ∈ {1, . . . , m};
schema S = 〈A,K〉

Output: FOL query
begin

for i := 1 to m do
begin

qi = h(x1, . . . , xn) :– di;
compute JG(qi);

end

return {x1, . . . , xn |
m_

i=1

^
N∈roots(JG(qi))

NodeRewrite(JG(qi), N,S)};

end

Fig. 3. The algorithm UCQ-FolRewrite

Example 1. Consider a database schema S = 〈A,K〉, such that A contains the
binary relation symbols r1, r2 and r3, and K contains the dependencies key(r1) =
{1}, key(r2) = {1}, key(r3) = {1}. Consider the UCQ

q :– (r1(x, y) ∧ r2(y, z)) ∨ (r3(x, y) ∧ r2(y, z))

over A. The join graphs of each disjunct are as follows:

r1 (x/KU, y/S) (N1) −→ (N2) r2 (y/KB, z/U)
r3 (x/KU, y/S) (N1) −→ (N2) r2 (y/KB, z/U)

Now it is easy to see that any disjunct in the query is in class C+tree. Then,
the first-order query returned by the execution of UCQ-FolRewrite(q,S) is

qf = { | (∃x, y.r1(x, y) ∧ ∀y′.r1(x, y′)→ ∃z.r2(y′, z))∨
(∃x, y.r3(x, y) ∧ ∀y′.r3(x, y′)→ ∃z.r2(y′, z))}

For such an example it is possible to verify that the query above is actually
the FOL-rewriting of the input query q, i.e., for every database instance D, t is
a consistent answer to q in D under S iff t ∈ qDf .

Now, the question arises whether the condition that any disjunct in the input
query q is in class C+tree is sufficient in order to guarantee soundness and, in
particular, completeness of the algorithm. The following example shows that
actually this is not the case.

Example 2. Assume to have a database schema S = 〈A,K〉, such thatA contains
the relation symbol r of arity 2, and K contains the dependency key(r) = {1}.
Consider the UCQ q :– r(x, c1) ∨ r(x′, c2) over A, in which c1 and c2 are
different constant symbols. It is immediate to verify that any disjunct in the
query is in class C+tree. Then, the first-order query returned by the execution of
UCQ-FolRewrite(q,S) is

qf = { | (∃x, y.r(x, y) ∧ ∀y′.r(x, y′)→ y′ = c1)∨
(∃x, y.r(x, y) ∧ (∀y′.r(x, y′)→ y′ = c2) }.

Now, assume to have the database instance D = {r(a, c1), r(a, c2)}, which is
not legal for S. It is easy to see thatD 6|= Φ, where Φ is the sentence corresponding
to the body of qf , i.e., according to a notation commonly adopted in the database
theory for boolean queries, 〈〉 6∈ D, where 〈〉 indicates the empty tuple. On the
other hand, the repairs of D under S are R1 = {r(a, c1)} and R2 = {r(a, c2)},
and the body of the query q evaluates to true in both R1 and R2, i.e. 〈〉 is a
consistent answer to q in D under S.

The example above shows that the algorithm UCQ-FolRewrite is in general
incomplete (even if it is easy to see that it is always sound). This is mainly
due to the fact that separately rewriting single disjuncts does not take into
account the interaction that may exist between them. Indeed, the body of the
FOL-rewriting that the algorithm constructs for each single disjunct di (i.e.,∧

N∈roots(JG(qi))
NodeRewrite(JG(qi), N)) is a FOL formula, which we denote

with φ, such that, given an assignment of the free variables of φ (i.e., a tuple
of constants t), the sentence φ(t) is satisfied only by those database instances
D such that in any repair of D there is an image of t w.r.t the disjunct di.
On the other hand, for a union of conjunctive queries q, for a tuple t to be a
consistent answer to q it is sufficient that in any repair of D there exists an image
of the tuple w.r.t. q, i.e. with respect to any disjunct dj of q (in other words, the
disjunct which provides the image has not to be the same in any repair). This
is actually the case we have in Example 2.

Despite the above limitations of the algorithm, we are able to identify a
subclass of conjunctive queries for which the algorithm UCQ-FolRewrite is sound
and complete. To this aim, we provide the following definition.

Definition 2. Let S = 〈A,K〉 be a database schema, let r be a relation symbol
of A such that key(r) = {1, . . . , n} ∈ K. Let q be a UCQ over A and let a1 =
r(x,y) and a2 = r(z,w) be two different atoms occurring respectively in two
different disjuncts d1 and d2 of q, such that x = x1, . . . , xn, y = y1, . . . , ym,
z = z1, . . . , zn, w = w1, . . . , wm are sequences of terms. Then, we say that a1

and a2 are interacting in q if

1. the sequences of terms in key position in a1 and a2 unify, i.e., there exists a
unifier between x and z;

2. there exists j ∈ {1, . . . ,m} such that yj and wj are not identical constants;
3. a1 (resp. a2) is such that either a1 is not a leaf in the join graph of d1 (resp.

d2) or there exists a non-key argument of a1 (resp. a2) which is bound.

Notice that the atoms r(a, c1) and r(a, c2) in the example above are inter-
acting atoms in the query q. Now we are able to define the class we were looking
for.

Definition 3. A UCQ q belongs to the class UCQNI of non-interacting UCQs
if:

– each disjunct di of q is in C+tree;
– there do not exist two interacting atoms a1 and a2 in q.

It is easy to see that the query in Example 1 belongs to the class UCQNI ,
whereas the query in in Example 2 does not.

Theorem 2. Let S = 〈A,K〉 be a database schema, q ∈ UCQNI be a query over
S. Then, the FOL query qf returned by the algorithm UCQ-FolRewrite(q,S) is a
FOL-rewriting of q under S.

In other words, the above theorem states that the problem of consistent query
answering under key dependencies is FOL-reducible for the class UCQNI .

4 Algorithm

In this section we try to overcome the limitations of the rewriting technique
presented in the previous section, by defining a new FOL-rewriting algorithm
for UCQs. Based on such an algorithm, we are able to identify the class of
acyclically interacting queries, a class of UCQs which extends the class UCQNI

defined in Section 3, and to prove that acyclically interacting queries constitute
a class of FOL-reducible queries under key dependencies.

4.1 The algorithm UCQ-FolRewriteNew

We are now ready to define the algorithm UCQ-FolRewriteNew, a FOL rewrit-
ing algorithm for UCQs that, differently from the previous algorithm UCQ-
FolRewrite, takes into account the semantic interactions between the query dis-
juncts.

In the algorithm UCQ-FolRewriteNew(and in the other algorithms iteratively
invoked by UCQ-FolRewriteNew and presented in this section), with a little abuse
of terminology we call typed query associated to a query q the query qt obtained
from q by replacing each atom with its typing. Analogously, the typed disjunct
associated to a disjunct d is the disjunct dt obtained from d by replacing each
atom with its typing. Coherently to the above definitions, when the operator
JG, used for constructing the join graph of a query, is applied to a typed query
qt, the nodes of JG(qt) respect the typing specified by qt, i.e., each node of the
graph is labeled with the corresponding typing indicated in qt. We also point
out that in the query Q in input to UCQ-FolRewriteNew, each variable symbol
only occurs in a single disjunct of Q, and the new variables introduced by the
algorithm NodeRewriteNew(see below) are always fresh symbols with respect to
all the executions of the algorithm.

The algorithm UCQ-FolRewriteNew is presented in Figure 4.

Algorithm UCQ-FolRewriteNew(Q,S)
Input: a first-order reducible UCQ Q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm;

schema S = 〈A,K〉
Output: FOL query (representing the rewriting of Q)
begin

let Qt be the typed query associated to Q;
for i := 1 to m do

let dt
i be the typed disjunct associated to di;

return {x1, . . . , xn |
_

i=1,...,m

DisjunctRewrite(dt
i, Q

t,S, (∅, ∅)) }

end

Fig. 4. The algorithm UCQ-FolRewriteNew

Such algorithm calls the algorithm DisjunctRewrite, described in Figure 5, which
computes the rewriting of a single disjunct di of the UCQ, by recursively calling
the subroutine NodeRewriteNew, presented in Figure 6.

The algorithm NodeRewriteNew is actually a new version of the algorithm
NodeRewrite presented in Section 3. Notably, NodeRewriteNew (executed on a
disjunct d) recursively calls DisjunctRewrite to properly take into account the role
of other disjuncts which have relation symbols in common with d. More precisely,
the rewriting produced by the algorithm NodeRewriteNew suitably encodes the
possibility that, given an assignment of the head variables of the UCQ Q (i.e., a
tuple of constants t), an “opponent fact” r(c′) to a fact r(c) (i.e., such that r(c)

Algorithm DisjunctRewrite(d, Q,S,P)
Input:

a typed union of conjunctive queries Q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm;
a typed disjunct d that appears in Q;
schema S = 〈A,K〉;
P = (M, E) where M is a list of atoms and E is a set of equalities;

Output: FOL query (representing the rewriting of the disjunct d)
begin

q = h(x1, . . . , xn) :– d;
compute JG(q);

return {
^

N∈roots(JG(q))

NodeRewriteNew(JG(q), N, Q,S,P)}

end

Fig. 5. The algorithm DisjunctRewrite

and r(c′) have the same key) that belongs to an image of t w.r.t. a disjunct di of
Q, might not be part of any image of the same disjunct di but may be part of an
image of t w.r.t. another disjunct dj of the query. Thus, the formula in the FOL-
rewriting must look for the existence of such an image of dj . It can be shown
that this non-local check must be performed only in the presence of interacting
atoms in Q. More precisely, when NodeRewriteNew is computing the rewriting
of a node corresponding to an atom a, it must recursively invoke DisjunctRewrite
only for each disjunct dj such that there is an atom b in dj that is interacting
with a in Q.

In the algorithms DisjunctRewrite and NodeRewriteNew, P is the pair (M,E)
in which M is a list of atoms and E is a set of equalities of terms. Each atom
in the list M is obtained by means of the operator Πkd applied to a typing
a = r(x1/t1, . . . , xn/tn) (i.e., a label of a node of a join graph). Πkd(a) returns the
atom r(xi1 , . . . , xia

), where i1, . . . , ia are positions of the arguments of a of type
KU or KB, i.e., xi1 , . . . , xia

are the key-arguments of the atom r(x1, . . . , xn).
The function call occurs(Πkd(a),P) returns true if the atom Πkd(a) is in the
list M or it can be constructed from an atom of M according to the equalities
of terms contained in E. Otherwise occurs(Πkd(a),P) returns false. This check
avoids useless calls of the algorithm DisjunctRewrite and guarantees termination
of the procedure. Furthermore, Int(N) denotes the set of disjuncts of Q that
contain atoms interacting with the atom corresponding to the node N (and
different from the disjunct which N belongs to); u1, . . . , un denote the terms oc-
curring the interacting atom in the disjunct dj , and uj1 , . . . , ujs are the variables
occurring in such atom; τ is an operator which modifies the typing of each atom
(in the disjunct dj and in the query Q in the two invocations τ(dj) and τ(Q),
respectively) by assigning KB to the key arguments of the interacting atom, and
B to the other (non-key) arguments.

Algorithm NodeRewriteNew(JG(q), N, Q,S,P)
Input: join graph JG(q);

node N of JG(q);
a typed query Q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm;
schema S = 〈A,K〉;
P = (M, E) where M is a list of atoms and E is a set of equalities;

Output: FOL formula
begin

let a = r(x1/t1, . . . , xn/tn) be the label of N ;
for i := 1 to n do

if ti ∈ {KB,B} then vi := xi

else vi := yi, where yi is a new variable;
if each argument of a is of type B or KB then f1 := r(x1, . . . , xn)
else begin

let i1, . . . , im be the positions of the arguments of a of type S, U, KU;
f1 := ∃yi1 , . . . , yim . r(v1, . . . , vn)

end;
if there exists no argument in a of type B or S
then return f1

else begin
let p1, . . . , pc be the positions of the arguments of a of type U, S or B;
let `1, . . . , `h be the positions of the arguments of a of type B;
for i := 1 to c do

if tpi = S then zpi := xpi else zpi := y′i, where y′i is a new variable
for i := 1 to n do

if ti ∈ {KB,KU} then wi := vi else wi := zi;
if occurs(Πkd(a),P)

then f2 =

0@ ^
N′∈jgsucc(N)

NodeRewriteNew(JG(q), N ′, Q,S,P) ∧
^

i∈{`1,...,`h}

wi = xi

1A
else begin

M = M ∪ {Πkd(a)};
E = E ∪ {w1 = u1, . . . , wn = un};
f2 := ∀zp1 , . . . , zpc . r(w1, . . . , wn) →0@ ^

N′∈jgsucc(N)

NodeRewriteNew(JG(q), N ′, Q,S,P) ∧
^

i∈{`1,...,`h}

wi = xi

1A∨

_
dj∈Int(N)

∃uj1 , . . . , ujs .w1 = u1 ∧ . . . ∧ wn = un ∧

∧ DisjunctRewrite(τ(dj), τ(Q),S,P);
return f1 ∧ f2

end
end

end

Fig. 6. The subroutine NodeRewriteNew

Example 3. Consider again the query q of Example 2, and execute the algorithm
UCQ-FolRewriteNew(q,S). Then the FOL-rewriting produced by the algorithm
is as follows

{ | (∃y1.r(y1, c1) ∧ ∀y2.r(y1, y2)→ y2 = c1 ∨ (∃y3.y1 = y3 ∧ y2 = c2 ∧ r(y3, c2)))∨
(∃y1.r(y1, c2) ∧ ∀y2.r(y1, y2)→ y2 = c2 ∨ (∃y3.y1 = y3 ∧ y2 = c1 ∧ r(y3, c1)))}.

Notice that in such a case the check on the execution of DisjunctRewrite,
which we have talked about above, avoids the execution of identical calls of such
a procedure.

We finally point out that the rewriting produced by the algorithm can be
refined in order to get a simplified version of it (which could be evaluated in a
more efficient way). However, this is outside the scope of the present paper.

4.2 Termination and correctness

The algorithm UCQ-FolRewriteNew in general does not terminate. In order to
charaterize the class of queries for which the algorithm terminates, we give the
following definitions.

Definition 4. Given two atoms a = r(x1, . . . , xn, w1, . . . , wm), b = r(y1, . . . , yn, z1, . . . , zm),
where key(r) = {1, . . . , n}, we say that a and b are key-unifiable if, for each i
s.t. 1 ≤ i ≤ n: (i) xi is a variable; or (ii) yi is a variable; or (iii) xi = yi. If a
and b are key-unifiable, we denote by σa→b the substitution {yi ← xi | 1 ≤ i ≤
n and yi is a variable}.2

Definition 5. A UCQ Q = {x1, . . . , xm | d1 ∨ . . . ∨ dn} has a ∨-cycle if there
exists a sequence d1

i1
, . . . , dk

ik
(with k > 1) and a sequence of relation symbols

rj1 , . . . , rjk−1 such that:

– d1
i1

= di1 ;
– ik = i1;
– for each h s.t. 1 ≤ h ≤ k − 1, rjh

occurs both in dh
ih

and in dh+1
ih+1

;
– let a be the atom with relation rjh

in dh
ih

and let b be the atom with relation
rjh

in dih+1 . Then, a and b are key-unifiable. Moreover, for each h s.t. 1 ≤
h ≤ k − 1, dh+1

ih+1
= σa→b(dih+1);

– the key arguments of rj1(d
k
ik

) contain at least one existential variable not
occurring in the key arguments of rj1(d

1
i1

).

In a ∨-cycle, the disjuncts dj
ij

and dj+1
ij+1

are connected through two atoms
a (occurring in dij

) and b (occurring in dij+1) such that a and b are on the
same relation symbol r. The key arguments of a are “passed” to b, thus dij+1 is
transformed according to such a substitution.

2 In the definition of key-unifiable atoms, head variables are considered as constants.

Example 4. Let us consider the UCQ

q :– (r1(x, y) ∧ r2(y, z)) ∨ (r2(x, y) ∧ r1(y, z))

We now show that there is an ∨-cycle in q which starts from the atom r1(x, y)
of the first disjunct. Indeed, the ∨-cycle is due to: (i) the presence of the atom
r1(x, y) in the first disjunct and the atom r1(y, z) in the second disjunct, which
constitutes the first part of the cycle; (ii) the presence of the atom r2(x, y) in the
second disjunct and the atom r2(y, z) in the first disjunct, which constitutes the
second part of the cycle; (iii) the fact that, after this cycle, the key argument of
the atom r1(x, y) in the first disjunct is unbound.

It is easy to verify that a a necessary condition for a UCQ Q to have a ∨-cycle
is the presence of interacting atoms in Q.

Definition 6. A UCQ Q = {x1, . . . , xm | d1 ∨ . . . ∨ dn} belongs to the class
UCQAI of acyclically interacting UCQs if:

1. each conjunction di is such that the CQ {x1, . . . , xm | di} belongs to C+tree;
2. there are no ∨-cycles in Q.

Informally, according to the above definition, a UCQ Q is acyclically inter-
acting if the interacting atoms in the query disjuncts are such that they do not
constitute a ∨-cycle in Q, i.e., a cycle of interactions that, starting from an atom
r(x), cycles back to the same atom introducing at least one existential variable
in the key arguments of the atom.

From the semantic viewpoint, the presence of an ∨-cycle implies that, when
checking for the opponents of an image r(t) of a query atom a, we need to check
for the opponents of another image r(t′) of a, where t′ has in its key arguments a
new value that does not occur neither in t nor in the query Q. This immediately
implies non-termination of the algorithm UCQ-FolRewriteNew, since at every
such iteration there are new key arguments in the call to NodeRewriteNew for
the atom a. Vice versa, the absence of such a cycle implies termination of the
algorithm, since no new term (with respect to the terms occurring in the query
Q) is introduced in the calls to NodeRewriteNew, hence the number of possible
instantiations of the calls to NodeRewriteNew is finite.

The following property formalizes the fact that the class of acyclically in-
teracting queries is precisely the class of UCQs for which the algorithm UCQ-
FolRewriteNew terminates.

Theorem 3. Let Q be a UCQ, and let S be a schema. The execution of the algo-
rithm UCQ-FolRewriteNew with input Q terminates if and only if Q is acyclically
interacting.

Moreover, the following theorem establishes soundness and completeness of
the algorithm UCQ-FolRewriteNew for the class of acyclically interacting UCQs.

Theorem 4. If Q is acyclically interacting, then for every database instance D
for S, a tuple t is a consistent answer to Q in D under S iff t ∈ QD

r , where
Qr is the FOL query returned by UCQ-FolRewriteNew(Q) (i.e., the FOL query
returned by the algorithm UCQ-FolRewrite(Q) is a FOL-rewriting of q under S).

As a corollary of the above theorem, we obtain that the class UCQAI is
FOL-reducible.

Finally, we point out that:

– the class of UCQAI is a proper superset of the class of UCQs UCQNI ana-
lyzed in Section 3 and for which the algorithm UCQ-FolRewrite is complete;

– if Q is a query in the class UCQNI , the algorithms UCQ-FolRewrite(Q) and
UCQ-FolRewriteNew(Q) return exactly the same FOL query.

5 Discussion and Conclusions

We believe that the study of first-order reducibility of consistent query answering
for unions of conjunctive queries is relevant per se, since the possibility of ex-
pressing unions in queries is an important feature which has practical relevance.
However, we argue that the ability of handling unions of conjunctive queries is
necessary in order to solve via FOL-rewriting techniques the problem of consis-
tent query answering for (unions of) conjunctive queries issued over database
schemas which contain keys and foreign keys under the loosely-sound semantics,
a repair semantics which allows for properly dealing with both incomplete and
inconsistent databases3 [4, 5].

Formally, given a database schema S which contains keys and foreign keys,
a loosely-sound repair of a database D is any database legal for S that con-
tains a repair (as so far intended in the present paper and formally specified in
Section 2) of D under S ′, where S ′ is obtained from S disregarding foreign key
dependencies. Roughly speaking, such semantics adds the ability to deal with in-
consistent databases to the first-order semantics commonly adopted for dealing
with incomplete databases. Indeed, in intuitive terms, it maintains the ability of
the first-order semantics to deliberately add facts to a database instance (prop-
erty that can be exploited to satisfy those dependencies that can be satisfied
by adding facts, as foreign keys), but it also allows for a (minimal) deletion of
facts, thus enabling the repairing of database instances with respect to those
dependencies, as key dependencies, that may generate inconsistency according
to the first-order semantics.

Notably, as showed in [5], in order to solve consistent query answering for
(unions of) conjunctive queries under the loosely-sound semantics, it is possible
to separately dealing with keys and foreign keys. According to the procedure
provided in [5], a query q is first processed only according to the foreign keys
issued over the database schema. Such a pre-processing produces a union of

3 Notice that also inclusion dependencies of a particular form which guarantees decid-
ability of the consistent query answering problem might be considered [4].

conjunctive queries Q. Then, it is sufficient to solve consistent query answering
for the UCQ Q over the same database schema in which foreign keys have been
dropped. It is immediate to see, that if the query Q obtained is of class UCQAI ,
then to solve the second problem we can apply the algorithm UCQ-FolRewrite
presented in this paper.

Consequently, even if still preliminary, the analysis of first-order reduction
of unions of conjunctive queries we have presented turns out to be a necessary
first step in order to arrive to the definition of analogous methods for (unions
of) conjunctive queries under key and foreign key dependencies.

6 Acknowledgments

This research has been partially supported by the FET project INFOMIX:
Boosting Information Integration, funded by EU under contract number IST-
2001-33570, the FET project TONES: Thinking ONtologiES, funded by the EU
under contract number FP6-7603, and by MIUR FIRB 2005 project “Tecnologie
Orientate alla Conoscenza per Aggregazioni di Imprese in Internet” (TOCAI.IT).

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-
dison Wesley Publ. Co., 1995.

2. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query an-
swers in inconsistent databases. In Proceedings of the Eighteenth ACM SIGACT
SIGMOD SIGART Symposium on Principles of Database Systems (PODS’99),
pages 68–79, 1999.

3. Loreto Bravo and Leopoldo Bertossi. Logic programming for consistently querying
data integration systems. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI 2003), pages 10–15, 2003.

4. Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. On the decidability and
complexity of query answering over inconsistent and incomplete databases. In
Proceedings of the Twentysecond ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS 2003), pages 260–271, 2003.

5. Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. Query rewriting and answer-
ing under constraints in data integration systems. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI 2003), pages 16–
21, 2003.

6. Jan Chomicki and Jerzy Marcinkowski. On the computational complexity of
minimal-change integrity maintenance in relational databases. In Leopoldo
Bertossi, Anthony Hunter, and Torsten Schaub, editors, Inconsistency Tolerance,
volume 3300 of Lecture Notes in Computer Science, pages 119–150. Springer, 2005.

7. Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing consistent
query answers using conflict hypergraphs. In Proceedings of the Thirteenth Inter-
national Conference on Information and Knowledge Management (CIKM 2004),
pages 417–426, 2004.

8. Thomas Eiter, Michael Fink, Gianluigi Greco, and Domenico Lembo. Efficient eval-
uation of logic programs for querying data integration systems. In Proceedings of
the Nineteenth International Conference on Logic Programming (ICLP’03), pages
163–177, 2003.

9. Ariel Fuxman, Elham Fazli, and Renée J. Miller. ConQuer: Efficient management
of inconsistent databases. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 155–166, 2005.

10. Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent
databases. In Proceedings of the Tenth International Conference on Database The-
ory (ICDT 2005), volume 3363 of LNCS, pages 337–351. Springer, 2005.

11. Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework for query-
ing and repairing inconsistent databases. IEEE Transactions on Knowledge and
Data Engineering, 15(6):1389–1408, 2003.

12. Luca Grieco, Domenico Lembo, Marco Ruzzi, and Riccardo Rosati. Consistent
query answering under key and exclusion dependencies: Algorithms and experi-
ments. In Proceedings of the Fourteenth International Conference on Information
and Knowledge Management (CIKM 2005), pages 792–799, 2005.

13. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The DLV system for knowledge representation
and reasoning. ACM Transactions on Computational Logic, 2006. To appear.

